The Envelope Theorem

3
604 CHAPTER A2 THEOREM A2.22 The Envelope Theorem C onsider the problem (A2.35) when there is just one constraint and suppose the objective function, f , and the constraint function, g, are continuously differentiable in (x, a) on an open subset W × U of R n × A. For each a U , suppose that x(a) W uniquely solves (A2.35), is continuously differentiable in a on U , and that the constraint g(x(a), a) 0 is binding for every a U . L et L(x, a, λ) be the problem’s associated Lagrangian function and let (x(a), λ(a)) solve the K uhn-Tucker conditions in Theorem A2.20. F inally, let V (a) be the problem’s associated value function. Then, the Envelope theorem states that for ever y a U, V (a) a j = L a j x(a),λ(a) j = 1,..., m. where the right-hand side denotes the partial derivative of the Lagrangian function with respect to the parameter a j evaluated at the point (x(a), λ(a)). T he theorem says that the total effect on the optimised value of the objective function when a parameter changes (and so, presumably, the whole problem must be reoptimised) can be deduced simply by taking the partial of the problem’s L agrangian with respect to the parameter and then evaluating that derivative at the solution to the original problem’s rst-order K uhn-Tucker conditions. A lthough we have conned ourselves in the statement of the theorem to the case of a single constraint, the theorem applies regardless of the number of constraints, with the usual proviso that there be fewer constraints than choice variables. B ecause of the importance of this theorem, and because it is not so obviously true, we will work through a rather extended proof of the version given here. Proof: First, form the L agrangian for the maximisation problem: L f (x, a) λ[g(x, a)]. B y hypothesis, x(a) and λ(a) satisfy the rst-order K uhn-Tucker conditions given in T heorem A 2.20. T herefore for every a U , and because the constraint is binding, we have, f (x(a), a) x i λ(a) g(x(a), a) x i = 0, i = 1,..., n g(x(a), a) = 0. (P.1) T he partial derivative of L with respect to the parameter a j would be L a j = f (x, a) a j λ g(x, a) a j . CALCULUS AND OPTIMISATION 605 If we evaluate this derivative at the point (x(a), λ(a)), we obtain L a j x(a),λ(a) = f (x(a), a) a j λ(a) g(x(a), a) a j . (P.2) If we can show that the partial derivative of the maximum-value function with respect to a j is equal to the right-hand side of (P.2), we will have proved the theorem. We begin by directly differentiating V (a) with respect to a j . B ecause a j affects f directly and indirectly through its inuence on each variable x i (a), we will have to remember to use the chain rule. We get V (a) a j = n i =1 f (x(a), a) x i x i (a) a j chain rule + f (x(a), a) a j . Now, go back to the rst-order conditions (P.1). R earranging the rst one gives f (x(a), a) x i λ(a) g(x(a), a) x i , i = 1,..., n. Substituting into the bracketed term of the summation, we can rewrite the partial derivative of V (a) as V (a) a j = λ(a) n i =1 g(x(a), a) x i x i (a) a j + f (x(a), a) a j . (P.3) T he nal ‘trick’ is to go back again to the rst-order conditions (P.1) and look at the second identity in the system. B ecause g(x(a), a) 0, we can differentiate both sides of this identity with respect to a j and they must be equal. Because the derivative of the constant zero is zero, we obtain n i =1 g(x(a), a) x i x i (a) a j chain rule again + g(x(a), a) a j 0. R earranging yields g(x(a), a) a j ≡− n i =1 g(x(a), a) x i x i (a) a j .

description

The envelope Theorem Microeconomic

Transcript of The Envelope Theorem

Page 1: The Envelope Theorem

604

CH

APT

ERA

2

THEO

REM

A2.

22Th

eEn

velo

peTh

eore

m

Con

side

rtheprob

lem

(A2.35

)whe

nthereis

just

oneco

nstraint

andsupp

osetheob

jective

func

tion,

f,an

dtheco

nstraint

func

tion,

g,areco

ntinuo

usly

diffe

rentiablein

(x,a)

onan

open

subset

Uof

Rn×

A.Fo

rea

cha

∈U,supp

osethat

x(a)

∈W

unique

lysolves

(A2.35

),is

continuo

usly

diffe

rentiablein

aon

U,a

ndthat

theco

nstraint

g(x(a)

,a)

≤0is

bind

ingforeverya

∈U

.Le

t L(x

,a,

λ)be

theprob

lem’s

associated

Lagran

gian

func

tion

andlet(x(a)

,λ(a

))solvetheKuh

n-Tu

cker

cond

ition

sin

Theo

rem

A2.20

.Finally,let

V(a

)

betheprob

lem’s

associated

valuefunc

tion.

Then

,theEnv

elop

etheo

rem

states

that

for

everya

∈U,

∂V

(a)

∂a j

=∂L

∂a j

� � � � x(a)

,λ(a

)

j=1,

...,

m.

whe

retherigh

t-ha

ndside

deno

testhepa

rtiald

erivativeof

theLa

gran

gian

func

tionwith

respecttothepa

rameter

a jevalua

tedat

thepo

int(x(a)

,λ(a

)).

The

theorem

says

that

thetotaleffect

ontheop

timised

valueof

theob

jectivefunctio

nwhenaparameter

changes(and

so,p

resumably,the

who

leprob

lem

mustb

ereop

timised)

canbe

dedu

cedsimplyby

taking

thepartialo

ftheprob

lem’s

Lagrang

ianwith

respectto

theparameter

andthen

evaluatin

gthat

derivativ

eat

thesolutio

nto

theoriginal

prob

lem’s

first-order

Kuh

n-Tu

cker

cond

ition

s.Alth

ough

wehave

confi

nedou

rselvesin

thestatem

ent

ofthetheorem

tothecase

ofasing

leconstraint,thetheorem

appliesregardless

ofthe

numberof

constraints,with

theusualp

roviso

that

therebe

fewer

constraintsthan

choice

variables.Because

oftheim

portance

ofthis

theorem,a

ndbecauseitis

notso

obviou

sly

true,w

ewill

workthroug

harather

extend

edproo

fof

theversiongivenhere.

Proo

f:First,form

theLagrang

ianforthe

maxim

isationprob

lem:

L≡

f(x,

a)−

λ[g(

x,a)

].

Byhy

pothesis,x(a)

and

λ(a

)satisfy

thefirst-order

Kuh

n-Tu

cker

cond

ition

sgivenin

Theorem

A2.20

.Therefore

foreverya

∈U,andbecausetheconstraint

isbind

ing,

we

have,

∂f(x(a)

,a)

∂x i

−λ(a

)∂g(x(a)

,a)

∂x i

=0,

i=1,

...,

n

g(x(a)

,a)

=0.

(P.1)

The

partiald

erivativeof

Lwith

respecttotheparameter

a jwou

ldbe

∂L

∂a j

=∂f(x,

a)a j

−λ

∂g(x,

a)∂a j

.

CA

LCU

LUS

AN

DO

PTIM

ISAT

ION

605

Ifweevaluate

thisderivativ

eat

thepo

int(x(a)

,λ(a

)),w

eob

tain

∂L

∂a j

� � � � x(a)

,λ(a

)

=∂f(x(a)

,a)

∂a j

−λ(a

)∂g(x(a)

,a)

∂a j

.(P.2)

Ifwecanshow

that

thepartiald

erivativeof

themaxim

um-value

functio

nwith

respectto

a jisequaltotherigh

t-hand

side

of(P.2),wewill

have

prov

edthetheorem.

Webeginby

directly

differentia

ting

V(a

)with

respectto

a j.Because

a jaffects

fdirectly

andindirectly

throug

hits

influ

ence

onea

chvariable

x i(a

),wewill

have

toremem

berto

usethechainrule.W

eget

∂V

(a)

∂a j

=n � i=1

� ∂f(x(a)

,a)

∂x i

� ∂x i

(a)

∂a j

���

�chainrule

+∂f(x(a)

,a)

∂a j

.

Now

,goback

tothefirst-order

cond

ition

s(P.1).Rearranging

thefirston

egives

∂f(x(a)

,a)

∂x i

≡λ(a

)∂g(x(a)

,a)

∂x i

,i=

1,..

.,n.

Substitutinginto

thebracketedterm

ofthesummation,

wecanrewritethepartiald

erivative

ofV

(a)as

∂V

(a)

∂a j

=λ(a

)

n � i=1

� ∂g(x(a)

,a)

∂x i

∂x i

(a)

∂a j

�+

∂f(x(a)

,a)

∂a j

.(P.3)

The

final

‘trick’is

togo

back

againto

thefirst-order

cond

ition

s(P.1)andlook

attheseco

ndidentityin

thesystem

.Because

g(x(a)

,a)

≡0,

wecandifferentia

tebo

thsides

ofthis

identitywith

respectto

a jandthey

mustbe

equal.Because

thederivativ

eof

the

constant

zero

iszero,w

eob

tain

n � i=1

� ∂g(x(a)

,a)

∂x i

∂x i

(a)

∂a j

���

�chainrule

again

+∂g(x(a)

,a)

∂a j

≡0.

Rearranging

yields

∂g(x(a)

,a)

∂a j

≡−

n � i=1

� ∂g(x(a)

,a)

∂x i

� ∂x i

(a)

∂a j

.

Page 2: The Envelope Theorem

606

CH

APT

ERA

2

Mov

ingtheminus

sign

into

thebrackets,w

ecansubstitutetheleft-handside

ofthisidentity

fortheentiresummationterm

in(P.3)to

get

∂V

(a)

∂a j

=−λ

(a)∂g(x(a)

,a)

∂a j

+∂f(x(a)

,a)

∂a j

.(P.4)

The

righ

t-hand

side

of(P.4)isthesameas

therigh

t-hand

side

of(P.2).Thu

s,

∂V

(a)

∂a j

=∂L

∂a j

� � � � x(a)

,λ(a

)

aswewantedto

show

.

EXA

MPL

EA

2.11

Let

usseeif

wecanverify

theEnvelop

etheorem.Su

pposewehave

f(x 1

,x 2

)≡

x 1x 2

and

asimpleconstraint

g(x 1

,x 2

)≡

2x1+

4x2−

a.Wearegiven

the

prob

lem

max

x 1,x

2x 1x 2

s.t.

2x1+

4x2−

a=

0,

andwou

ldlik

eto

know

how

themaxim

umvalueof

theob

jectivefunctio

nvaries

with

the(single,

scalar)parameter

a.Wewill

dothis

twoways:

first,w

ewill

derive

thefunc-

tionV

(a)explicitlyanddifferentia

teitto

geto

uransw

er.T

henwewill

usetheEnvelop

etheorem

toseeifwegetthe

samething.

Toform

V(a

),wemustfi

rsts

olve

fortheop

timal

values

ofthechoice

variablesin

term

sof

theparameter.Wewou

ldthen

substitutetheseinto

theob

jectivefunctio

nas

in(A

2.36

)to

getan

expression

forV

(a).Noticethat

this

prob

lem

differsslightly

from

the

onein

(A2.35

)because

wedo

notrequire

non-negativ

ityon

thechoice

variables.Thu

s,we

candispense

with

theKuh

n-Tu

cker

cond

ition

sandjustusethesimpleLagrang

ianmetho

d.Fo

rmingtheLagrang

ian,

weget L=

x 1x 2

−λ[2x

1+

4x2−

a],

with

first-order

cond

ition

s:

L 1=

x 2−

2λ=

0

L 2=

x 1−

4λ=

0(E.1)

L λ=

a−

2x1−

4x2

=0.

These

canbe

solved

tofin

dx 1

(a)=

a/4,

x 2(a

)=

a/8,

and

λ(a

)=

a/16

.Weform

the

maxim

um-value

functio

nby

substitutingthesolutio

nsforx 1

and

x 2into

theob

jective

CA

LCU

LUS

AN

DO

PTIM

ISAT

ION

607

functio

n.Thu

s,

V(a

)=

x 1(a

)x2(a)

=�a 4

��a 8

�=

a2 32.

Differentiatin

gV

(a)with

respecttoawill

tellus

howthemaxim

ised

valueof

theob

jective

functio

nvaries

with

a.Doing

that

weget

dV(a

)

da=

a 16.

Now

letu

sverify

thisusingtheEnvelop

etheorem.T

hetheorem

tells

usthat

tosee

how

themaxim

ised

valueof

thefunctio

nvaries

with

aparameter,sim

plydifferentia

tethe

Lagrang

ianforthemaxim

isationprob

lem

with

respecttotheparameter

andevaluate

that

derivativ

eat

thesolutio

nto

thefirst-order

cond

ition

s(E.1).App

lyingthetheorem,w

efirst

obtain

dV(a

)

da=

∂L ∂a

=λ.

Wethen

evaluate

thisat

thesolutio

nto

(E.1),where

λ(a

)=

a/16

.Thisgivesus

dV(a

)

da=

λ(a

)=

a 16,

which

checks.

Besides

verifyingthat

theEnvelop

etheorem

‘works’,this

exam

plehasalso

given

ussomeinsigh

tinto

whatinterpretatio

nwecangive

tothose‘incidental’variables,

the

Lagrang

ianmultip

liers.T

hisispu

rsuedfurtherintheexercises.

Alth

ough

wehave

confi

nedattentionhere

tomaxim

isationprob

lemsandtheira

sso-

ciated

valuefunctio

ns,itsho

uldbe

clearthat

wecouldalso

constructv

alue

functio

nsfor

minim

isationprob

lemsanalog

ously,andthat

theEnvelop

etheorem

wou

ldapplyforthem

aswell.

A2.

5SE

PARA

TIO

NTH

EORE

MS

Weendthismathematical

append

ixwith

alook

atwhata

recalle

d‘separation’

theorems.

The

idea

isgeom

etrically

simpleenou

gh.Fig.

A2.14

show

stw

odisjoint

convex

sets,A

andB,in

R2 .

Itis

obviou

sthat

wecandraw

alin

ebetw

eenthem

.Suchalin

eis

said

to‘separate’

thetw

osets.Ifwethinkof

thelin

eas

beingdescribedby

theequatio

n,

p 1x 1

+p 2

x 2=

I,

Page 3: The Envelope Theorem

608

CH

APT

ERA

2

x 1

x 2

A

B Figur

eA2.14

.Se

paratin

gconvex

sets.

where

p 1,p 2

,andIarepo

sitiv

econstants,then

everypo

int(

a 1,a 2

)∈

Aissuch

that

p 1a 1

+p 2

a 2>

I,

andeverypo

int(

b 1,b 2

)∈

Bissuch

that

p 1b 1

+p 2

b 2<

I.

Con

sequ

ently

,if

p=

(p1,

p 2),

then

weseethat

thegeom

etricno

tionof

separatio

nis

expressedanalytically

as,

p·a

>p

·b,foreverya

∈Aandeveryb

∈B.

Imagineno

wtw

odisjoint

convex

setsin

R3 ,

sayasphere

andabo

xwith

thesphere

entirelyou

tsidethebo

x.Again,itis

obviou

sthat

wecanseparate

thetw

osets,thistim

ewith

aplane,andan

identic

alanalyticexpression

,but

nowwith

allv

ectorsin

R3 ,

describes

thesituation.

The

separatio

ntheoremsbelowgeneralisethisto

anynu

mbero

fdim

ension

s.Wewill

prov

idetw

otheorems.The

second

theorem

strictly

generalises

thefirstandallowsthesets

AandBto

be,for

exam

ple,op

enand‘tangent’toon

eanother.

THEO

REM

A2.

23A

Firs

tSep

arat

ion

Theo

rem

Supp

osethat

Cis

aclosed

andco

nvex

subset

ofR

nthat

does

notco

ntaintheorigin,0.

Then

,the

reexists

avector

p∈

Rnof

leng

thon

ean

>0such

that,

p·c

≥α,foreveryc

∈C

.