The enigmatic sun: laboratory for new physics.

58
The enigmatic sun: laboratory for new physics. K. Zioutas University of Patras & CERN follow-up of axions axions CAST motivated ! ! + V. Anastassopoulos, Th. Papaevangelou, Y. Semertzidis, M. Tsagri. Further reading: http://axion-wimp.desy.de/e30/e252/talk- 21-zioutas.pdf ICPP Bogazici University,

description

The enigmatic sun: laboratory for new physics. K. Zioutas University of Patras & CERN  follow-up of axions  CAST motivated ! + V. Anastassopoulos, Th. Papaevangelou, Y. Semertzidis, M. Tsagri. Further reading: http://axion-wimp.desy.de/e30/e252/talk-21-zioutas.pdf - PowerPoint PPT Presentation

Transcript of The enigmatic sun: laboratory for new physics.

Page 1: The enigmatic sun: laboratory for new physics.

The enigmatic sun: laboratory for new physics.

K. Zioutas University of Patras & CERN

follow-up of axionsaxions CAST motivated!!

+ V. Anastassopoulos, Th. Papaevangelou, Y. Semertzidis, M. Tsagri.

Further reading: http://axion-wimp.desy.de/e30/e252/talk-21-zioutas.pdf

ICPP Bogazici University, Istanbul, Turkey 27th October 2008

Page 2: The enigmatic sun: laboratory for new physics.

Probing eV-scale axions with CAST.By CAST Collaboration (: E. Arik et al.). Oct 2008. 17pp.

e-Print: arXiv:0810.4482 [hep-ex]

Page 3: The enigmatic sun: laboratory for new physics.

The The CASTCAST Collaboration Collaboration

Page 4: The enigmatic sun: laboratory for new physics.

Why axionsWhy axions??

Page 5: The enigmatic sun: laboratory for new physics.

Physics motivation for axionsaxions:

to solve the strong CP problemthe strong CP problem

why nEDM nEDM → → 00

spin-parity 0- ≈ πο , γ (M1)

AxionsAxions cosmology cosmology dark matterdark matter + + Sun, …Sun, … solve solve solar problemssolar problems?!?!

This work

Page 6: The enigmatic sun: laboratory for new physics.

(solar) ~~axions axions in the spotlight!!

Several exp’s …

Page 7: The enigmatic sun: laboratory for new physics.

Searching for Searching for ~~axions with space missionsaxions with space missions!!

e.g., Yohkoh, RHESSI, HINODE, …

Page 8: The enigmatic sun: laboratory for new physics.

http://www.solarviews.com/eng/sun.htm

SUN: 5 Mtons / s of energy is 5 Mtons / s of energy is releasedreleased

~100 ktons ~100 ktons ~~axions / saxions / s …… … …

overlookedoverlooked?!?!

Page 9: The enigmatic sun: laboratory for new physics.

The Primakoff Effect 19511951

H Primakoff

Behind all present axion work! solar axions B aQED

axionaxion

inside B?

Page 10: The enigmatic sun: laboratory for new physics.

keV4.2Ea

Solar axion spectrumSolar axion spectrum

2

GeV10

g110

aγγ

↛↛ Theoretically + Theoretically + experimentallyexperimentally

new territorynew territory!!

screening effectsscreening effects 25 25x suppression, or suppression, or??G.G. Raffelt, PRD33 (1986) 897

Page 11: The enigmatic sun: laboratory for new physics.

P. Sikivie 1983

×B

CASTCAST

axion sourceaxion source axion detectionaxion detection

Page 12: The enigmatic sun: laboratory for new physics.

BXvirtual

α

CASTCAST

Page 13: The enigmatic sun: laboratory for new physics.

CAST performance

WMAPCASTCAST

CB

R

Page 14: The enigmatic sun: laboratory for new physics.

CAST performance

WMAPCASTCAST

CB

R

Subm. JCAP 27th

Oct.’08

Page 15: The enigmatic sun: laboratory for new physics.

CASTCAST @@ the Sun??

hidden ~axions in published OR archived data!!?

This work:This work:

Page 16: The enigmatic sun: laboratory for new physics.

Is the Sun enigmaticIs the Sun enigmatic??

YES!! > a few eV> a few eV

• Heating of the chromosphere ++ corona: a long-standing puzzle in solar physics• Mystery:Mystery: Corona ++ TR are highly dynamic

K. Shibata et al., astro-ph/0810.3974 (22/10/20082008)

Page 17: The enigmatic sun: laboratory for new physics.

E~10–1000eVE~10–1000eV favorit R.O.I.

suggestive for LES~axions!

Black Body 5770 K

Solar e/m spectrumSolar e/m spectrum

100eV

Sola

r C

oro

na

pro

ble

m

Page 18: The enigmatic sun: laboratory for new physics.

Corona:Corona: ρe varies ~10varies ~10x – 100– 100x

Photosphere:Photosphere: ~1‰ of the gas is ionized (= plasma).

S Patsourakos et al, ApJ. 522 (19991999) 540; M Aschwanden, Physics of the Solar Corona (20042004) 24-26 http://www.windows.ucar.edu/tour/link=/sun/atmosphere/photosphere.html

Transition Region Transition Region ~100~100 km thin!km thin!

Neutral Hydrogen

Page 19: The enigmatic sun: laboratory for new physics.

Corona:Corona: ρe varies ~10varies ~10x – 100– 100x

Photosphere:Photosphere: ~1‰ of the gas is ionized (= plasma).

S Patsourakos et al, ApJ. 522 (19991999) 540; M Aschwanden, Physics of the Solar Corona (20042004) 24-26 http://www.windows.ucar.edu/tour/link=/sun/atmosphere/photosphere.html

Transition Region Transition Region ~100~100 km thin!km thin!

Neutral Hydrogen

problemsproblems!!

Page 20: The enigmatic sun: laboratory for new physics.

behind a mystery behind a mystery a hidden unknown a hidden unknown physics!physics!

Bsolar ignored

Note: axion <<-->> photon = f(B2)

Page 21: The enigmatic sun: laboratory for new physics.

W. Livingston, J. W. Harvey, O. V. Malanushenko, L. Webster, Sol. Phys. 239 (2006) 41

Distribution of maximum field strengths in 12804 sunspot groups measured at Mt.Wilson (1917–1964) and Rome (1965–1974). The dashed histogram is only Mt. Wilson measurements.

Magnetic field in sunspotsMagnetic field in sunspots

measuredmeasured!!

locallylocally??

Page 22: The enigmatic sun: laboratory for new physics.

Sola

r C

oron

a P

rob

lem

YOHKOH

heat flux problem @ umbra / penumbra

Some ARs are more productive

productivity B-configuration, as in the case of large flares.

Qiu et al., ApJ. 612 (2004) 530

<1.3 MK> quiet Sunquiet Sun

<1.8 MK> Umbra

Temperature distributions

Nindos, et al., ApJ. SUPPL. 130 (2000) 485

Penumbra <2.4 MK>

Origin of Sunspots one of the great puzzles of astrophysicsZhao, et al., ApJ. 557 (2001) 384

PhotospherePhotosphere:: T ⇩ ⇩ ~4500K

Corona: Corona: T ⇧⇧Transition Region Transition Region ⇧ ⇧ (!?)(!?) B ~2kGauss above most

sunspots!

Spruit, Scharmer, A.&A. 447 (2006) 343

ARAR

Page 23: The enigmatic sun: laboratory for new physics.

Power-law index n of Lx ~ Bn =(time) YOHKOH / XRT

The relation between the solar soft X-ray flux below ~4.4keVbelow ~4.4keV …and B can be approximated by a power law with <index> ≈ 2. E.E. Benevolenskaya, Kosovichev, Lemen, Scherrer, Slater ApJ. 571 (2002) L181

the soft X-ray flux depends not only on the amount of the photospheric magnetic flux but also on some magnetic field structural properties that vary with the solar cycle (2007).

axion-to-photon oscillation ∝ B2 Hoffmann, Z., Nucl. Phys. B S151 (2006) 359

⊗⊗ 11 years solar cycle11 years solar cycle??

Lx vs. B E.E. Benevolenskaya, Adv. Space Res. 39 (2007) 1491

Page 24: The enigmatic sun: laboratory for new physics.

<X-ray flux> / cm2 vs. <B> July-Nov. 1996

L van Driel-Gesztelyi, Démoulin, Mandrini, Harra, Klimchuk, ApJ.586

(2003) 579 K. Zioutas, K. Dennerl, M. Grande, D.H.H. Hoffmann, J. Huovelin, B. Lakic, S. Orlando, A.Ortiz, Th. Papaevangelou, Y. Semertzidis, Sp. Tzamarias, O. Vilhu J. Phys. Conf. Ser. 39

(2006) 103

The long-term evolution of AR7978

Yohkoh SXT

Lx B1.94±.12

~ filter independent

Eγ < 4 keV

Lx

B [Gauss]

RHESSI :often hard X-

rayemission from non-flaring ARs.

≳ 5 keV Hannah, Hurford, Hudson, Abstract: 2005AGUFMSH11A0242HAGU Fall meeting, 5-9/12/2005

Page 25: The enigmatic sun: laboratory for new physics.

44thth ~axion

22ndnd <T> ~ 15-20MK

The Electron “Problem”

e- ≈ 105 hard X-raysfrom Bremsstrahlung!

FLARESFLARES

Rebinned peak flare X-ray intensity Bmax

Mason et al., ApJ. 645 (2006) 1543 B2 correlation

Lx

Bmax

G. Emslie (2005) http://www.astro.auth.gr/%7Evlahos/ascona/memberstalks/energeticsEmslie.ppt#366,8

11stst surface brightness < max. Laxion

33rdrd Lx B2

Page 26: The enigmatic sun: laboratory for new physics.

Flares must be E/M in origin. JJ Sudol, JW Harvey, ApJ. 635 (10.12.2005) 647

FLARES: unpredictable magnetic “explosions”

B-reconnection (~annihilation)

is widely (but not universally) accepted to be essential

is reconnection the flare trigger? OR, is reconnection a consequence of the “explosion”?

RL Moore, AC Sterling, HS Hudson, JR Lemen, ApJ. 552 (2001) 833

The dynamical energy balance of ARs presents challenges.

… the source of the flare energy is not well understood.MS Wheatland, ApJ. 679 (June 2008) 1621

The solar “reconnection flare” concept is deceptive … … many unknowns. HS Hudson, SPD, May 27th 2008

Page 27: The enigmatic sun: laboratory for new physics.

Solar oxygen abundance B at the base of the photosphere near a porepore. The blue line: B2-dependence + constant component Private communication, H. Socas-Navarro. Z., Tsagri, Semertzidis, Papaevangelou, Nordt, Anastassopoulos, astro-ph/2007200701627

Oxygen abundanceOxygen abundance

B2

Fit: B2.12±0.27

Page 28: The enigmatic sun: laboratory for new physics.

Ne/O abundance ratios vs. coronal activity.

Quiet ARs:Ne / O ~ 0.15Flares: enhanced Ne detection (~2x)

++ solar TR dynamical behaviour:

2 2 ~~axion axion componentscomponents?!?!• Outwards (B) >Ne • Inwards(self-irradiation) <Ne

Note:Note: σpe(Ne-to-O) > 2× @ Eγ~1 keV

why the Sun is so special?? C.Liefke, JHMM. Schmitt, A&A L. (2006)

models incorrectly predict • the depth of the convection zone• the depth profiles of sound speed and density • the helium abundance

J.J. Drake, P. Testa, Nature 436 (2005) 525

Stellar spectra are likely dominated by photons fromintense flares. Therefore flare enhanced Ne/O ratios no solution of the problem! J.T. Schmelz et al., ApJ. 634 (2005) L197

measured photospheric abundances of

C, N, O, Ne ~30% below prediction!

M. Asplund et al., astro-ph/200410214 :

Page 29: The enigmatic sun: laboratory for new physics.

So far:So far:

IF solar X-rays come from axions

Page 30: The enigmatic sun: laboratory for new physics.

Solar axion / X-ray spectrumSolar axion / X-ray spectrum

2

GeV10

g110

aγγ

keV4.2Ea

11stst

Page 31: The enigmatic sun: laboratory for new physics.

Hinode/Yohkoh axion-like, RHESSI QCD axion

Search for solar X-rays from axions

Soft X-rays from Hinode/Yohkoh showing an axion signal. The axions, for a uniform coronal magnetic field,would give an image of the solar core.

simulation

RHESSIscience nuggetH. Hudson,30.4.2007

22ndnd

Page 32: The enigmatic sun: laboratory for new physics.

However, ...

… this workthis work

Page 33: The enigmatic sun: laboratory for new physics.

Simulation of the angular distribution of the converted solar axions inside the magnetized solar surface for two different column densities of the solar atmosphere above the initial place of birth. The photoelectric effect has been inactivated resembling thus plasma. Z., Tsagri, Semertzidis, Papaevangelou, astro-ph/0808.1545V4 M. Tsagri, Diploma Thesis, Patras, 20082008

Page 34: The enigmatic sun: laboratory for new physics.
Page 35: The enigmatic sun: laboratory for new physics.

Flaring Sun: interpretation of a reconstructed solar photon spectrum (a.) below 10 keV derived from Figure 6 of ref. [25]. The dashed line (b.) is the converted solar axion spectrum assuming zero column density. Two degraded spectra due to multiple Compton scattering are also shown for comparison reasons: (c.) 16 g/cm2 and (d.) 64 g/cm2. All this fits also the observed B2-dependence in [5-7] for X-rays below ~3 keV, where the initial axion spectrum is negligible compared to the observed one.

Z., Tsagri, Semertzidis, Papaevangelou, astro-ph/0808.1545V4

Reconstractedsolar spectrum

Solar axion spectrum

Page 36: The enigmatic sun: laboratory for new physics.

Then,Then,

… converted solar axion are expected …

Page 37: The enigmatic sun: laboratory for new physics.

Solar axion / X-ray spectrumSolar axion / X-ray spectrum

2

GeV10

g110

aγγ

keV4.2Ea

Page 38: The enigmatic sun: laboratory for new physics.

Simulation: propagation of converted solar axions at the solar surface magnetic field. The converted axions can photoionize the atmosphere above the initial place of birth of the X-ray spectrum (a) emitted radially from magnetically induced axion “decays” according to the inverse Primakoff – effect mean photon energy degradation with increasing column density: (b) 4 g/cm2, (c) 16 g /cm2, (d) 49 g/cm2. Z., Tsagri, Semertzidis, Papaevangelou, astro-ph/0808.1545V4 M. Tsagri, Diploma Thesis, Patras, 20082008

Page 39: The enigmatic sun: laboratory for new physics.

Hinode/Yohkoh axion-like, RHESSI QCD axion

Search for solar X-rays from axions

Soft X-rays from Hinode/Yohkoh showing an axion signal. The axions, for a uniform coronal magnetic field,would give an image of the solar core.

simulation

RHESSIscience nuggetH. Hudson,30.4.2007

Page 40: The enigmatic sun: laboratory for new physics.

Flux ~95% for the range ±40o

R.Howard, Solar Phys. 38 (1974) 59

Distribution in longitude and in latitude of the mean over 260 Carrington rotations magnetic field on the solar surface.

E. Gavryuseva, Solar Activity and its Magnetic Origin, Proc. IAU Symposium No. 233, 20062006, V. Bothmer & A. A. Hady, eds., p.61

Page 41: The enigmatic sun: laboratory for new physics.

Solar MaximumSolar MinimumYOHKOH

V. Anastassopoulos + M. Tsagri

< 2-4 keV low energy tail of solar axion spectrum!

Page 42: The enigmatic sun: laboratory for new physics.

Other published work, which has NOT

been related to axions so far!

Page 43: The enigmatic sun: laboratory for new physics.

20/5/2007, RHESSI nugget, I.G. Hannah + Christe

Magnetic flux ~95% in ±40o

R. Howard, Sol Phys 38(1974)59

Longitude + + latitude positions of ~24000 μflares

http://sprg.ssl.berkeley.edu/~tohban/nuggets/?page=article&article_id=52

Page 44: The enigmatic sun: laboratory for new physics.

IG Hannah, HS Hudson, GJ Hurford, RP Lin,http://espm.kis.uni-freiburg.de/index.php?id=328&L=1

Page 45: The enigmatic sun: laboratory for new physics.

This 3-6 keV QS excess can be from

1) Bsolar-converted ~axions

and/or2) Decaying massive ~axions Di Lella, Z. (20022002)

Note: Hannah et al (sept. 2008) argue as being one or two thermal high energy tails, its origin remains elusive!

Page 46: The enigmatic sun: laboratory for new physics.

Y. Cui et al., Sol. Phys. 237 (2006) 45 & 242 (2007) 1

Maximum horizontal gradient [Gauss / km]

Neutral Line Length [pixels]

S

ola

r F

lare

p

rod

ucti

vit

y Neutral line in ARs: opposite B-polarities

High magnetic field gradient solar activity & flares + CME

Page 47: The enigmatic sun: laboratory for new physics.

~~1010-5-5

G/cmG/cm

Page 48: The enigmatic sun: laboratory for new physics.

New axion ↔↔ photon interaction??

Novel experimental approachesNovel experimental approaches

Page 49: The enigmatic sun: laboratory for new physics.

FeedbackFeedback?! ?!

CAST, OSQAR,…?!

Page 50: The enigmatic sun: laboratory for new physics.

Quadrupole magnetQuadrupole magnet

Stephan Russenschuck

Page 51: The enigmatic sun: laboratory for new physics.

SUN aQuadrupolesSUN aQuadrupoles

~10-8 Tesla / m >100 Tesla / m 107±1 m ~10 m

Length Length x gradient gradient

< 1 >1000

Page 52: The enigmatic sun: laboratory for new physics.

http://www.guardian.co.uk/artanddesign/2008/jul/31/2

X-rays reveal Van Gogh's hidden face

Page 53: The enigmatic sun: laboratory for new physics.

X-rays reveal Sun's hidden face

Page 54: The enigmatic sun: laboratory for new physics.

Additional slides

Page 55: The enigmatic sun: laboratory for new physics.

… quiet Sun

Page 56: The enigmatic sun: laboratory for new physics.

relationship between B-gradients relationship between B-gradients ++ Solar Flare Solar Flare ActivityActivity

Page 57: The enigmatic sun: laboratory for new physics.

http://espm.kis.uni-freiburg.de/index.php?id=328&L=1 IG Hannah, HS Hudson, GJ Hurford, RP Lin,

Page 58: The enigmatic sun: laboratory for new physics.

??

http://espm.kis.uni-freiburg.de/index.php?id=328&L=1 IG Hannah, HS Hudson, GJ Hurford, RP Lin,