the engineering properties of tantalum and tantalum alloys

121
UNCLASSIFIED AD 426344 DEFENSE DOCUMENTATION CENTER SCIENUFIC AND IECHNICAL INFORMAHION CAM RON SIAIIN. AL0XANUHIA ViWiNIA UNCLASSIRFIED

Transcript of the engineering properties of tantalum and tantalum alloys

UNCLASSIFIED

AD 426344

DEFENSE DOCUMENTATION CENTER

SCIENUFIC AND IECHNICAL INFORMAHION

CAM RON SIAIIN. AL0XANUHIA ViWiNIA

UNCLASSIRFIED

NOTICE: When government or other dravings, speci-fications or other data are used for any purposeother than in connection with a de iitely relatedgovernment procurement operation, the U. S.Govermant thereby incurs no responibility, nor anyobligation whatsoever; and the fact that the Govern-ment may have forculated, furmished, or in any waysupplied the said drawings, specificaticns, or otherdata is not to be regarded by implIcaticn or other-vise as in any manner licensing the holder or anyother person or corporation, or conveying any rightsur perm.1sicL to mar.'facture, use ar sell anypatented invention that may IL any vay be relatedthereto.

DMIC Report 189

September 13, 1963

THE ENGINEERING PROPERTIES OF TANTALUM

.. .AND TANTALUM ALLOYS

DEFENSE METALS INFORMATION CENTER

Batte!le Memorial Institute

Columbus 1, OhioI

The Defense Metals Information Center was established at

Battelle Memorial Institute at the request of the Office of the

Director of Defense Research and Engineering to provide Govern-ment contractors and their suppliers technical assistance andinformation on titanium, -ci viium, magnesium, refractory metals,high-strength alloys for high -temperature service, corrosion- ad

oxidation-resistant coatings, and thermal -protection systems, itsfunctions, under the direction of the Office of the Secretarv o'Defense, are as follows

1. To collect, store, and dis e inate technical ,n-for itiion ont the current status of research insddevelopment oI tie abuve malterials

lu upplelenlt estaliU shed Semi i, v ict itli , it

providinlg tchnical ,ulsinory servicis ti pi-,!-

i, vr , inellt- rs. tnd fabric-ators f !th Ai!; ovmaterials, and to designers and fabricators ofin ilita rc equ ipment containing these iitm rial .

I' - s Lt 1 .i il, i li .iti it, .u -'ieir .

-. Onii aissiglli '. ut. t i, loCt - r%' s or tlib rtrvrtess-.,rc'li ii,'itmgllititoi:-. iiiioihsl o~f ,a slOy"'-rainls-

lture, us riqjUired, to ascert,u caacs

bles encountered by fabricators, or to fill- minor

gaps ii established research programs.

Ctract No. AF 33(0In) -7747

Project No. (a-So75

' 'l)tj :0W " " • i df " ,.. i,

C.I

'I S: 'In' -q.

00 b

,t Pj be ob wheeJr

It a b C

Best Available Copy

DMIC Report 189September 13, 1963

THE ENGINEERING PROPERTIES OF

TANT XLUM AND TANTALUM ALLOYS

by

F. F. Schmidt and H. R. Ogden

to

OFFICE OF THE DIRECTOR OF DEFENSERESEARCH AND ENOINEERING

DEFENSE METALS INFORMATION NTERBattelle Memorial Institute

Columbas 1, Ohio

i

FOREWORD

The growing interest in the use of columbium, molybdenum, tantalum, and tungb-

ten metals and their alloys for structural applications has emphasized the need for an up-

to-date review of some of the more important physical, mechanical, and metallurgical

properties of these materials. Four consecutively numbered reports covering colum-biurn and columhiurn alloyb, molybdenum and .nolybdenurn alloys, tantalum and tantalum

alloys, and tungsten and tungsten alloys have been prepared. The intent of these reports

has been to assemble, present, and summarize, in easy reference form, the engineering-

property data of these four refractory metals and alloys. Tfhis report covers tantalumand tantalum, alloys.

In addition to data available from the published literature, numerous organizationshave contributed data for inclusion in this report. The Defense Metals InformationCenter gratefully acknowledges the assistance of the following individuals and organiza-Liurs who contributed valuable information used in the preparation of this report.

G. D. MArdle and F. Nair, Climax Molebdenurn CompanyH. Peters, L. 1. du Pont de Nenours Company, Inc.R. L. Wilkey, Fansteel Metallurgical CorporationR Bancroft and Nt. Schluss'cr, Maynes Stcllitc Company

R. W Werner, Lawrence Radiation Laboratcry-G. P. Trost, Metalm and Controls, Inc.

M. Torti, National Research Corporation

W. Bauer, Stauffer Metals CompanyR. B. Bargainnier, Sylvania Electric Products, Inc.C. Mueller and G. A. TLiadii, Universal Cyclops Steel CorporationS. A. ,,orce ster, Wah Chang Corporation

R. L. Ammon, R. T. Beg'ey, and H. G. Se., Westinghouse ElectricCorporation

TABLE OF CO NS

F SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . I

INTRODUCTION ........ .. . .. .. . ........................ 3

ORGA.NIZATION OF DATA PRESEN LED IN THE APPENZIX ......... 5

APPENDIX

TANTALUM AND TANTALUM ALLOYS ........ ................ A-

Unalloyed Tantalum. ........ ..................... A-IT:-1W ..... ...... ............................... A-37T-2 W .. .. ........................ A-67T&-30Cb-7,I5V ........... . ...................... A-71Ta-SW-2. 5M.o ............ . . ..................... A-79T -SW -2Hf . . . . . . . . . . . . . . . . . .. . A -87Ta- I CW- 2. 5:!. . .......... . . ..................... A-97T,,- LOW -2, SM o . . . . . . . . . . . . . . . . . . . . . . A-10:

b)A

THE ENGINEERING PROPERTIES OF

TANTALUM AND TANTALUM ALLOYS

S UMIMA RY

This report presents the results of a state-of-the-iart survey coveringtammlumnand seven of its alloys. AUl data are given in tabl 1ar and: gahc.friaingsomieof the more important physical, mechanical, and metallurgical properties for eachmaterial, References are given at the conclusion of each material section,

H3

INTRODUCTION

The requirements for structura. materials for service temperatures in excess ofthose attainable with present rnaterials uf construction has proviced the stimulus for thedevelopment of r eractory metals and alloys. interest has sternmed largely from thehlgh-tempoprature structura&-engineering requirements associated with military hard-ware. In the development of the refractory metals, columbiumri, molybdenum, tantalum,and tungsten, and their alloys, extensive studies have been conducted and are in progresswhich are aimed toward the investigation of fundamental metallurgical concepts, alloydevelopment, pilot scale-up development of promising compositions, and, ultimately,alloy commercialization.

This report reviews some of the more important properties of tantalum and sevenof its alloys. Of this group of alloys, several ave not reached true commercial status'however the potential of theme advanced experinental and pilot-production alloyswarrants consideration, All data are presented in tabular and graphical form accordingto a number of important physical, nechanical, and metallurgical properties fortantalum and each of its seven alloys. Properties and alloys covered in this report arelisted in Table 1.

Tantaluim is the most recent of the refractory metals to undergo extensive study.Present work includes attempts to improve basic high-temperature strength capabilitiesthrough both aolution and dispersion strengthening while maintaining cryogenic ductility.Efforts have also been directed toward the addition of lighter elements to improve thes~rength-to-weight ratio.

In preparing this state-of-the-art survey, technical journals and publications,research reports, and trade htcraturc r'adc avatlahle to the Defense Metals Inr~srmationCenter were supplemented with personal contacts with a number of :nd:viduais andorganizations actively engaged in the refractory-metals field. References are given atthe conclusion of each material section.

44w

q:2Y9uon ;)TOT; 19~l I 9 9 9 9 9 9 9 9

21449.IUUQ J:Tpp.9o 1: Olt,: ::

A~mg4

UNUL~~~tIW~~ xO1'T± 9 49 49 4 9

r

g 5 and 6

ORGANIZATION OF DATA PRESENTED IN THE APPENDIX

1, :dentification of Material

De signation

Chenxical compositionForms available

Z. Physical Properties

Melting pointDensityThermal expansionTheirmal conductivityElectrical resistivity

3. Mechanical Properties

Tensile Properties at Room Temperature

Ult'nmate tensile strengthTensile yield strengthElongationReduction i. areaModulus of elasticity

Effect of Temperature on Tensile Properties

:t:rnatc tc,;s:!c strengthTensile yield strengthElongationReduction in areaModulus of elasttcity

Notched Tensile Popce-t c2

Creep and Stress-Rupture Properties

Other Selected Mechanical Properties

4. Metailurgicai Propert:es

Fabricability' ra sitiun tertmpera~ute

WeldabiityStress-relief ternperatureRecrystallization tenperature

Rcfcrences

APPENDIX

ANTAI,*UM AND ITS ALLOYS

ri

K I A-]APPEND:X

TANTALUM AND :TS ALLOYS

Unalloyed Tantalum

1. Identification of Material

a. Designation: many, depending upon individual supplier

b. Chemical composition: Tables A-i through A-3

c. Form.s available: ingot, bar, plate, sheet, strip, foil, rod, and wire( l , 2)

i

TAELT A-. C {,M!CA. REQl7RSME NTS FOR POWDER-METALUCY,

ARC-CAST, AND ELECTRCN-BEAM-CASTTANTALUM(aXI, 2)

Impurity Coert(b) Maximum.

[ we;t g per cc

C 0.030 O, OSN 0.015H 0.01cb 0.10Fe 0.D2Ti 0. 01W 0. 00

SI 0. 02N. 2. 02

(a) For Ingot, ar, plate, sheet, strip, foil, rod, and wire prod:crs.(h) The tota: of all impLrlues shall not be over 0.2 per cent.

TABLE A-2. PURITY RANGES SPECIFIED FOR TANTALUM POWDERS

Impuziy Content. weight per cent

Flemeit S:ntered Prod ict(3) Melhed Product(4)

C 0. ". 0, 21 - , L 4

c .1C C35-U, 08

N 2. 01 0.002-0.02

H 0. 00-0. < 2

CD ;. 0. 06-0.0.Fe 0. 015 D. 005-0. C1

Mo 0.003 .40. 001-0. 008Ni ,o. 002 0. 003-0. 006SI 0.02 0. 02-0.03 l

TABLE A-3. REFRSENTATIVE ANALYSES OF TANTALU.I AS PRODUCED BY VARIOUS PROCESSES

I-mp::rity Content. __p___!rnpor, Made b'i

EIU:TIenr Powde:-Met&. Producti3) CouJrnabie-Elerzode ProceuC(b) ElaCton-BCAM Proces()

C 30 23-30 7;-40

N <132 27 39-43

• '. I ;-C < n

C: -- 14C: .. <40

3G0 3 G00N: CO26 eC20

Mo <0 -- <20SI aOc 30 <100

.Physical Pr-opertie s

a. Melting poin:: 54Z5 F(7)

Dunsit,: C. 600 lb/in. 3 7)

41k T1 xh, it~i~~l TablesU A-.4 and A"5

Sd, Thermal conductivity: Figures A-1 and A-2

e. Electrical resistivity: Figures A-3 and A-4

A-4

TABLE A-4. LINEAR THERMAL EXPANSION OF TANTALUM(8

)

Temperature, Linear Expansi,.(a),

C per cent

127 0.07

327 0.20

02'I 0.347"7 ()..48

927 0. 2 1

1127 0.81

1327 0.991527 1.161727 1. 34

1927 1.532127 1.72

2327 1.93

2527 2.15

2727 2.40

2%17 2, G9

(a) The linear coeffik ent of thermal expansion can he expressed

by the following equation:

a 1 0' i ( 5 4 t .'4 c 10 "3 + 0.12 x 10 6 t

2 ,

wherea = per degree, C

t = temperatuie, C.

'AILE -5. TIERNIAL. EXPANSION OF TANTALNUM SUPPLIED BY FANSTEFI. METALLURGICAL

AND NATIONAL RSEARCIt(a)(9 )

Coefficient. Coefficient,

Linear 27 C to Linear 85 to

elmp, Expansion, Temp, Temp, Expansion, Temp,

C per cent 10-/C F per cent 10-6/F

1600 1.04 6.61 3000 1.09 3. 14

ILO 1.23 6.93 3400 1.30 3.92

2','w, 1. -5 7.35 3Y0) 1. 6 4.201.71 7.88 4200 1.88 4. 56

2.0 8. 1 4600 2.33 3.152.47 9. 61 5000 2.88 .t;

,2 . , 1 . 5 2 0 0 3 . 1 8. t l

".' 3.2G 11.35

,) ACorinposill , per ceit, alance Tantalum

,:cr C Fc Si Mo C N 0 11 Others

I i't cl 0'. 5,(Q1 0. (()' <0. 02 0. 0cr -. .. .. .. <-. ,50. ' 1' 0. 028 -. -- 0.0035 0. 1 51 0. 00,2 -- ,.0175

0,005

A-5

0.8

E 0 7. - -

r 0.62

0.507

0 20 40 so 80 100Temperature, K A34846

F:GUJRF. A- 1. THEF'IV.A: CONDUCT.VITY QOF TAINTA:, J'M AT

LO",, TEMPERATUICES(10)

I

C-5C

n e42d , ,,o' --trod

34384

26 e o density4v 0596 1,/ir3

S 0I C527 i7/:nO 0 900 600 2400 3200 4000 4800

-7 e-nprc j'jre,

FIG'RE A-2. THERMAL CONDUCTIVITY OF COMMERCIAL-PURITYTANTALUM :)

ft3 _

AT LOW s11 TEPLTRE(O

IGURE A-. ELECTRICAL RESISTIVITY OF TANTALUM DIT

T EMPER-ATURF, COEFFICIENT

3, M ha:iical Properties

a. Tensile Properties at Room Temperature

UI.timate tensile strength: Tables A-6 and A-7

Tensile yield struu'g:h: Table A-8

Elongation: Tables A-6 through A-8

Reduction in area: Table A-8

Modulus of elasticity: 27 x 106 psik8 )

o. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Tables A-9 through A-13Figures A-5 through A-7

Tensile yield strength: Tables A-9 through A-13

Figures A-6 and A-7

Elongation: Tables A-9 through A- 13Figures A-5 through A-7

Reduction in area: -able A-9

Modulus of elasticity: Tables A- i and A- 3'7gures A-7 arnd A- 8

. . 0 lt'. d cnsjClo Properties

- Figures A-9 through A-16

d. Creep and Stress-Rupture Properties

Figures A- 17 through A-2O

e. Other Selected Mechanical Properties

.; F'ig~re A- 2"

Fatigue: Figures A-22 and A-23

TABLE A-6. MINIMUM TENSILE -PROPERTY REQUIREMENTS FOR POWDER-METALLUROY. ARC-CAST, AND ELECTRON- ."BEAM-CAST TANTALUM INGOTS AND FLAT MILL PROOUCTS(aX1)w

Elongation in 2 Inches, Pe centSpecimens Specimens

Tensile Strength, 0. 021 In. Thick 0. 020 In. ThickCo-,iitnr, 1000 pal and Oer and Under

Ciold 2or.,d 76,2

Stress Cl eved 5 10. 7.5

F:11 nj -lal- 3C 15

(a) For bar, plate, sheet, strip, and foll. Tenslie popeztlei shall be deternined =ain8 a staiin rate of -005 Inch per inch perrminute ,hrough C.6 per cent offset, and '. 02 to 0. 05 inch per inch .le: rnnute to fracture.

TABLE A-7. MINIMUM TENSILE-PROPERTY REQUIREMENTS FOR PODER-MTTALLURGY, ARC-CAST, ANDE!.ECTRON-BEAM. -CAST TANTALUM ROD AND wIRE(aX2)

Teu"st St.regth., Elongation, Gage Lar.gt.,Condition I0co pi Per ent chs

Cold workcd 70 . 1

ArneieuC, commurcial PLrit' -= C

Anne lcd, hioh ptity .- ,

(a) Crcrshead sPeed .o be ,sed A 2 pet cent o! gage !ei't' per mirue.

A-9

I ABLE A -8. SOME SELECTED ROOMI-TEMPERATURE TENSILE PROPERTIES OF TANTALUM(8 )

Tensile Yield Reduction

Streiigth, Strength, Elongation, in Area,

Coitdition 1000 psi 1000 psi per cent per cent

Rc~rystallized(a) 271.5 38 89

Rec rystallized high-purity 29.4 26.3 36 -

0heet (I hir at 2190 F,

0.040 inch thick)

Recrystallized rod(I hir Ki. 5 5- 0at 2600 F)(c)

Rccrystaliized sheet 40. 0/50. 0 30.0/40.0 30/40 -

Rcystallized rod (I lir 49.8 39.3 45 86

at 3090 F)(d)

Annealed sheet 5U. 0 -40 -

(0. 010 inch thick)

Cold-worked high-purity 60.8 49.0- -

slheet (cold reduced O97Q;

0.040 inch thick)(b)

Recrystallized sheet 67.1 57.4 25 -

(0. 010 inch thick)(C)

Annealed wire 100.0 -- 11--(0. 002-inch diameter)

Cold -worked sheet 100.0/120.0 95.0/105.0 3

Cold-worked slicer 1 0.0 1-I-

(0. 0 i 0 i n Ch th1i ck)

Hlardened plate 145.0 18Id-

(0. 010 inch thick)

As-drawii wire 180.0 C-(0. 002 -inch diameter)

(a) De, ssed: -0.010,,'C.(h) UCLecron-hearit-mvlied tsatsiin stipplied hy 'remescal Metallurgical Corporation: 0. 00165i 0,

c.~1~.N.c.UUI1ii (.0H1, t.0035';oCr, 0.01-0.03 Cb, 0.0030; Ci, 0.000S855 Fe,N.cF i.

()Fromi l~ydro,'cii-rvdiuc. d powder: 99. Ta~ ', traces of Ni, Fe, W, Ci', Ca, Si, Pb, Sni, Cr.(d) S! plicld h\ Fa~s iee! Mletallsirgical Corporation: 0. 0 1% N, 0. 01011' C, '150 grains/rn.

(e) l'oWdc'r-:nia~hr 01 irgy luts iipplicd by Fanstec. Meciallusrgical Corporation: 0. 00313', 0, 0. o130;, N,'0'~~ ~ %.0 05r%,0.15, 0. 01 J)5 e, ',12- 10241 grains/olin1

2.

Best Available Copy

.............--... .. T ...

- A-IQ

TABLE A.S. TENSILE PROPERTIES OF RECRYSTALLIZED TANTALUM ROD(B)C24)

Fracture

Mmimum Load TotalStrain Yield Yield P int, Tensile Uniform Total Reduction

Ternncrature, Rate, St1 n1 th(b), .0.0 :61 StEar:, longation. Elongation, in Area,::,/2./C IC .': Up:xcr VLI'r 1c07 ' 71 .7r C,! cr cent ncr cent

-320 2.8 x . -4 :24,0 :24.6 110,0 (a) 0 i2 72

-320 9.2' xQ 128.5 ii). (c,

I I i1

-32,2 2. x "

-- 9c (a) 0 II 76

-20, 2. Bx 12"4

104. : -05.2 94.2 (c) C 718

-222 2.6 x 1"4

82.7 84.2 S 7. ( ) o 5 81

- : -. x 0-

6 .3 , ., 5 ,. 587" "C 37'

-12 2.8 x 1"'

22. 26.5 431,2 6.7 u 34

340 2.8 x. 2..2 (d") ,, 2. 4.6 - 3-

.. 760 2.8 : "

22.4 (d) 22,4 62.2 18 2 84

(a) Ccr-mercial-pu: t recrys.ill!zd tantalum rod- (1 hr at 171C C; 4.5 gra:::s/mm2); 0.2 7 N. %,2 l C.

2', fli¢d sto ;!:. dfln-c as tho stress at which the curve o' load verst sor c-nt -ini tlon devsatas from lina:>.(C) Specimen[S dm2 am0 ham, uiiIatc tctrsi]c -Stc:n::5 ;it heust-cl sigrJi;cc atae no l. nc-u: sun3 - ! I aJ iid 'CoI

ncreme after the y'eid-polnt e~ongatim.

(d) No poournced ippe: yie:d poLir, but a definlte yie:d-po'n: elor.gauor,.

A-1i

TABLE \-10. TENSILE PROPERTIES.OF RECRYSTALLIZED TANTALUM SHEETPRODUCED FROM POWDER-METALLURGY INGOT(a)(tG)

Tensile Yield StrengthTemperature, Strength, (0.2o Offset), Elongation,

F 1000 psi 1000 psi per cent

-320 148.0 148.0 4

-l0 73.2 72.5 23

SC r67.1 57.4 25

C10 59.3 42.5 25400 56.1 35.4 13

60, 74.0 37.9 18

800 65.3 33.4 24

1000 59.9 26.1 15

1205 44.7 18.9 17

1400 30.3 16.9 23

151 22.2 12.1 33180) 21.L 2.4 33

5.'1 1.8 8. I 43

1.1.7 7.5 48

(a) Recrystallized powder-metallurgy tantalum Sheet (0. 010 inch thick); strain rate0.09 inch per inch per minute; 0.0056]o 0, 0.01356 N, 0.0216 C, 0.10% Cb,

0.01% W, 0.015% Fe, 512-1024 grains/mm2

, ASTM 6-7.

TABLE A-11. tIGH-TEMPERATURE TENSILE PROPERTIES OF ANNEALED TANTALUM SHEET(a)(17)

Time at Tensile YieldTemperature, Temp. Strain Rate, Strength, Strength, Elongation,

F sec in./in./sec 1000 psi 1000 psi per cent

3000 10 0.1 10.70 7.49 30

90 0.1 i0.78 S.9C 3010 0.00005 4.03 3.78 1990 0.00005 4.12 3.86 19

3 50,Fn 10 0.00005 0.915 0.611 (b)I 0. C -005 1.81 0.792 (b)

.10oO 10 0. 3.G9 1 . 7; -11

90 0.1 . 0 .61 '16

90 0.00005 0.-110 0.42 (b)

5500 10 0. 1 2.43 1.29 4890 (). 2.05 1.17 --

(a) Sintered, rolled, annealed, tantalumi shect. Specimens heated to test temperature in 20 seconds.rests coiiducted ini argon atnmosphere. Valucs reported are average of at least three tests.

(b) Specimrens were not str,,,ncd to fracture.

Best Available Cop,

A- 1 2

TABLE A-12. HIGH-TEMPERATURE TENSILE PROPERTIES OF POWDER-METALLURG Y-PRODUCED TANTALUM S.ET(a)(9)

Tensile Yield Strength Modulus of LoadTIemperaturc., Strength, (0.2% Offset), Elasticity, Rate, Elongation,

F 1000 psi 1000 psi 106 psi psi/sec per cent

3420 6. 160 3.200 3.6 267 :9

3670 5.110 2. 550 0.6 197 46

3955 3.025 1.510 0.7 63 34

395b 2. 740 1.850 0.2 16 32

4380 2.460 1.240 ,, 63 4-1

4380 2.640 .... 66 38

4470 2.290 1.320 0.4 G4 374525 2.650 1.350 1.5 54 34

4525 2.060 1.270 0.4 57 38

4985 1. 870 1.140 0.4 67 25

5010 1.240 0.8uo 0.3 10 11

1100 0. 977 0.800 0. 1 7.5 1:2

(a) Powder-metallurgy-produced sheet (0.050 to 0.060 inch thick); 0. 03% max C, 0. 03% max ;-c,- 0.005% Si, 0.24% Mo, and <0.05% other impurities.

TABLE A-13. MIGH-TEMPERATURE TENSILE PROPERTIES OF ARC-MELTED TANTALUM SHEET( a

1)(9)

Tensile Yield Strength Proportional Modulus of LoadTemperature, Strength, (0.]2% Offset), Limit, Elasticity, Rate, Elongation,

F 1000 psi 1000 psi 1000 psi 106 psi psi/sec per cent

3211 4.370 1.950 1.150 1.0 59 35

3690 3.800 1.550 1.450 0.3 1.46 '1

3725 2.7S0 1.260 1.100 0.2 63 43

4345 2.380 0.600 0.450 0.04 92 474530 1. .7f0 u. CA40 0. 55n 0.07 52 35

5 15 7 , 0.360 .... 9... : 50 ,23o 0.07 35 31

(a) Cosumable-electrode. arc-11Itcd tantalu wn sheet (0. 060 inch thick); 0.0015 0 C, 0. 002 816: ,C5,; ,,h..J,'3-J.J b"/o I. .012-,O 371 N o. o(13- - ,9'1o 0, and .173 oter i i t ryriivs.

Tenier-ure, F20C 4C X 600

e-s le Virergir

I / -Y -,e T

40

£ Tensile sStrnLth A

30

10 __ Lot~ 8 .

601

40 A Lo

00 0 00 no 00 400 Soo

-Thnfaur@x,C.Ws

FIGURE A-5. TENSILE PROPERTIES OF ELECTRON-BEAM-MELTED

TANTALUM SHEET (0. 040 INICH)(15)

Wciqt Per Cenc

0 9.0016IN D'0010

(W-, <-. 04"1

Crns3> -c.. spce6: 0. C inc*h cr -ninutec -or a -1 /4-inch

rogiSt olo rallc <S , p.~r csi*, -n6 e r iced

un10ar cI i3 0 FRecrystallized: Ccld rolled 75 per cent an~d recrystallized

I hour at 2190 F.

Nc-e Jppor ocert'0n of eurve 04oroCteri 'od ... ,

:4 1 Co".?en' tile 10"rpcrtionof ".rn

®C_ m2cX 4".0 40C 800 2=0 2200 2400 280o 2A0* C -A 1AI

FIGURE A-6, EFFECT OF TEMPERATURE ON THE TENSILE STRENGTHOF TANTALUM(S)

________76

7O

50 66 1Angle to Roil D'.-ecior Anlet Ro,' Dractio

44 3 74

CLC

~~296

Angie to Rol Drecton Ange to Rol Drection A-98

3:6R 3.2N:EPOZRYDRCOAIT FANAE

34HJ 25F .AL.U) S30i(C 2N~Y

ncr 28 hnc ict

o 260I

28 Z- 2

Temperature, F

28 0 400 BOO 1200 1600

I ~x-x Reference (9

-4 Reference (20)

' I

27I

Lo 26

-2O~ 2CC 4CC CC 80 00

CAprfueCA.46

25!R -. ~F~C FTMEAUE NTEMDLSO

2i~j 4rTATAU

-00 2 C400 00 Bo 00em pratureC A-498

FIG' REA -8 EFECT F TMPERATU-E O' TE MOK:LS OOF TANIALUI

-~-~-~-~--~_I~A~~A- 17

1- 4 tnreco C. COO to 0002- 2-L14 throad12 000

i i'i

a Unc had Spec -,er

.- 14 t'-a -, 4t ra cdS7

-. 22 C: 0.001

R N=00 IIb Nc t'Jei Speci men Kt: 3) .. a.),

FGURE .- '. 'UNNOTCHED AND NOTCHED PAR TENSlLE TEST SPECIMENS USEDTO OBTAIN DATA SHOWN :N FIGURES A- :c AND A- I

All dimensions are in inches.

I

! Ii4

Temperoturl, F Tempergure, F

400 -400 -200 0 U 100 4--0

30Closed points donate SC Notche.d a.fracture at maxirmum load notched specipmen

20 0 -0 4

7; 24 0 I-- :14 .

o /1\l T s 0 o

0440 rotchd ,0 -0.

____________________ I ;

-250 -230 *i50 -100 -59 0 50 -250 -200 -150 -10c -50 9 soTimmp m urs, C Timproturs , C A-11?

FIGURE A-IC. TEN5ILE PROPERT:ES FOR WROUGHT, STRESS-RELIEVED,,;CTiON-BEAM-XLT.LD TANTALUM BAR (" IR AT

750 C; HARDNESS 145 VHN)(21)

Unnothed Notched

0. C z 0.005

I rWeight Per Cent<0. 0,3

0 <0. 003

N 0. OC080tLurr <0. 08

i

Temperature, F Tenmperature, F

-400 -200 0 t00 -400 -100 0 200zoo- I I 1 1- 1 0 noI~vl

Closed pol, te defateseies ocesofracture at moalmurn toed - ee.

N o c h d p e l e s K-3 x ~ x

14127 No__tre,' ranot T L4

0 0meli -0 -

0 _

0 Q L

Unnochc Notiie

ln./mT T 040 0.0

C '000

Tepeatr C0 0epraue,3A-

F1GR. A I TESIL POPRTESFO

Cr tss.riei- Speed,

in. /nir.C.Dz0,00:ri-jar' Wcgii PerCon

7-7

-I-A-

8- D 0 0.~

0.125"±0.001"::\ce~Seir~ K Z3 TR00

4A 1854

FMUR -i.UNOCH0AN NCED3R E2IE1'S

asEc :h USP% c BT:NfAT e'\

1*

UTernpercture, C -e envC

-200 -100 a 0 -00 0: 0 -

250 25C

20 _ w

75 ~2.0 7

5c .- nm4x- 15

-500 -400 -300 -200 -.00 0 lCD0 200 Z -!00 -40C -3^CC -20C -IC 0 oc 200

Temperuturs, F Tempeffture, F

INI 390 F ~ Ufvaed Ipgcirgf 3 hr2190 F21a VHN In 40he Sp~mnt(t 194 VHN

X Oth-uncl sle~ re~ ASTM. 2-4

FIGURE~ A-13. TENSILE PROPERTIES FOR WROUG~HT AND RECRYSTALLIZED,~LECRQN-flEA-MEUE AN'I ALUMIv 1AR CONTAINING

489 PPM OXYGEN AND 5 PPIM HYDRQOGZN "'

Unnutched ________c

Croszihe~j6 Speed,

13,r < 4Z4 p1pm combizred Cd::.,d nit rcgen.

1-

,e- .v~vjre, c.- Te-perutue, C

ad ------ - - - :__

300 -- Soo

150 !50

-~ -X -CC -C C ~ .4C -CC -CC CC u CC io

110egwi ~~rte

50 I3O A50I~if~mh ~P-

255 goN F5 20w ,*wu ~ 27V

CL~t~e VAotc0hed -310

Frcw & o*m x

FIGUE A14. TENSLE ROPRTIE FO, WOUGH AN RECRYSALLZEDELECRONBEAMMELED ANTAUM AR CNTANIN

2G -;c __ _ _ __ _ _ _ __ __0-~ = ~

cC0 2502 5

200 __o

5 io

00C 1 00 ~ ~

'e~peracture Pt -eirrornre --

54PP XYE AND 30 PPM~V@W HYDROG N-

Mnoee Notched STM2-

Bar natc rai <M j;rtre a noxi:rorcdarsi :2ntvg .

200~~ -10 - -c 2ff -1

So08 pr 0 27l ppm H

100 '01-0

-400 20 0 0 C 20 30 40 -00 -30-0 .0 0 IC 20 30 4C

IS I i53VN7Nthe p5el~K ~ ~ AT -

5C i

a Wrugh Legnd .otchd t [zed ched *

h C130 Ushcac o peedhr210

53 -VHN -o 1 Noche OWm;(K -3 91D aVHNtr~

" Noch-rnochedstrng~afic AST 2-

LI

004 0. 10 100 ~ 0This, hours A.SM

Cold rol led 95 per cant and stress relieved hour at 1380 FI I~ A ,Rpt-e &3

85

10.

C.-~~ 9__ ___F _

0 '0Cx 1000Tiire, hoursU

b. Recrystallized

Cold rolled 75 per aeit andrecrytallized I our v~2190 F

F:GjRE 1, CREEP AND RUPTURTE CURVES FOR' RECRYSTALL:ZEDFL.EC':.ROI -BEAMN-MBEL1'D TANTALUMs-iE(0. 040 INCH)(1

5 )

tyD~r Xv e i;! t Pci c

C 0. Cr300 0. 0016

IN 0. 0010

Others <0. 040

0.5% ceep l% creep

4

4 0hu 10lhour

2

C60 1hu I hour

I 2% creep 5% creep Iis i

1 4

2~~ hour, I2 i U Ih~ , I1

2

0 JO_________________ hour?_______________

700 800 900 1000 1100 1200 1300 1400 700 800 900 100I IC 100200 130 1400

7emperoture, C

FIGURE A -l1B. EFFECT OF TEMPERATURE ON TH-E CREEP STRENGTH-OF REC5I.YSTALLIZED ELECTRON-BFA.V-MFLTFD

TA.N'-TZUM 51-iEET (0. C40D :NC1-')( "

CQld roje6 75 -pur Len~t and rec rysta11izcd 1 21U LL- a. 2 190 F.

Weight Per Gent

C 0. 00300 0. 0016N 0. 0010

Others <0. 040

30 I

10 . I _________

e Eectron-beam-melted tanalum (15)

S- Impurity Weght Per CentTo nta lu r

7-C 0.003060 0.0016 ______

6N 0.0010-0e-s <0.040

o 'ensiie tests4 1 380 r r,,;Pure tests

A 30 F %0Dfure es's

13 2190 F rupture tests3 X 2550 F rupture tests

P T (R)(20 I 10 t.hr)x 10

2-

',_ _ L I0 i0 20 30 40 50 60 70

P A.458o9

F! GTURE - LARSOI-MILLER PLOT COMPARING R'TF7L'RE

PROPERT:ES OF ELECTRON-BEAM--ELTED

TANTALUM SHEET (0. 040 INCH)(G 5 )

I

-x"I

/ T;cO 0 0mi

-b N . '

Ne. tex-s teo ct 1 r n et

Imp ~rity Wei ght Per Cent aC950i

0 <C.0006N 0.0S2 0Oter Noter De0.0040

0 a1030 4 0 50 60 7

p *N A V

A m , LR.oTN1:E PLO 3U.IA:N RUTR RP F, R -AL'_N'. ', -C

NFC Y T A _ L T AN3-

7a -.N A ND 1 a- - A L L YS :N 32HE E -1 0. U42 IN'- ) FoA ORM 5

FiGRIE:\- 7. FFECT OF OXYGEN CONTENT ON THE 'IMPACT PROPERTIESOF WROUGHT ELECTIRON-B-AM-MEFLTED TANTALU:M(?-3)

Starting material contained <44 ppm combined carbonand nitrogen.

10

FIGURE A-ZZ. EFFECT OF OXYGEN CONTENT ON THE 1IMPACT PROPERTIESOF WROUGHT ELECTRON- BEA-MELTED TANTALUM(23 )

Starting rr-pterial contained <44 ppm combined carbon

and nitrogen.

4-

0

I

-T-w

,o . , Lt ! a, v0. AC-.ol I Hour of 2065 F

[5 -&---.J--- - i ±

t - -

---- 0,0 F

4 '0 a' "'4

a. Anreal I5 Hocr°

a 20fl F

10lt 1- m m

FIGURE A-23. FATIGUE - CHARACTERI!STICS OF ANTNE'WALEDi

TANTALUM WIRE, (0. 004 INGH)D(18)

I I

-- '---I

4. Mcetallurgical Properties

a. Fabricability: possesses excellent roon-tennperature fabrication character's-

tics amenable to all convertional fabricaticn practices and can befabricated to large reductions (>95 per cent) without the need forprocess annmcaling(

3 )

b. Transition temperature: <-420 F( 2 1)

c. Weldability: can be welded using conventional techniques wherein, air is ex-cluded, such as inert-gas-shielded tungsten-arc welding, inert-atmosphere chamber, electron-beam welding, and resistance spotor seam welding(

7 )

d. Stress-relief ternnerature: 1 hour at 1800 F( 24 )

e. Recrystallization temperature: Tables A-14 and A-15Figures A-24 through A-26

IA

:1

A-3Z

TA3LE A-I1. REC-RYSTALLlZAT,:ON BEHA VIOR OF ELECT RON -SEAM -MELI EJ IA." rALJIM

SHEET (0. 040 1NCHS)( 1)

Tfempcrat.;c, F. to. Indicated Amo.:r.:

of Rtecrysallization in 1 HourCon4litin 6C Per Cent 100 Per Cent

Cold reduced 00 per cent from as-"it Lcgut 2CIO 2660

Coin rcducn, 75 p-, cent f~om as-cas: mngo:. 183C 2:91

Cold !ed~ced 75 pe cen after Inte.-mediate anneaOing 1921 21C

( 1 .i:iLy L(

C 0 C3C00 C.o001N 0.0010-S

0 hcs <0. 040

[80

I60 i00

140 Hardness,

/w cent eitiizmatcn 8

*io a oJ.100 40

a _ _ 2]a

62 --- M'00 Boo 000 1200 i400 1600

Temperature, C A-33781

FIGURE A-24. ANNEALING CURVE FOR ELECTRON-BEAM-MELTED TANTALUM BAR(

2 1 )

1/4 hour at temperature, furnace cooled,

Electron-bean-melted ingct cold forged and

swaged 67 per cent.

Element Weight Per Cent

C <0. 0030 <0. 003N~ 0. 0C08

Others <0. 08

C-op te Re-yst, 1 i

5o - 2o

%250 . .

,0 -, ,-,92001:m

2 n 43 C 60 AO .23 4o

FIGURE A-25. EFFECT OF ANNEALING TIME AND REDUCTION ON THERECRYSTALLIZATION HEHAVIOR OF TANTALUM(2ZS) S

I

TABLE A- I5. GRAIN SIZE VERSUS ANNEALING TEMPERATURE FOR ELECTRON-BEAM-%IELTED TANTALUM SHEET (-, 00,

-Hour Aaicaing Tc-nera:,rc, F Average ASTM Grain Size at 1'2^X

2850 3-4

2865 3-42910 23090 13270 0.1

(a) Cold rolled 76 per cezt.Impurity Weight Per Cent

C 0.30300 0.031N 0. 0010

Othc:s <0. 040

14 5 I I i

2x

3500

140 Ip

0 E0 46 W coRedmcIn ty Cold Rclln;.rr e~

FIGURE A-26. ANNEALING -1EMPER-ATURE VERSUS GOLD REDUCTIONAND GRAIN SIZE (26)

A+' ! :.II i),J))))iU'

/.¢'< /////

Is

References

(1) Tentative Specification for Tantalum Ingots and F'at Mill Products, American

socifty for Testing and Materials, ASTM' Designation: 3 364-6T (Issued, lob";4 . .4 t( .

(Z) Tentative Specifications for Tantalum Rod and Wire, American Society f'ar-fe lnlijand Materials, ASTM Designation: B 365-62T (Issued, 1-96l1 Revised, 1-962).

(3) Miller, C. L. , Tantalum and Niobium, Academic Press, Inc. (1959).

(4) "Development of Extrusion Processes for Tantalum Alloys", Walh Chang Corp.,First Interim Report on Contract AF 33(600)-42396 (March, 1961).

o5) Tori, M. L , "Purification of Tantalurn ODbtained by Arc Mclting", j. ElectrochernSoc. , 107 (1 33-35 (january, 1960).

(5) Schrmidt, F. F. , et a.. , 'Investigation Mf the Properties of Tantalum and ItsAlloys", Battelle Memorial Institute, WADD TR. 61-106 (March, 1961),

(7) Metals Handbook, 8th Edition, Vol. 1, "Properties and Selection of Metals",American Society for Metals, Cleveland (1961), pp 1222-24.

(8) Schrnidt, F F. , "Tantalurn and Tanta'umr, Alloys", Battelle Menorial Institute,DMIC .mn t '33 L',ily Z5, I 6C).

(9) Glazier, L. F. , r. , Allen, R. D. , and Saldinger, I. L. , "Mechanical and Physi-cal Properties of the Refractory Metals, Tungsten, Tantalum, and Molybdenum,

Xc; OC . '05 Ac , r, No. NiIi .,ro-Gmrc Cci rp,

(10) Rosenberg, H. M. , 'The Thermal Conductivity of Metals at Low Temperatures",- Phil. Trans. , A247, 441 (1954-55),

11) Goldsmith, A., Waterman, T. E. , and Hirschhorn, H. J. , "IfherrophysicalPropcrties of Solid Materials ' -Melting Temperature Above 1000 F), Vol. 1, Ele-nents, WADC TR 58-476, Revised Edition (August, 1960),

(12) Langmuir, D. B. , and Malter, L. , "Resistance, Emissivities and Melting Pointof Tantalurn'., Phys. Rev. , 55, 743 (1939).

(13) Taylor, R. E. , and Finch, B.. A., 'The Specific Heats and Reststivities of Molyb-denum, Tantalurm, and Rhenia-rn From Low to Very High Temperatures", Atornics(itt ert:u:ol, Contract AT (:1- )-GEN-3, NAA-SR-6034.

('4) Bechtold, 0" H. "Tensile Properties of Annealed Tantalum at Low Temperatures",Act,; Met. , 3:0), .&P-54 (10-).

i) Scnmict, F . 7 , ! al. , "Investigation of the Properties ot I a tan um-n and itsAlloys ' ', Battelle Memorial Institute, WADD TR 59-13 (Decenber 31, 1959). ii

(16) Pugh, W. , "Temperature Dependence of the Tensile Properties of Tantalum",Trans. ASM, 48, 677-88 (1956).

(17) Preston, j. 3. , Roe, W. P. , and Katters, -. R. , "Deterrination of the Mechan-ca Properties of Aircraft Structural Materials at Very High Term.peratures After

Rapid] -eatitg", WADC 'R-R 57-649, Part 7 (Tanuary, I s

(18) Bornemann, A, c at &I., "Studies in the Behavior of Certain Nonferrous Metal, at ;!FLow Temperatures", Report No. PB-Il1657, U. S. Dept. of Commerce, 0. T.S.(1953).

(19) Begley, .. T. , "Development of Niobium-Base Alloys", Westinghouse ElectricCorp. , WADC TR 57-344, Part II (December, 1958).

(20) Koster, W. , ''The Temperature Dependence of the Elastic Modulus of PureMetals", Z. .letalk. , 39 (1), 1-9 (2948).

(Z1) ]rngram, A. 0. , et al. , "Notch Sensitivity of Refractory Metals", BattelleMemorial institute, WADD TR 60-278 (April, 1960).

(Z2) Imgram, A. C. , et al. , "Notch Sensitivity of Refractory Metals", BattelleMemorial Institute, ASD TR 61-474 (August, 1961),

(43) Irngram, A. C. , unpublished data, Battelle Memorial Institate (1963).

,24( Unpubhshed data, Ratte-e Venortal Institute 1959-1961),

(-5) Yancuy, a. W. , "McLallurgtcai Chairactcrist:cs ol Fantalum and Their Reation t:

the Fabrication of Tantalum Products'", Proceedings of the 1956 Regional Confer-ence on Reactive Metals (AIME) IMD SpeciaI Renort.

(26) Savitskii, B. M. , Tyikina, M. A. , and Tayganova, 1. A. , "The RecrystallizationDiagram of Tantalum", Doklady Akad. Nauk S.S.3,., 118, 720 (1958).

a;

A-37

Ta- 10W

Identification of Material

a. Designation: several, depending upon individual supplier

b. Chemical composition: Tables A-16 and A-17

c. Forms available: ingot, billet, bar, plate, sheet, strip, foil, rod, and wire(' , 2)

A-38

TABLE A-16. CHEMICAL REQUIREMENTS FOR ARC-CAST ANDELECTRON-BEAM CAST Ta-10W(a)(1,

2)

Impurity Content(b), Maximum,

Element weight per cent

0 0.010N 0.005

C 0.005

Cb 0.10

Fe 0.01

Mo 0. 10

Ni 0.005

Si 0.015Ti 0.01W 9-11

(a) For ingot, billet, bar, plate, sheet, st ip, foil, rod, and wire.

(b) Any other one impurity to be less than 100 ppm.

TABLE A-17. REPRESENTATIVE ANALYSES OF Ta-10W AS PRODUCED BY ARC MELTING AND ELECTRON-

BEAM MELTING PROCESSES

Impurity Content, ppm, for Ingot, Made byArc Melting Electon-Beam Melting

Element Ref. (s) Ref. (4) Ref. (5) Ref. (6 )(a) Ref. (3), Toe; Ref. (3), Bottom Ref. ((0)(b)

Al <20 ...... <20 <20 --

B <1 ...... <1 < --

C <30 19 15 17 <30 <30Ch <100 ...... 980 1500 --

Cd <5 ...... <5 <5 --

Cr <20 5 10 <10 <20 <20 <10Cu <40 ...... <40 <40 --

Fe <100 15 50 <10 <100 <100 <10

H 4 ... .. .. .. .. .lIf <80 ........

Mg <20 ...... <20 <20 --Mn <20 ...... <20 <20 --

Me <20 <10 25 -- 50 25o --

N 11 19 25 36 28 20 35Ni <20 5 50 <10 <20 <20 <10

0 140 18 110 32 50 60ph <20 ...... <20 <20 --Si <100 -- 25 -- <100 <100 --Sn <20 ...... <20 <20 --

Ta Bal Bal .... Bal Ba] --Ti <150 -- 10 -- <150 <150 --

V <20 ...... <20 <20 --W 10.0% 9.8% ... . 9.0% 8.t% --

Zn <20 ...... <20 <20 ---- "-:- .... .,{ - -lt

(a) St art ig stock 150 to 4.50 ppm oxygen. Average values from 14 double-arc-tmeted ingots.(h) Startimg stock 150 to 450 ppm oxygen. Average values from 7 eeeotrn-bean-meited ingots.

3est Available Copy

IF4

A-39

2. Physical Properties

a. Melt-ng point. 5495 y(7)

b. D , rsity: . 608 :b/in. 3(7)

c. Thermal expansion: Table A- 18Figures A-27 and A-28

d. Thermal conductivity; Table A-19

j A-40

~0YA- Is. TITERN:AL E.XP.AS:ON C. -

7ernperature,F* L()

:830 c,0042010 0: 0062

2:090 0,00C702330 0.0-192550C 0. 0088

2730 .00

zOOS0. n-410:60

45JO 0.0200

476:0 0.00

4990 0.021.1

4,0730 0. 0200

0.0"

From nen-.ne:atu~e to indicaed teivoDeratase.

A-41

0 012 I -

0010-{

0006 ,0 Deterninohon NoI

A Determination No 2 -

0006 -

0.002 - - --

0 - z ir0 400 800 i200 1600 2000 2400

Temperature, F

FIGURE A-27. THERMAL EXPANSION OF Ta-0W(9)

5

oI

c

000

u

0 400 Am 12(00 1600 2000 2400

Mean Temperaturt, F

VIGURE A-28. MEAN COEFFICIENT OF" THERMAL EXPANSION OF Ta-IOV( 9 )

3est Available Copy

A-42

TABLE A19. TF!R 'AL CON UCTIVIrY OFmi1%)

Tcrrpe-rtkr, T-Icr-na1 Conducty.1< cA2/C=r2 XoecXK/cm)~

:800 0.13:1002 0, 128200A0 C. !04

C.102

2302 2. 114

2700 0, 1202800 0.0962900 0.093000 0, 089

3.02 2085KO 0. 02

VA-43

3. .e chamical Properties

a. Tensie Properties at Room Temperature

Ultimate lensile stren:gth: Tables A-23 through A-2

Figure A-2 :

Tensile yield strength: Tables A-20 through A-22Figure A-29

Elongation: Tables A-20 through A-22Figure A-30

Redaction in area: Table A-ZZ

Modulus of elasticity: 28-30 x l06 ps: ( 4 '

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength; Tables A-23 through A-26Figures A-31 through A-34

Tensile yield strength: Tables A-23 through A-26Figures A-32 and A-34

Elongation: Tabes A-23 through A-26Fin4' am A-32 an l A-35

Modulus of elasticity: Tables A-25 and A-26I qurc A-31

c. Notched Tensile Properties

Figures A-36 and A-37

d. Creep and Stress-Runture Properties

Tables A-27 through A-3CFigures A-38 through A-39

e. Other Selected Mechanical Properties

Hardness: Figure A-40

Ai.q)Dct: Figure A-31

Fatigte. Figure A-4

-AS

9-. A-44

TABLE A,20. TENSLE- PROPERTY REOURZM4ENTS FOR ARC- CAST AND ELECTRON-BEAM-CAST Ta-lOWFLAT MILLPRDCS )

yied Strength Elongation in 2 Inehes, per cent

reraile Strerngth, (1. 29, Offset), Specimens Speciments

1000 psi :000 psi C. 021 - 0,001ECor.Jiticn mil Max Mitt11 Mlan 0. 2'81Z~ T~iCe 0.0C20^ In. T h i

As Woled 1;0 100 143 1SO-

SuC3s meh-cd 90 i30 so 123 a

RocrystAlintiotl anncaled 70 100 60 90 201

(a) Pot btar, :)late, slic:, strip, auc foil. Tensile P.,nertles shall be determulned Jsng a strain rate of 0.0 ich5 per inch- Pe:r.nnrte through 0;.6 Der Cent offset, and 0. 02 to 0.015 !.ch per rinch Der tnnnrue to frac-.zre.

TABLE A-21. TENSILE- PRCPERTY R!OULREMENTS FCR ARC-CAST AND ELECTRON-BEAM -CAS Ta W

ROD AND WIRIQX2)

Yield Strg~h

100 psi 5 lgui:,t'Cc:cnn.dinuc Mlin Man Win" Max in 2 In, (Rod) In. 10 7n. (WireC)

As wor:ked 150 100^ 140 183 1,

R.c.ysra~iicn aincalrd 70 10 60 5210 10

(a) TcrJilc pwopc:.cs : a.. be derer;nu~eJ sag a strs;;. :tl 0 2I: pt[C. XtII

A-45

TABLE A-22. SOME SELECTED ROOM-TEMPERATURE TENSILE PROPERTIES OF Ta-OW

£ensile Yield StrengthStrength, (0.2 % Offset), Elongation, Reductio;n in

Condition 1000 psi 1000 psi per cent Area, per cent Reference

Annealed sheet (2200 F, 123.3 114.1 13 -- 100. 0,8 illch)(a)

Auwaled sheet (2160 F, 91G. 0 82.2 26 10"0.028 inch)(a)

Stress-relieved sheet (3 hr 109. I(L) 101. 1(L) 15.8(.) -- 42250 [, 0. 040 inch)(b) 112. 9(T) 112.9(T) 14. 7(T) -- 4

Cod-worked sheet (05%, 180.0 164.0 4 11

0. 060 inch)

R,,cr'ys lli ,cd sheet 10. 0 83.5 28. ;) 511

(( .0 i0h0h)

Annealed sheet (0.02'0- 70. O(min) 60. 0(min) 15(ntin) 12

0. 2 0)(c)

Aimicaled sheet(d) 80.0 67.0 23 -- 7

Cold-rolled sheet (5 0 cio)(d) 147.0 146.5 3 -- 7

Cold-rolled sheet ( 9 0 %)(d) 160.0 -- 1 -- 7

Stress-relieved rod (rolled 134.8 125.9 31 83.2 583,',, 1 hr 2190 F, 0. 125 inch)(e)

Rccrystallized red (rolled 90.1 76.5 35 59.0 583';t, 1. ., 2.. h 30 F , 0. 125 inch)

(c)

Annealed bar (2200 F. 106.4 99.6 24 10I/4 inch)(a)

Annealed bar (2600 F. 84.2 70.6 34 101/4 inch)(

a )

( ) Average of two values. Test rate 0.005 inch per inch per minute to 0.2 per cent yield, 0.02 inch per inch per minute tofailure. Typical analyses 0. 008, C, 0.0040%O 0, 0. 0100% N, and 0.0005% 1.

f A rc ,Mlcted. Test rate 0.005, inch per inch per minute to 0. 6 per cent offset, and 0.05 inch per inch per toinute to fracture.lv- 'I.l--W, 00. l,0010% C . 0. ", 1)01'% N, ). 0015% Fe. 0. 0005% Cr, 0.0005% Ni. and <O. 0010% Mo.

[ 'l . 0,05F' Inch per utch per :iinnte to 0. ; per cent offset, and 0.02 to 0.05 inch per inch per ninute to fracture.

(>'e''th ,*all conform to the following maximunms 0.0050%/, C, 0. 0070%' 0. 0. 0030% N. 0. 0006% H, 0. 10,, Ch.

• ;n Fe, O. 0300%, Mo. 0. 0070%; Ni, and have a tu-.gsren range of 8.5 to 11 per cent.(d) Elcctron-Bcam Melted. Typical analyse' 9- 1lW. 0. 0060% 0. 0.0030 N. <0. 0010% H, 0. 00201$ C, . 0507Ch. and

(e) vc. raglted .veane of two values. ,Cosshcad speed 0. 02 inch per minute. Analyses 0. 0015% C, 0. (Ot1 0;%, Cr,

, 021 , '. 0025", N., 0.0(' , Ni. .O! 10',:. Ni. 0. 0025/' Si, and 0.0(1 07/ Ti.

A-I 6

Rolled at 100 Microm Rolled at.I P~cror

135

Ile

-I

00a-1o 1 i0

102W30 4050 X 'McSC 90 10203C 40 50 6070899

Iec~~ Ie Ie A.BrFXCJRE EFFCT F 140 TZPATE.HMBRRSSR,AN55 ET ~OMTO O H OM

Oe;cir perce-3-481

0- 1.-36 IN 22-4

1. 9-2.

141

Ro l li ter-ous F

Rale ~ 00Mcan 200 led aibl Mgotorj'a

2 I0 2' 0 El El-4 O 5

Reulin ercn .W

2C Iv Z300

0 ~~ 23 42-440 0 43 CO B

Heuc 1.9-2,5eii

:+*1

A-48

TABLE A-23. TILNSILE PROPERTIES OF ANNEALED TA-=0W SHEET AND BAR AT 2200 F(1()

Annealing Teruie Yie.. Strength

Temperatre, Strength, (20, ; Offset), Elongatio,,Form F l.0¢; pi,

- 1000+ ,p11p c

Sheet, 0.028 i".n. 22 58. 8 3i. 7 pe c..

Bar, -3/8 tnm~h 2200 38.3 34. 1 132600 36.2 1 ,8 3 30

(a) Average of two values. Test rate 0.005 L.ch per 4ich per minute to . 2 per cet y e:d,

inc C. 02 Lich per Lnc.€. pet minute tc failure. Typical aalygi 0, 0O0S's G, 0. 0,40 0,

0. C10% N, anc 0. 0005. ii.

TABLE A -2

4. T ?.S KCP.PST.S OF ARC-CAST STRESS- RE02VED Ta-10W SHEET

(.0 NC9-I AT 200C TO 3000 F(a)(4)

Tel;;peratire, S en :6 , (C. 2r: Offs ez), Elongaticn,F ION0 ps. 1000 P11 pet ce nt

2000 60. 7 55.1 11

2400 3;. 5 31. 19

3000 10. 2 16.4 84

(a) Stress elieved for 3 .'ours at 2200 F. Tested at ).05 nch per Inch per minute.

Ara yoes 9. 9 W , 0. 0 19'. C. . 0 1 r , 0. 3030.'T N, 0. C0tI5r'

F '. I C:'. ',? ,:N . a:: 2 SC <: ,

*II

L

F J A-419

j TABLE A-25, TENSILE PROPXRTOSS OF ARC-CAST STRES-RELIEVED Ta-OW ISWE'OQX1'

Tensie Yield StrengthMdlsoTemperastwe, strengthi, (0. 2-m 0(6cc), Elongation. Ewaticity,

p 100 pa 1000 pi pet coort Ice psi

RT 185.0 16:.0 1.3 9.

16%. 10 3.3 24.0

300 I3'. 1.0 0. 8 24.0143.0 140.2 2.0 28.0

1000 :3.0 128.0 3.9 21.8

1600 104.0 98.3 2.7 19,0104, 98. 3 18.0

2000 7 9 64.4 6.7 18.6

j. 15.1i

200 Sj6 S.Q 6 4 1-.083.0 40.2 0.3 046..4 48.5 F.~

3000 19. 0 13.0 3J. 4 2.020.2 14.2 33.0 6.2

V2196 18.1 20.0 6.0

(a) Test Coaditions:At -ops ArgcGage Lenst 18 rSlecet Thlckneas 0.040 1.Analyses 0. 0061p 0, <@ OO, 0 . 30158; 14, 0.0004% C,

020:2% Fe, 0. 000 Cr, inc 0. N!o 0t

Nitilt-i 01 ic itlk c]t2 cTI~ne tc Wet; era:t 2-O F/ ecHold at Ternperat:?e 8 mlcutetSInTai: Rates 0. 0.: in. /:n./S !. t yi.ek

140 45

90% ?cold -worked sheet

20 30

100 25 Z'

, M odulus of elasticity Io

60A?

200

0 800 1600 2400 3200 4000 4800 5600

Temperature , F A, 45814

FICGURE A-31. TYPICAL ELEVATED-TEM.?ERAVURE TENS:ZEPROPERTIES OF EILECTRO.N-BEAM -MELTEDTa-10W SHEET(

7 )

Typ~cal analyspc;Impur~ty Pii Fr Cent

W 9-110 C. 0060

'1 ~0. 01

C 1 0. 02C

Cb (1.05

Ot~ce 9.(1?V

US~~ - -__ __.

ii

I S

FIGURE A-32. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIESOF WROUGHT ARC-CAST Ta-10W SHEET (0. 060 DCH)'1'

Approximate strain rate of 0, 01 inch per Inch per minute.Total interstitial content approximately C, 0070 per cent.Tested in argon.

0

0 Soo 6OC 2000 32DC 4Wo 4000

,- " -RE, AN Si RA iA'

r:cGUR{E A-33. EFFCI CE TiMPERATURE AND s'IRA:N RATE

ON THE ENSILE STRENCTH OF WROUGHTARC-CAST 7a- IOW SHEET (0. o0 :NCI-[){

: 5)

Total interstitial content approximately 0, 0070 percent. Tested in argon.

71

A-52

TABLE A-26. TENSILE PROPERTIES OF Ta-10W AT 2500 TO 4500 F USING RAI'ID LOADING RAES( 8)( 1 5)

Loading Tensile Yield Strength Elongation Modulus of

Temperature, Rate, Strength. (0. 21o Offset), in 1 Inch, Elasticity,F psi/sec 1000 psi 1N0 psi 2Cr cent 2.;1.

2500 12,400 63.4 -- 3.0 3

59.2 44.0 3.3 8.5

51.4 44.0 11.0 G.1

3000 4,500 24.7 17.7 7.4 5.8

25.8 14.3 15.0 3.625.6 13.3 16.9 2.0

3500 1,960 17.1 12.4 21.2 1.2215.4 12.75 25.6 1.35

15.6 8.8 26.0 1.39

4500 1,930 8.6 3.6 16.8 0.196.3 -" 21.2 --

7.7 3.5 11.9 0.19

(a) Annealed 0. 06-inch sheet tested in argon.

Roiled ct '00 Mcrors Rolled Wt-1 %Y.con

205 I I

1i1 P4,' A1---J i a~ a"

IT

ISO I

50 c1ntomrc 6 d250C

000

.9 O0O6C C052 0C057 C

290 7

N 70a

IO 3OC6 7 C9

F~OU0E 1-3 EFC OF k7LIN TZtTRCAME RSU

04 123N02 04 6 0WW r 20 -40 06 7

He~t~r W1MM-2.5m

Rolled at 100 Microni RolIIe gt-cl Micron

14 lnqln rLsnaM F

12 a 2000 -0 A 2500

S30C0

2 \ ( I

20 4C sc 80 20 4 6C 80

RMLuVioll, 'per ce'

FGURE A-i5. EFFECT OF ROLLING TEMPERATURE, CHAMBER PRESSURE,AND PER CENT DEFORMATION ON THE -300 F TENSILEDUCTILITY OF AS-ROLLED TL- 1OW SHEET(

1 3 1

Tested at 0. 005 inch per inch per rninute.

:mpurity PPM

C 12-260 12-36N 22-44H 1,9-2,5

SI

IIlv

o. Unnotched Specimen

- - 2 0 l rh r e . c

R

_____________Finished Dimen~sionsa DoO OJ8O

D! =0 125c.Notched 5; ecime.s ,Kt R N=O.CO6

A 38984

E:GUR. A- 36. UNNO 7CH -JD AND NOTCH-ED- BAR. TENSILE TEST SPECIMENS'SED TOC OBT AIN DATASI OWEN NIUR A37

cI

I I .. 300I I0250

4 200 ~oIzoo

150 -

.00C_ _ _

v 1005

-400 -30C -200 .100 0 '00 2C00

5 0 -

0 V**0 Unrthad 0IpgcimeI2 b. Rec rysIcilie A-39901

I hf 2190 F a Notchi.d %P6Cimnl IM 3)I 2 0F256 NN i No~cr-wrrioqch Strengrtl rafl0 216 V14N19 O Frccfufrapor n~ locd A9Tm 6-7

F:UR Z A - 37. TENSILE PR.OPERTIES FOR WROUGHT AND RECRYSTALLIZED,ARC-M ELTED Ta- 1O W BAR M r:(oceS)o

c e

Crossheaci Speecl,4nC. /.mir 0.020.0

lmnoci rv W ilct Per C cit

0 0. 0110N .0025

OthecG. 0:7C

IABLE A2' TS-~?LCCHAACTER.:TIC CF ARC -AS7 Ta-W S~EET 1,C.C4O !NCHI

F_____________________ OI osl nourl ecuu

-. 4

7. 06.!46.0 20.0

2400 stress ze0cved(a) 08.0 0. 1 (4)

08.0 2.8Y25.0 4.022. 0 10.4

Ra2y:flza0 2. 1,.931~4.S3

35^c Recryttallized~b) 8.0 0.68 (17)5.0 .

(&) 3 haui at 22K0 F. AnLalyme 9.85 W, D. 0019' C. 0. 00285to0, 0. 00191,;N, U. 001vto P, 0, 00062p. Cf.

0. 0005,o '41, and <0. 0010* of.(b) I hour at 2730 P. Data obtained f-orn inmall button-type iflgoti.

0

2800 F

340OF

2 4 6 a 10 20 40 60 80 700 200

Tire omi %es A-459r7

FIGURkE A-38. i:-ME TOR C.-1 PER CENT C-REEP A'! VARIOS STRESSi.Ev:l's FOR Ta-1"W('-

6 )

TABLE A -28. CRiEP-RUTL'R0 PROPERTIES "OR ELECTRON*BEAM-MELTED STRESS-RELIEVED Ta-10W SHEETX(a)(l)

Approx.Trerm1a Loal:ing T 'm cu

emnp , S"rcss, Ox?, E X a? n, TIl2, $c, :, P:c3LIcc lJf- : j £Si CT tI__ __ C pt1 ,, .

10 .i 0. PL5 ,enl 3, CL 0 . .- 0. Y. . 7 S. 13.73,: scc 3cr cc::t

800 1 0.0108 0.63 0 7.1 so 8q 95 - I7 4&'W 0 s (ITO-F C. 27't 0 0 12- 410 '710----- -4*.c-

2oo so .013- 02. 1,6 . . 0 $;W

2500 45 010138 0.21 0.1 0.3 3.0 8.0 22 78 101 4l'. 192800 40 003 0.0 01 2011.0 2804 s 199 1.3000 i5 0.0162 0.53 *. 0.4 1.0 2.4 8. 1 i3 55 58 91 250 8;3000 18 0,0162 0.23 7.0 80 131 288 526 075 1357 1140 91"0 -- 21.33000 8 0.0193 0.07 3.1 8.6 28 63 95 172 232 280 326 466 30.0350 6 0.0193 0.2 31 615 C5 5^1 81E 1370 1760 .980 2160 2550 30,0

4000 6 0. 0243 3.07 0. 1.6 3.3 6.C 10 21 26 31 33 43 33.34000 4 0,0240 " 5.5 62130 22 .. .... .. 24 (b)

(a) Teii Condlltioni:Atmosphere ArgonGage Lenrgth 1. Ain.Sheet Thcknwun 0.040 11.Ana.yses 0.0206% 0, <0. 0001% I, end 0. 000 o NMethod of Heating Reistance

(b) Specimen failed in radius.

TABE A -29. aEP-RLPTUPR PROPERTIES FOR ARC-CAST STRESS-RELIEVED Ta-OW SHEETAT 200, F(X14)

Approx.Thermal Loading Time to

Sten, ZV., Stain, Tlme, mse, to Produce Indicated Plastc Cteep Rtuoes, ElonE.,1000 pit Ln. Par ceam 0.05% 0.2%6 0.1t A% A 416 we es at

70 0.0105 0.4 C0.4 1.4 2.7 8.5 12 14 7.3

5 .0101 0.47 0.4 3.3 9 .5 2! 46 74 84 "1.365 0.0106 0.46 1.8 9.0 32 98 148 270 280 C.1

60 0.0106 0.33 0.1 0.5 2.8 10 27 46 49 6.780 0.0106 0.39 2.0 12 34 82 174 328 32 8.0

55 3.01i0 0.27 3,1 32 140 415 841 1740 743 5.3

so 1.10 0.25 IC 83 235 940 2940 -- 2655 3.3

(a) Test Corndltin:

Atmosphere ArgonGage Lng:l: 1.1 In.SInct T"dcicns 0. 040 in.Ana'yscs 0. C051 0, <0,03.1% H, .3.0al. N, 0, CC4- C. 3. C312- Oe,

0.00D'e Cr, vad 3. ,31¢ NMe:4<d of Headng ReditAnce n

A-59

TABLE A-30. CREEP-RUPTURE PROPERTIES FOR ARC-CAST STRESS-RELIEVED Ta-10W SHEET(a)(

1 4)

Approx.

Thermal Leading Time to

Stress, Exp., Strain, Time, sec, to Produce Indicated Plastic Creep Rupture, Elong.,

1000 psi in. per cent 0.05o 0.2% 0.5% 1% 2% 4% 6% 8%0 10% see per cent

At 2500 F

55 0.0138 0.35 .. -. 0.9 1.5 2.6 3.0 4.0 .. .. 5.0 8.7

50 0 .0 13 8 .... .. .. .. .. .. .. .. .. 3 .2 18 .7

50 0.0138 .... .. .. .. .... .. .. 2.0 8.0

45 0.0138 0.27 0.5 3.0 10 31 68 166 185 .. .. 187 12.7

45 0.0138 0.27 -- 0.2 1.2 3.0 5.0 10 11 .. .. 13 8.0

40 0.0138 0.3 0.1 1.2 3.0 8.5 18 36 39 .. .. 43 10.0

35 0.0138 0.26 0.1 3.4 15 35 76 134 170 179 -- 183 12.0

At 3000 F

20 0.0162 .... .. .. .. .. .. .. .. .. 14 33.3

18 0.0162 .... .. .. .. .. .. .. .. .. 43 37.4

18 0.0162 .... .. .. .. .. .. .. .. .. 49 36.7

16 0.0162 0.5 1.0 2.0 7.0 25 59 110 161 225 263 522 30.0

16 0.0162 0.67 -- 0.9 1.3 2.0 5.0 14 57 87 122 235 36.0

14 0.0162 0.7 -- 0.2 1.1 1.9 4.0 19 52 86 107 167 22.6

12 0.0162 0.16 17 45 92 185 344 672 1095 1430 1786 1780+ 33.2

At 3500 F

10 0.0193 0.54 -- 0.4 0.9 2.0 3.5 7.0 12 16 23 76 31.3

8 0.0193 0.07 13 33 51 83 143 242 275 345 393 462 24.0

8 0.0193 0.13 .. .. 1.0 5 30 110 185 220 260 405 27.3

6 0.0193 0.07 17 63 145 278 490 871 1145 1280 1395 1663 22.0

4 0.0193 0.03 52 187 440 905 1624 2410 .. .. .. 2490 6.0

At 4000 F

6 0.024 0.07 -- 0.2 1.1 2.0 3.0 6.0 10 13 18 41 30.7

6 0.024 0.13 -- 0.3 1.0 1.7 3.2 5.0 7.0 9.0 10 21 26.7

4 0.024 0.03 4.0 35 76 142 .. .. .. .. .. 220 (b)

2 0.024 -- 57 180 450 .. .... .. .. 503 (b)

(.1) 1 Ct Conditl.o$S:Atmospherv Argon Analyses 0. 0051el, 0, <0. 0001o fl. 0. 001wo N. 0. O jlb°o/ C.GagL Length 1.5 il. 0.0012o Fe, 0.0010o Cr. and 0. l019a', Ni

Shout rIhickncss 0. 04( il. ,Method of Heating Resistance(b) "pceillicil failed ill radios.

0I

20E ,+ .200 F1O.028-in. shot)

s3e 0. -in.~

4800 F-060- i .sheet) I

2 4 440 0 304 (0807- in 300400 I

2nis~ . O 0 01 , 0. 00 2 010 30N,0 O

0.v to50 Fe, min. 000AN

Anl .e 00%o Ci, 0.0003% , 0 005% i,

and <0. .. 00O3% Mo.

U . ----. - -- :: " .-...... - : :-

II I

RD2 40 so 0 so 0oRedwtumu Th Ndrn, Pif Wm

FIGURE A-40. EFFECT OF COLD ROLLING ON THE HARDNESSOF Ta-1OW SHEET(7)

0,ld ., ,3_C '~C i , [ 0

FIGURE A-41. CHARPY-KEYHOLE IMPACT CURVE FORELECTRON -BEAM-MELTED Ta- 10W(0)

FIGURE A-4Z. COMPLETELY REVERSED SHEET-BENDING FATIGUEPROPERTIES OF COLD ROLLED Ta-IOW SHEET(0. 025 INCH) AT ROOM TEMPERATURE(Z1)

A-62

4. Metailurgical Properties

a. Fabricability: forging temperatures range from about 2200 F for breakdown to aslow as 1500 F after 50 per. cent reduction. It is important to main-tain temperatures below 2300 F, to maintain a slightly reducingatmosphere at all times, and to minimize furnace heating time.Open hammer upsetting.. piercing, and drawing, as well as closeddie forging, may all be satisfactorily accomplished. Breakdowntemperatures for annealed sheet bar range from 500 to 700 F, and80 per cent reductions are possible between anneals. Finishrolling is accomplished at room temperatures, and cold reductionsup to 90 per cent may be obtained between anneals. (7)

b. Transition temperature:Transition Temp, F( 2 2 )

Unnotched Notched

Wrought <-420 <-420Recrystallized <-420 -360

c. Weldability: electron-beam welding or inert-gas fusion welding are u-cd.Stress-relieved or, preferably, fully recrystallized starting mate-rial should be used. The properties of properly welded Ta- 10Ware essentially the same as those of the base metal. (7)

d. Stress-relief temperature: 1 to 3 hours at 2000 to 2250 F( 4 , 5, 23)

e. Recrystallization temperature: I hour at 2400 to 2730 F(4 , 5, 7, 23)

Figures A-43 and A-44

Best Available Copy

0200 240 moo MOO0

I . I ,_

A"3- 7to * c

FIGURE A-43. ANNEALING AND HARDNESS CURVES FOR Ta-10W( 1 5 )

Double -arc- n-elted 3-1/2-inch-_diarneter ingot, forgedat 1500 F '0 1, nh-hc sh'eet 'oar; annealed I /Z hourat 273C F, cold rolled to 0. 06C-inch-thick sheet, 95

per cent reduction in area.

100

I ' I

70.

600 200C0 2000 280C

Ternperotu,e, F A- 41239

FIGURE A-44. EFFECT OF 15-MINUTE ANUNEALNGO TEMPERATUREON THE HARDNESS OF 90 PER CENT COLD-ROLLED

0LECTRO -BEA{-MELTED Ta-10W SEET(7)

A-64 1IReferences

(1) Proposed ASTM Specification For Tantalum IC Per Cent Tungsten Alloy Flat Mill

Products, Second Draft, American Society For Testing and Materials (1963).

(2) Proposed ASTM, Specification For 'IZartalurn 10 Per Cent Tungsten Alloy Ingot,Billet, Rod, and Wire, Second Draft, American Society For Testing and 4

Materials (1963).

(3) "Tantalum - 10% Tungsten Consolidation and Fabrication Methods', Wah Chang

Corp. (1962),

(4) National Research Corp. , Data Sheet on Ta- 10W and Ta-BW-ZHf Alloy Sheet(May 2, 1963).

(5) lmrngram, A. 0. , at al. , "Notch Sensitivity of Refractory Metals " , BattelleMemorial :nstitute , ASD TR 61-474 (August, 1961).

(6) Torti, M. L, , "Physical Properties and Fabrication Techniques For TheTantalum-10%o Tungsten Alloy", paper presented at the AIME Technical Conferenceon High-Temperature Materials, Cleveland, Ohio (April 26-Z7, 1961).

(7) "STa-90C Electron Beam Tantalum Alloy", Stauffer Metals Division Data Sheet.

(3) Drinmons . . ., ard Allen, R. ,"90 Ta- lOW Alloy: Sumnmary of ThermalPropuetis tu M cllt:ng Point and 'Ccnsilo Pr 0 'e01t'cp Iron'. 25 ". to I5 ' , Ac: ojctGeneral Corp., Contract NOrd 18161.

($) kc,- ! s , .,. . . l"erI.:IL1 Sx:'.::slon tctcr.'::: et::)ns en "crc g0-Tu:,s'ofn 10

Alloy, A-286 Steel, and DlCO-LCY Steel", Bell Aerosystesnb Co. , Ieport 63-3(Ni),(March, 1963).

(10) Haynes Alloy Ta-782, New Product Data, Haynes Stellite Co.

1i) ':Physical and Mechanical Proporties of T antal=m.-7ungsten Alloys (PreliminaryData)", National Research Corp.

(12) Technical Data Bulletin TD 623 A, Far-steel 6C Metal Sheet, Fansteel MetallurgicalCorp. (March 7, 1962).

(13( Cortes, F. R. , lDocterminattor. of the Effects of Prccessing Refractory Metals

Under Vacuum", Universal Cyclops Steel Corp. , ASD-TDR-6- 618 (February, 1963).

(14; A. S. RIabensteine , 'Tensile and Creep RIupture Properties of Ta: ;r-'0ITungsten Alloy Sheet", Marquardt Corp. , Contract No. AF 33(657)-87C6, Report915 21-IC-2 ',Seztcer. 12, 1962).

(5) Tort:. MC. L. , "Deve'opment of Tantalum-Tungsten Alloys for Hg), Pcrfor:nePropu.son System Components", unpublished data obtained on Contract No. " rd-18787, National Research Corp. (1959- 1961).

I

I

IA-65 and A-66

16 Moorhead, P. E , "Tensile and Creep Propert:es of Columbiurn, Tantaurn, andTitanium Alloys at Elevated Ternperatres", Bel'. Aerosystern Cc. , BLIR 62-26(M)(December, 1962).

17) Sch:nidt. F. F. et al. , 1r:nvestigatior. of Tantalum and Its Alloys", Battelle\Se~arial Tnstitute, ASD-TDR- 62-h94. Par. II May, 1q63).

(18) Donlevy, A. , and Hum, J. K. Y. , "Some Stress-Rupture Properties of Columbium,Mol bdenurn, Tantalum, and Tungsten Metals and Alloys Between 2400-5000 F",paper presented at 1961 SAE Nationial Aeronautic Meeting, New York.

(19) "Tantalum, Tungsten Fill Hot Needs", Chem. and Engr. News, 37 (42), 52 (1959).

(20) Preliminary Information Bulletin on 90 Tantalum- I0 Tungsten Alloy, Stauffer-Ternescai, Richmond, California (1960).

(21) Foster, L. R. , and Stein, B. A. , "Tensile Properties and Sheet- Bending FatigueProperties of Same Refractory Metals at Room Temperature", Natianal Aero-nautics and Space Administration, NASA TN D-1592 (January, 1963).

(22) Imgram, A. 0. , et al ,"Low-Temperature Tensile and Notched Tensile Behaviorof Mo-C. 5Ti, Cb- 15W-hMo-lZr, and Ta- ICW"1, Battelle Memorial Institute, paperpresented at the Fall Meeting of ASM, New York (1962).

(23) Schmidt, F. F. , et al. , "Invstigation of the Properties of Tantalum and ItsAl'nys". nattel'c Memnrial Instliut, V ,A TR 61- 106 (March, 1q60).

aA-67

Ta- 12. 5W

. dcntification of Materia:

C, Dcsignato: STa-80 'S: ,i

b, Chemical composition: typical analyses of electron-bean-rnelted ingot(')

Element Weight Per Cent

W 11.5-13.50 0. 0020

N 0. 0020C 0. 0020

C . Colo

Cb 0. 0500Others 0. 0200

a Ba.

c. Forms available: ingot, billet bar, forgr.gs, plate, sheet, foil, wire,and tubirng(W

2. Physical Properties

a. Me.ng pont: 5520 F (calculated)(1)

b. Density; 0, 610 ib/In, 3 (calculated)(1)

3. k ";Thui a P:ju:,.t': '

a. Tensile Propertces at Roorr. Temperature

Ultimate Tensile Strength(0. 040-:. Sheet),

:OCC siMelting Condition Longitudina: Transverse Reference

Flectron Anuea'ed 102. 0 102. 0 (1)beam

Arc "hour at Z910 F '03. 0(a) (2)

(a) But3on ago% O.C5 iach pe! min ute croulhead speed.

A-68

-ensiie Yied Strength (C. 2%Offset) (C. C40-:n. Sheet),

I. 0 C siMeig Condition Lon it-dinal Transverse Reerernce

hectron Ann ca . 0) 90. 1)o earn

Arc I hour at 2910 F 9 5.6 ( a ) -- (2)

(a) Buton :inor, 0, 02 Inch per rrinutt croshead speed,

Elongation (0. 040-In. Sheet),per cent

Meltirg Condition Longitudinal Transverse Reference

Electron A-.taealud 23 (2 in. ) 23 (2 in. ) ('bea rn

Arc(a ) 1 hour at 29:0 F 13 1 ia.) (2)

(a) Button !.,got,

b. Effect of Temperature on Tensile Properties

Ultimate TensileTemperature, Strength (0. 040-:n.

Meltinc_ Condition F Sheet, :000 C Tsi R

Arc 1 hour at 2910 F 2190 50. 5( a ) (2)Arc 1 hour at 29:0 F 270 33. (2)

I }c U 210 Y %DCD 2,. 0h,Arc I hiour at 2910 F 3500 13 ,0(a) (2)

Electron Annealed 4900 1.860 (1)beam

Electror Annealed 5300 C. 930 (1)

(a) utcn tnio:, 0, 05 'r.ch pt ,:uiutc coss'iezd speed

Tensile Yie:dStrength (0. 217

Temperature, Offset)(0. 040-In.MeltinL Ccn-.tin F Sheet). 000 .),;I RferPnce

Arc I hcur at 2910 F 2190 3 g. 0(a) (2)

Arc hour at 2910 F 700 23. 21C) 2

Arc 1ho'r at 1'I]0 F 300 Cc. 7. '2Are 1 hour at 2910 F 350C 0 0 (a ) (2)

LJ¢,. if'o An:acenLd 1300 I.430 1

Electron Annealed 5300 0. 860 (1)

bearn(a) Btton IIgo:, .0i inch per mirte crosshea d speed,

A- 69

Elongation (0. 040-In.Tunpratre, Sheet)'2 ' . 1 ich,

Mc~i,. Cc Cniti On F per cnt.

Arcia] hour at 29 10 F 2 :90 :Arc () h (our at 2910 F 2 70U0 30

Arcia 1 hour at 2910 F 3500 52 E

c. Other Selected Mechanical Properties

Benid du.ctility: 0. 040-inich sheet, annealed I hour at 2910 (,

~em~ratue, ~ n~rurnBend Rad' us,

75 0

-320 3

4. Metal!Lurgical Pr-operties

a. Fabric ability; breakdown temperatu,:res shuld be above 2000 F. Afte r

at least 50 per cent redu-cticn and process annealing,temnperatures for fin:ho rolltno con ho redoccd to

-u- o 700 2. (2 TI, W <x:b I. rxu i InI,, Qn int ~i u b Clee , oneI:C:zcrGi oit I A'u:

rnouing. Annealed sheet can be spun;r w'thout difficultat room temoi:eraiurc. )

b. tanstio tenueatue: -320 F for a 4T mninimnum bend radius )

c. Wedabiity: sheet can readily be welded by eitiher electron-beam or inert-ga-uintechniques. As-welded sheet has propertiesesnil'the Caine as those of the base material; (1,3) hw

d. Stress-relie-f temperatu;re: ou at 2000 to 2370 F(2)

C. Recrystallization temo.-eraturo: : houar at 2730 to 29:0 FZ)

1:aroness '2

, VH-N:Ho-r anea:-ng Temue rat'tire, F Rolled 45% Rile 65u/

~o2 bo0 272Wroght345 366

3 xx

2550287 292

270276 Z6(2910 264( a) 251

(a) - 5 pecr cc.- c:ro3ta!:!e!.

A-70 _I

Reference6

(1) STa-88O, Ta--2. 5W Al'oy'', Stauffer Metals Division Data Sheet (March, 163),

) Schmidt, F. -. ctal. , ":nvestigc.ron of T,:i:aLna and Its Alloys' Battelle

Memorial .Tstitowe, ASD-:DR--2-594 uiy, 196Z).

(3) Schmidt, F. F. , e: al. , "Investigation of Tantalum and Its Alloys", BattelleMemorial Institute, ASD-TDR-b2-594, Part U1 (May, 1963).

Ta-30Cb-7. 5V

Idntificat:on of Vaterial

a. Chemical composition. Ta-(2S-32)Ch-(3-8iV

b. Forms available: ingot-and-fabrioated shapes availa-ble from suppl4ers ona beet efforts basis

2. Physical Properties

a. Melting point: 4405 F d 90 F (for Ta-28. 8Cb-7. 1V)(1

)

b. Density: 0. 425 lb/in.3 (calculated)

3. chan cal Properties

a. Tensile Properties at Room Temperature

Ultimate tensile strength: Tables A-3I and A-32

Tensile yield strength: Tabes A-31 and A-32

Elongation: Tables A-31 and A-32

v duulu. 0: (1" ticit\: )L. 5-il . ' 06 .7 )

b. Effect of Temperature on Tensile Properties

<Ci. 2L2 , A- (I Ai A-

Tenbtle yield strength; Figure A-i5

Elongation: Figure A-45

a, Staer Seleace Much anteal Propcrties

Bend ductility:

Test Sheet Thickness, Temperature, Minimurn BendDiF R ciltuL . T

Ta-32CS-5. 1V (1 Hr 2300 F)(2)

Lnaituudna1 0, 040 7; 0

L0ongutud.ml 0. 00 - 3-0

Transverse 0. 040 75 0['can '' ' 0. 0W '0G 0

<,-%8.3C i -. > .,, 1 JC :

l,ongct ud'nal 0. 045 75 0

Longitudinal 0. 045 -320 0Transverse 0. 045 75 0

Transverse 0.045 - 3Z0 0 1

A -7

TABtLE A 31. ROOmI-TEIPERATURE TENSILE DATA FOil ARC-CAST Ta-28. 8Ch-7. IV SHEET (Q. 04s INCII a )(2 )

Yield Strength Elongation inlec, Tcnsile Stre igiSh, .2'. Off.t,) 1. Inch,

l)ire'T ion [0U psi bOO psi per c.li

Sltre., rclic cd LonigtIidi taI 154 139 -1(I" !tir 1,r(t I-) l.ongittudinsal M7'S 139 18

Transverse 154 142 13Transverse 155 142 13

Rccrystailized Longitudinal 120 104 29(1 hour '200 F) Longitudinal 120 107 28

Transverse 120 105 26Transverse 121 106.5 26

(a) Crosshead speed 0. 02 inch per minutc up to yielding, and 0.05 inch per minute to frac:.reA A nal scs 0. 71';. , 0. o0UVyo N,0. 008S', 0, aind <0. 000ili;, If.

TA tLE A-32. COMPARISON OF ROOM -TENIPERATURE TENSILE PROPERTIES OF RECRYSTALIZED Ta-Ch-VALLOY SIEET(a)(

2 )

Yield Strength Eiongation inAlloy Test Tensile Strength, (0. 2'% Offset), 1 Inch,

Composition Direction 1000 psi 1000 psi per cent

Tj-3'2Cb-. IV (h) LongitdinaI 98 8u. 5 32

(I hoiijr 'tJi' F; .to:gittiditlal 100 8o 25o. 040 Inch) Longitudinal 105 87 26

Transverse 100 77 ',T ransve rse 110 89 26Transverse 104 89 18

Average 103 83 22G

Ta -'.'8Cb-7. IV( Longitudinal 120 104 29(1 horir '2200 F; l.ongitudinal 120 101. 280. 1 ll('1) Transverse 120 ,6

Fransversc 121 107 26Average 10_1.. 5 27

(Z) CrorLc edc . i inch per u:, ute up to yieldinrg, a nd U.03 inch per minute to fracture.(tM ,rrat ). 1 o2:' (0. * F.06t) N, 0'. Uo -12- 0. arid 0. u0 17,% t1.(t ,'n. iv,,, - ,1, 0 C, . 0 T, N. 0. 00S% 0, and <0. u00 l/lo 1.

A-73

'*4 Tensile strength, Irecrystalliz ed (RX, Ihour 2200 F)

60 Cred streedt 0.2% C se)RoshaXpe .5!~f

40

0~il strength Ut) yiedln20d05 /mt

0

Eemoerature F 424

C 40Cosedsed0001N 0.005 d ped0.5rld

2 0.~ 0088nmi tfrac.0001

A-74

140;1.

130

120

N i L0.0otory -prod jced -i:b irgothr 2200 0.040 inr __

o 90 PIlct-plon produced N

(10 2200 F,0.045 inch)

7C

4C

40 -~ - Legerld -f30 X Tc-28.5% Ct749%/V-0-013%C-0-07220 0 -0.027.N

Tc -28.8% 'b-7 I'/V-C 23' -00_088%Q0-0.005/.N( 1

RT V 000 1400 lB800 2200 26CO 3000em~erctae ,F A-4020 0

FiUEA-46. SCRENO':H COMPARISONS OF RECRYSTALL:ZEDT--VALLOY SI~T- PtZEPARF__D FROM 33-

AND :/ 3-POUNOD ARC -CASC_ INOCS

A-7 5

. ivictallurgical Properties

a. Fabricability: extrusion temperatures should be on the order of 3200 to3600 F; forging can readily be accomplished at 2200 to 2400(2),while rolling breakdown is conducted at about 1800 F(4); finalrolling, after intermediate annealing, is performed at roomtemperature(

2 ' 4)

b. Transition temperature: <-320 F(Z5 4 )

C. WelA.:ibility: inert-gas-fusion welds of sheet material present no problem.As-welded properties closely approximate those of the basemetal at room temperature. Z)

d. Stress-relief temperature: 1/2 hour 1800 F( 2 )

1 hour 2010 F( 4 )

e. Recrystallization temperature:

Prior Cold Work, 1-Hr Recrystallization Temperature(Z), Fper cent reduction Ta-32Cb-5. IV(a) Ta-28. 8Ch-7. IV -

25 2300 230050 2200 Z30075 2100 2200

(a) 0. 000250/C . 005%N, 0.00420o 0, and 0.0002%11.(b) 0. 013/!. C, U. 005%o N, 0. 0088'1' 0, and <0. 0001% I.

Table A-33Figure A-47

A-76

TABLE A-33. EFFECT OF TEMPERATURE AND COLD WORK ON TIlE RECRYSTALLIZED GI UN SIZE OF

Ta -28.8Cb -7. 1V SHEET(aXO)

2'.-7 Cciit Cold Woiked 50 Per Cent Cold Worked 75 Per Cert Cold Worked1 -I lo nr Averagc 1-I our Average 1 - lour Average

Amicr.lirrc Grain Arnea ling G rai [ Annealing GrainTehrpcrattrc, Hardness, Diameter, Temperature, I lardness, Diameter, Temperature, lardness, I)MaIecter,

F V! IN(b) m F VHN(b

) mm F VI IN01) 111m

o0 291 PR(c) 220,3 319 PR(') 2200 218 U. 035

11 _ 9 0.09o 240o 267 6 0.055 2400 211 u. 055

'600 285 0.110 2600 '289 0.00 2600 22.) 0.090

,9 D. I 80 3000 297 0.1,50 3000 276 0.130

29,5 >.2s2 3,500 285 >0.282 3500 2,2 >0.282

( A) A al, .,s v. 013"j, C, 0.0 )5'i, N, 0. OOSs ,. 0 O, 0 . 0001 -11.

(h) load.() PR = arriallv recrystallized.

rI

A-77

36C --- - ______ ________

35C ------- _ __ __ __ _

340 Iz

320 ____

2a0 ~ ~ ~ ~ ~ 5 cold____ w ~ Qold r

290

.~260 C__

25C

220C___

210 C ______

As 00 100 I1CC 22C0 260C 3C00 3400 3800Wr~uh~I- Hr Annealing Temperalure, F A-40194

r:GURE A-47. EFFECT OF ANNEALING TEMPERATURE ON

2 8. 8 Cb - 7 A LLOCY

Irnpur~tWeig.-t Per Cent01 i

if U

I

A-7 8

Roeernceg

-) Urpub'isbad data obtained under Contract AF 331616)-7452 Battelle Memorialinstitute (:961-.

[l) OgKJcn,, I-i, R. ,ec al. 'S"cale-U'p Dcv cIop:z'icnt uf -avtaluin- d cac Aloy-- I Stt~cllck Memorial Institutej ASD TR 61-684 (November, 1961). F_ k

(3) Private communication from R. W, Hall of NASA Lewis Research Center to ASD(November 22, 1961).

(4) Schmidt, F. F. , et al. , "Investigation of the Properties of Tantaluzn and ItsAlloys", Battelle Memorial Institute, WADD TR 61-106 (March, 1960).

k.

A-79

Ta-5W-2. 5Mo

Identification of Material

a. Chemical composition: Ta-5W-2. 5Mo

b. Forms available: ingot and fabricated shapes available from suppliers on a

best efforts basis

i. Physical i-roperties

a. Density: 0. 595 lb/in.3 (calculated)

Z. Mechanical Properties

a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-34

Tensile yield strength: Table A-34

Elongation: Table A-34

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A-35

Figure A-48

Tensile yield strength: Table A-35

Figure A-48

Elongation: Table A-35

c. Creep and Stress-Rupture Properties

Figure A-49

d. Other Selected Mechanical Properties

Bend ductility: reverse bend testing for annealed 0. 040-inch sheet

material(1)

Number of Successful Bending Operations Before FracLure,Bend Axis, Relative to Final Rolling Direction

Transverse Parallel

Forward(a) Reverse(b} Forward(ta) Reverse(b)

2-4 1-3 2-4 2-3

(a) 1cnit around (! r radini (<1.01 5G inch) throigh a 105-dcgrce angle.(1)) FlattCnCd to original Lo)d1tioT by prcssII II a vIc

Table A-36

A - 8

AIIl . ,I. LOt\ -lEN ..i'KIL\TUI.[,E TENSILE I'RIPERTIES OF AR(:-(:AS'I .-l :. ' si -I EEl (0.010 INCl1)(a)(

I , T111

, l q,.,. Frrral Y lmld Strength

to",l ling No. f Rolling lensile (0.21/, Offset). Elongation i 1'2

I\tr,ii'it IIolhn leuntp, In-Procc', Reduction. StrenthI, 1000 psi 1000 psi Inch, per cent

I1recl5 t' rot' d ure F Al tleals per cent Long. T ransverse Long. Transverse Long. Ti a nsvc rsc

I rtrtight 805 t 110 98.9 100.8 94.1 9G. 6 36 :37

St raigh t i (U U 0 90 99.4 102.3 99.2 1Ou.'4 34 7 31

C Ios SO0 and (, 1I 100.0 102.7 91.9 t);.6 .36 36I 1110t

Cross 800 and u 90 96. 7 96.5 89. 0 8 8. 5 3) 38

1000Cros, , 0 -, 1 65 i u2. 36 105.3 90.4 98. 7 3'T 38

Cross 80) 1 35 101. 6 113.8 88.0 94.4 313 34

C;,s 0M3 : 35 103.9 1013.7 94.5 96.8 32 34

) iLtruded at 2600 F and forged to sheet :)ar at 2200 to 2300 F. Test rate 0. 00,5 inch per inch per minute to 0. 6 per ceyilcd, arnd o.212 inch'i per inch per ttllnmue to fracture.

Typial smal,'es of extroded har()

WeightPer Cent PPMV; Mo C 0 N It

4. 6 2. '-

. 1!! 35 -

TABLE A -31. TENSILE PROPERTIES OF ARC-CAST Ta-'V -2. Nlo SHEET (0. 040 INCIH) AT 2700 F(a)(l)

FinalRolling Vi rcction No. of Rolling Tensile Yield Strength Elongation in

Rcl atc to Rollitt. Rolling In-Process Reduction. Strength, (0. 2"j, Offset), 1/2 Inch,Extru'l,1't I

5rclilont Procedure Temp, F Anneals per cett 1000 psi 1000 psi per cent

. Straight 1000 U 90 20.7 19.5 84

Crosb 800 and 1000 0 90 22.2 20, 7 S2Cross 80( and 11300 90 2 o.7 19.8 86Cross 811 1 2, 2., I8.9 8-Cro SS SOU 1 10. 22.4 26. 713Cros ,; >1 23 '21.9 19.9 So

(.i) Fur' , 1 22, 's 1" .~d f,:' '- ' ' < '"'! k' .s: :21 . to 2>11 F. Te't rate 0. 021.. itcl per inch per tIliJlle.

w. . B est A l C op,,2. " Best Available Cop,

A- 81

60 7Lege~d

x X-x Teosi I strergM510 0-0 Yeld st~ertgth (02 otf se

40 - O0-

0

X 20 - - - -- - - --- --

0

x0

2000 240 2GO 3200 ln

Temperotum, F

FIGURE A-48. EFFECT OF TEMPERATURE ON THE STRENGTH OFANNEALED (I HOUR, 2550 F) Ta-5 W-Z. 5 Mo SHEET(0. 040 INCH)

Laboratory-produced button Ingot.

40_ __ _ _

30[_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

x 2 700F

1 0 ---- - ---- - - - - - - - - - --- --

0 .5500F

YF6i0: ) IGITMEURE -V. RUPTURE CHARZACTEFRISTICSOF' ANINEALED ( 1 H-OUR, 2550 F) 10i-5 %V-2. i Nlc

STI'JT ().040 TNCI-1)( 4 )

-p rodittoii ingot.

A - 82

I AHLF A-36. EFFECTS OF ROLLING HISTORY AND ANNEALING ON TIlE ROOM-TEMPERATURE BEND DUCTILITY

OF ARC-CAST Ta-5W -2. 5Mo SHEET (0. 0-40 INCII)(1)

Room-Temperature Minimum Bend Radius, T Value(a)

Rlolling Stress-Relief Annealed Recrvstallize AnnealedTeisp raurc. As-W rought Cotd rti l 1 It a1 2010 F 1 Ir at 26005 F

Pi'ils hslor\ F Lounj tiudina[ Transverse Longitudinal Transverse Longitudinal Transverse

90 Per Cent Finish Reduction: Straiihl Rotled; No In -Process Ancals

Extruded 2600 F. I hr3000 F; forged 2300 F,

I hr 2,()si F 800 ( 5) 1-3 10-13 , r 0 0

Dito 1 0 00 (b) 1-3 7-9 s 0 08.o(c) 3-4 8-13 0 0

90 Per Cent Finish Reduction: Cross Rolled;(d) No hi-Process Anneals

Ditio 600-1ti)t, 0-2 1-4 0 0 0

E[- drle 2'tL)6o F; ferged

22'00 1F. hr 2800 F 800-1000 1-3 4-5 0 0 u

65 Per Cent Finish Reduction: Cross Rollcd;(d) One Isi-Process Anneal

Exiruded 2600 F; 1 hr300o F; forved 230i F,1 1 r 28 0C F 800 0-3 2-3 0 0 0 U

35 Per Cent Finish Reduction: Cross Rolled;(d) One In-Process Anneal

1i), o 800 0-2 0-2 0 0 00

30 Per Cent rinish Reduction: Cross Rolled;(d) Three In-Process Anneals

Ditto 800 2-4 0 0 0 0

(;) Valie o t ai ed from two no foir t e s for cacti coidition cild.(h) Rolled perpC:idicular to the original extrusion direction.

(.) Rolled parallel to tire original extrrsion direction.(d) Fq;:ial reductions in original length and width dimensions hcfore asnrneh:i .

(2)

... I .:;:alv cr o! , triide,.J tr'

Pcr -c;t PPM, ; 0 N 11

Best Available Cop.

4. Metallurgical Propert'esA

a.Fabricabil:ity: ingots can. bLe suoicessiully extruded at 2600 Kfol'owed bayforging at 2200 to 2300 F; after conditioni 11'g and process

annealing, rolling to shneet is purforne at 'goo to :.Coo F(:, 2);-s r D akiown , final shooet roh! ng, ho boon ccndu : ad at

b. Transition temperaure: C-320 F for annealed 0. 040-inch sheet rnaterial.(3

c. Weldability: annealed 0, 050-inch sheet material can readily be joined byeither inert-gas tungsten-arc or electron-bean processes:welds are roomn-temperature ductile( 4 )

2. ~ ~ ~ ~ ~ ~ ~ ~~ZO SteFrletencaue(1u t20 ~, 3 )

a.lcrytallization taniparature: Cab.es A-37 a;nd A-38

l2:Is(:l KIofA." VA~ING1R3A IN FNlS 01I THE0 aECRYS'lALLiZATION AND G (!A N SI-0 1 F X IRU DE 1) AN1)) W;1:901) SI I I A RS()

ASTK i (; rai - Meaun AS! NI

Per Ccut Reervstallization After AutcuiuSize Rauu ;e After Gramn SL',e After1-Hour at In-Iicated Teutperauur, F 1 -hour Am~ic1Iitte Ainnealiuu

As Recrystallizatiot I 1-lvir I IllourPrior liir) Foio , 'J 200 2600 70 0 2, (,(( 3010 'Temuperature, F 2800 1: 3000 F 280 0 F 30io0 1

0'. rodvd 20,1c F;RM 12.-. . I (10 10 l_)2710() 3 -8 1-7 6.3 1;

0. rdd2u6u I:;arst allized Ihour,

!719(2 F; ;furred231,10 1: 0 30 75 9 100 .--'2000) X- 2-7 U.2 .0

Extruded 2,60U F

tee r\sta Iized I hour,0fred2200 0 U 5 95 100 (0 200 3-, -7 07 .

1) V1 11 t LiI ivs c s o f e \t r tdevd ba r:

Per Cet PPMW Mo C 0 N if

1 AMYI. A -2'* RECRfYS S'ALIZIAION AND I\llRDNEsS OF ARC-cAS'r' Ta-OWV . uS111:11 (). 01 t I

A pproxx cTortal1 I-IInur H-ardntess,* VI IN

-Rcdoctiout, Necrystallizatiout As Annealed I HlOWiinr e- ' per cent Temtperratuure, F Intial wuuuuglur 20100 1: 20 F

* 02(70(1 241 369 ',4 04

-41 2-) 111101 1"400.,,u 15

I': ~ -~ Il .u t redC 11) 111 e I Our J I 1-0111

Best A4ailable Copy~

A-8, and A-86

K-e fe r cees

(1) Mayktilh, D. J. ,lallowell, J. B. , and Ogden, H. R. , "Tantalum-Alloy-ProcessingDevelopment . Battelle Memo rial Institute, Contract No. AF 33(657)-89 11,ASROT TR 7-781 (IV) (Junc 1, 1963).

(2) Moykuth. D. J. *. and Ogden, H. R. , "Tantalum-Alloy-Processing Development",Battelle Memorial Institute, Contract No. AF 33(657)-891 1, ASRCT TR 7-781 (III)

(March 1, 1963).

(3) Schmidt. F. F. , et al. " "Investigation of Tantalum and Its Alloys", BattelleMemorial Institute, ASD-TDR-62-594 (July, 1962).

(4) SchiLidt, F. F. , ct al. , "Investigation of Tantalum and Its Alloys", BattelleMemorial Institute, ASD-TDR-62-594 (Part II) (May, 1963).

A- 87

Ta- 8W- 21-f

lei ticaition o)f %laterial

a. Designation: T-111i (Westinghouse)

b. Chemical composition: the bJase composition has been made with varyingi-uterstithai rnnf-nts: however . moderate and lowinterstitial grades can be identified as follows:(1)

Weight Per CentElement Moderate Low

XV 7.0-9. 0 7.0-9.0Hi 2~~.0-2.8Z.O.8

0 (nominal) 0.010 0. 003N (nominal) 0. 007 0. 003C (nominal) 0. 003 0. 001

Ta Bal. Bal.

c. Forms available: plate, sheet, strip, foil, bar, wire, and tubing(1 )

2. Physical Properties

a. Melting point: 5400 F (estimated)(1 )

b. Density: 0. 604 lb/in. 3(0)

c. Thermal expansion: Table A-39Figure A-5O

d. Electrical resistivity: Figure A-5i

A- 88

TABLE A-39. COEFFICIENT OF THERMAL EXPANSION OF T-111()

Temperaturc Coefficient of Thermal Expansion

F C 10-6 In. ,'In. /F 10 - Ill. Il. /C

cO5025-2U0 3, 1 5.

So - I W V .,- IV I. O 7

80-2000 25-10)5 3.9 7.0

80-2500 25-1365 4.0 7.280-1000 25-1050 4.2 7.5

80-3500 25-1925 4.2 7.5

80-,101 25-2205 4.2 7. o

8. 0-43)0 25-2400 4.3 7.

20 A-89

0 4 s200 400 2 200 6W20024 2800 00 4 400

FIGURE A-5C. THERMAL EXPANSION OF T -1I I (

4GC

*?I- P< - ' 2

F C. R E A- 511. ELECTRICAL RESISTIVITY OF RECRYSTALLI7ZED T -11 1(2 )

3. Mechanical Properties

a. Tensile Properties at Room. 'i enporature

Jltinnate tensiie strength: Table A-40

.cnsinc yildlc stvzcnzth: faue A -.

Elongation: Table A-40 -t

Modulus of elasticity: Z8-30 x 106 psi( 3 )

l, Effect of Temperature on Tensile Properties

Ultimate tensile strength: Tables A-41 and A-44

Ten.sile yield strength: Tables A--; and A-42

Elonoation: Tables A-41 and A-4Z

C. Creep and Stress-Rupture Properties

Table A-43

r

A-91

TABLE A-- U. ROOM-TEMPERATURE TENSILE PROPERTIES OF ARC-MELTED T-IUI SHEET

Tensile Yield Strength

Strength, (0.2% Offset), Elongation,

Condition 1000 psi 1000 psi per cent Reference

Stress-relieved sheet (3 hr 112.3(L) 96. O(L) 21. 8(L) (3)'22 ,5 F .0.0.10 inrch)

( a ) 113.7(") 100.7(T) 17. 9(') (3)

Stress-relieved sheet (1 hr 150.0 144.8 9.0 (1)

2000 F)( b)

Stress-relieved sheet (1i hr 135.0 130.0 16.0 (1)

2,.0 F)(c)

Recrystallized sheet (1 hr 90.4 90.4 29.0 (1)300 F)

(b)

(a) Tct rate 0. 005 inch per inch per minute to 0.6 per cent offset, and 0.05 inch per inch

per minute to fracture. Analyses 7.8%W, 1.944 Hf, 0.0027% C, 0.0023% 0, 0.00260jo N,

0.003511c Fe, 0. 000816 Cr, 0.0005/ Ni, and 0. 0100% Mo.(b) Low interstitial grade. Cold rolled 90 per cent prior to final annealing. Test rate 0.005

inch per inch per minute rlbrough 0.2 per cent yield strength, and 0.05 inch per inch per

minute to fracture.(c) Moderate intertitial grade. Warm rolled 95 per cent prior to final anncaling. Test rate

0.04 to 0.06 inch per ich per imnutc.

TABLE A-41. EFFECT OF TEMPERATURE ON THE TENSILE

PROPERTIES OF ARC-CAST T-11l SHEET

(0. 040 INC M(a)(3)

Tensile Yicld Stren gth

Tcmpcrature, Strength, (n.210 Offset), Elongation,

F 1000 psi 1000 psi per cent

2400 40.0 33.1 41.73000 20.3 17.9 293500 11.2 11.2 31

(a) Stress-relieved 3 houim a: Cc . > . -neh ..pcr minute. Anal'ses 7. 8R/, W, I. If, 0. 0027% C,0.(0,235. 0, 0.o020'0 N, .003 5 Fe, 0. 0008% Cr, 0.0005% Ni,and 0.01 00;7 M 0.

Best Available Cor,

TABLE A-42. EFFECT OF TEMPERATURE ON TIlE TENSILE PROPERTIES

OF ARC-CAST LOW AND MODERATE INTERSTITIAL-

GRADE T-111 SHEET

Tensile Yield Strength

Temperature, Strength. (0.2%o Offset), Elongation in I

F 1000 psi 1000 psi Inch, per cent

Low Interstitial Grade, Cold Rolled 90 Per Cent,Stress Relieved 1 Hour at 2000 F(a)

-452 -- 232.2 .3(b)

-320 194.5 18P.5 12.6-100 -- 157.7 --

75 150.0 144.8 9.0400 124.0 121.6 4.0800 114.8 111.6 3.62000 92.1 67.5 8.0

2200 67.1 52.2 20.02400 42.4 38.6 28.02400(c) 50.7 43.8 26.02700 25.4 21.0 76.0

3000 16.3 14.1 52.03500 11.3 10.9 43.0

Low Interstitial Grade. Cold Rolled 90 Per Cent,

Recrystallized 1 lour at 3000 F(O)

-452 187.7 -- i7.5-300 150.6 145.2 27.0-100 108.8 93.8 24.0

75 90.4 90.4 29.0400 68.0 68.0 23.0

800 57.2 .43.0 15.5

2000 61. 1 34.9 le.O2200 49.3 22.6 025.0

2400 37.3 23:5 36.02700 30.9 21.4 30.03000 14.8 11.9 48.03500 13.0 12.6 34.0

Moderate Interstitial Grade, Warm Rolled 95 Per Cent.Stress Relieved I Hour at 2000 r(d)

-320 190.0 184.0 18.0-100 150.0 146.0 17.0

75 135.0 130.0 15.02200 85.0 78.0 15.02400 57.6 49.5 24.72500 54.0 38.0 26.02700 29.0 23.7 34.0

3000 9n , 0

Moderate Intrstitial Grade, Waml Rolled 9.5 Per Cent.

Recrvtallized I Hour at 3000 F(L9

3000 17.2 17.2 46. 0

(a) Test rate at -4.52 to 800 F 0.005 inch per inch per minute througi

0,2 per cent yield, and 0. 5 inch per itch per trtte to racture;above RO0 F. 0. 0-1 to 0. oi inch per inch per niiitct.

(b) Ductile fracture, 41 per cent reduc to in arva.(c) C;old rolled 5 per cent.

(d) Test raile 0.04 toO. 00 inch per itteh r iituir.

A -93

YABLE A-13. STRESS-RUPTURE PROPERTIES OF ARC-CAST T-ilI SHEET AT 2400 F

Stress, Time to Elonsgation,

Condition 1000 psi Rupture, hours per cent Reference

Stress relicved sheet (3 hr 3o.0 0.5 -- (3)

1.j, 1" 0. )40 ii*sh)(z) 33. 0 0.83,7,3 --

25.7 5.0 --

23.0 5.0 --

20.0 19.8 --

Stress-relieved sheet (reduced 30.0 2.3 5t (3G5 per cent, 1 hr 2000 F)(b) 25.0 1.3 58

20.0 25. 1 94

Recrystalled sheet (reduced 80 30. 0 3.0 30 (1)

per cent, I hr 3000 F)(b) 25.0 7.3 40

(a) Analyses i. ,c$o W, I. 955'o Hf, 0.0027'/,, C, 0. 00230,, 0, 0. 0026% N, o. 0035, Fe. 0. 000-71 Cr,

o.o.oTj% Nt and 0.l011'3o Mo.

(b) Low interstitial grade.

A-94

. Metallirgical Properties

a. Fabricabii1ty: ingot breakdown temperatures should be above 2000 F, whileintermedate fabrication can be conduced at somewhat lowertemperature s. (4) Pzi .a] form vt g s1 e'. 05s pL:0CJ1)C Dian .l.f:t

as odin :a fo"l-ine:. erDwivg. ag: s 1inning eon

performed at rQm temperature without edge cra"ing (1)

b. Transition temperature: <-452 F(I)

c, Weldability: inert-gas fusion welding has been used exclusively in welding

T-Ill. In addition to sheet butt welds, half-tube to half-tube seamwelds have been made. T- I11 has also been welded to columbi malloys. Helium welding atmospheres have proved to be moresatisfactory than argon with regard to as-welded ductility. Weld-

ductility' at - 10' F is essentiallx the s me as tha: f£0- the banc

metal. 1)

6, Stress- re'lief temperature I hour 2400 p(1)

3 hours zz50 y(3)

e, RecrystallIzation temperature: Table A-44

A-95

TABLE A-44. RECRYSTALLIZATION BEIIAVIOR OF ARC-CAST T-111 SIIEET(1 )

An5alin 00A, Cold Work 75°/o Cold Work 90% Cold Work

Tempclaturw, Rccrystallization(a), Recrystal ization(a), Recrystallization(a),

F Hardness o Hardness Hardness o

As worked 353 0 370 0 375 0

2000 361 0 373 0 30 0

2200 340 0 350 0 335 02400 295 0 305 0 295 0

2600 287 0 282 0 245 502800 270 50 263 50 232 1003000 27 100 270 100 259 100

(a) Metallogtapfic deteriminatio.

I

lb A-96

I) ' T-!!1, Tantalam Base Alloy Refractory Mcta1 , Wustibghcusc Etcctrtc Corp.St cil Tc-cin:ncal Data 52-365 ( e , 1963).

(Z) Amm on, R, L., and Begley, R, i. , "PLIlt Proua.tion and Z'vaiuation of Tantal IumAlloy Sheet", Westinghouse Electric Corp., Contract NOw-62-0656-d, Quarterly ;4 -0Report No, 3 (February 16, 1963).

(3) National Research Corp., Data Sheet on Ta-OW and Ta-SW-2Hf Alloy Sheet(May 2, 1963).

(4) Unpublished data obtained under Contract AF 33(616)-7688, Battelie MermrialInstitute (1962).

A-97

Ta- OW- 2. 5Hf

1.idcntilhcation oi Material

a. Designation: T-ZZZ (Westinghouse)

b. Chemical composition: Ta- OW-Z. 5Hf

'. ,rns av;iilable: ingot and fabricated shapes available from supplierson a best efforts basis

Z. Physical Properties

a. Density: u. 604 lb/in. 3 (calculated)

3. Mechanical Properties

a. Tensile Properties at Room Temperature

Ultimate tensile strength: Table A-45

Tensile yield strength: Table A-45

Elongation: Table A-45

Reduction in area: Table A-45

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A-46

Tensile yield strength: Table A-46

Elongation: Table A-46

Reduction in area: Table A-46

A-98

TABLE A-.13. ROOM-TEMPERATURE TENSILE PROPERTIES OF

RECRYSTALLIZED T-222 SHEE-<aXl)

Tensilc Y ield Strength Total ReductionStrcngth, (0.2% Offset), Elongation, in Area,1000 psi 1000 psi per cent per cent

110.0 105.0 25 --

110.6 100.2 30 63

(a) Data for same material, two different tests. Material reduced9U per ceILt, recrystallized 1 hour at 3000 F. Test rate 0. 005inch per inch per minute. Analyses 9.5% W, 2.4-1% HF.

0.011016C, 0.00290]O, and 0.003ioN.

TABLE A-46. LOW- AND HIGH-TEMPERATURE TENSILE PROPERTIES OF T-222 SHEET(aXl)

Tensile Yield Strength Total ReductionTeiperature, Strength, (0. 2% Offset), Elongation, in Area,

F 1000 psi 1000 psi per cent per cent

Reduced 90 Per Cent, Stress Relieved1 Hour at 2000 F

1800 112.3 107.0 6 --

2000 100.0 89.2 10 --2200 78.8 68.8 18 --

Reduced 90 Per Cent, Recrystallized1 Hour at 3000 F

-320 184.6 175.0 28 5175 110.0 105.0 25 --75 110.G 100.2 30 03

2000 77.6 .10.3 18 --2200 67.3 38..l 17 --

2.100 53.4 37.8 20 --

2600 36.8 29.3 31 --

2800 30.5 27.7 483000 2-1.9 2,.1 21 --

3500 1.2 -1.2 *13 - -

(a) Test rtt 0. 00 .) ICh per acit p r innute for -320 and 75 F tests, and 0.05 inch per inch

per minute for all other tests. Analyses 9.5% W, 2.44% IF, 0.011/ G. 0. 0029.", 0, and.* UtLi 4, N.

A--99

'. Metallurgical Properties

it. Fabricability: arc-cast ingots can be forged directly in a dynamic argonatmosphere at ZZOO F; after conditioning and recrystallizing for1 hour at 3000 F the forged slabs can be cold rolled 5 to 10 percent per pass to high-quality sheet (0. 040 to 0. 050-inch sheet)(4)

b. Transition temperature: <-320 F for sheet material reduced 90 per cent andrecrystallized I hour at 3000 F(I)

c. Stress-relief temperature: I hour at Z000 F for material reduced 90 per cent(0)

d. Recrystallization temperature: 1 hour at 3000 F for material reduced90 per cent(l)

A- 100

Re fo re fles

( ) Pr ivaLte ~.communii~ca tions froml R. L- Aninon, We Ct inghOLuse Electriic Corporation.

(.) Ann iii, R. L. ,and Be gley, W T. , Pilot P rodulCt ion and Evaluation of ToantalumAtloy Sleet", V eStingLos Electric Corporation. Contract NbOG (1 9) 59762,Quarer ly Re ort No. 1 (August 15, 1363).

A- 101

Ta-lOW-2. SWo

1.Identification of Mate rial

a. Ghemnical composition: Ta- LOW- Z. 5Mo

b. Furmis available: ingot and fabricated shapes available from suppliers onl

a best efforts basis

-t Physical Properties

a. Density: 0. 599 lb/in. (calculated)

3. Mechanical Properties

a. Tensile Properties at Room Temperature

Ultimate tensile strength. Table A-47

Tensile yield strength: Table A-47

Elongation: Table A-47

b. Effect of Temperature on Tensile Properties

Ultimate tensile strength: Table A"-48

Figure A-52

Tensile yield strength: Table A-48

Figure A-5Z

Elongation: Table A-48

Creep and Stress-Rupture Properties

Figure A-53

d. Other Selected Mechanical Properties

Bend ductility: reverse bend testing for annealed 0. 040-inchsheet m-aterial(l)

Number of successful bending operations before fracture: bend axis,relative to final rolling direction

Trans\'e rse ParallelFo r, a r d(a) Reve rset

bJ Forward(a) Rove rse(b)

2--3 1-2 Z-4 1- 3

(a) Pin imiind ( 1' rnkli u (.,0. 01 5G i ) ll h roirl,1 .1 10 f'-Uu rce any'c.(0i Ilattcitcd to oriv'u ai condition !)v prcbsiiic in , visy.

Table A-i

I

TAKLE A-41. ROC7 -TF.MPFRATU90, TENS]IE PROPERTIES OF ARC-CAST T- W-2. "ic SHEET !0. 140 I "'Xl)

Ro':in lircct.non

P1 a i,' 1:31., C ic d Strc/;!v : rlg tk :

.: 7 . I Il, N> or R lw T-c, S',c:r, , F ' ll ; 1,2 :Ic7xlrsioln R'11,18 :rnD, -?rtoce$i Oeduct/on, 1000 Psi 2l01 u.i PG[ GZA;

Isrecion Procedure F Anneals per cent Long, Transverse Long, Transverme Long. Taimvrs

4. Sra ght B00 0 90 111. C 1.1.1 1.06.6 I07,8 34 384L StrAight 1000 C 90 110.0 112.3 102.3 104, 36 s

Cros 800 and 0 90 111, 112.8 102.5 107,1 36 341000

Cross 800 and 0 92 111 7 114.6 104.7 107. 36 361000

Cross 800 1 00 1. b1 115. 1 103. i10.1 36 36C .' ?^- 0 1 12C. 1 - ., 1 . 111.4 2i 31

Cross I-' 2 .17. 9 116, 163. .z . 30 31

(a) 9xtruded at 2800 F and forged o sheet bar at 22% to 230. F. Tel ate C, DT ;oh per inch pet minute to0 ,6 per cr.r:old, and ". 25 iICI ?ar ilra pe: rirs te to fracture,

Typical analy~s of extruded bar:(2)

WeightPer Cent PPMW Mo C o N H

9.6 2. " l0r ,

1

TABLE A-48. TENSILE PROPERTIES OF ARC -CAST Ta-lOW- . 5Mo SHUT (0. AI0 INCH) AT 2"00 F(l )

)

Ra l Final

to Rolling No. of Rolling Tensile leld Strength Elongation in

Extruilon Roiling Temp, In-Procets Reduction, Strength, (0.24 OffallO, 1/2 Inch,Direction Procedlre F Anneals per cent 1000 psi 102 Psf per cent

S~rai 8h! 101 0 00 qk.6 23,4 8

Cross 800 and 0 90 28.3 20.2 76

100Ca-s 80 and 0 9 27.2 24.4 16

1*.J i' '

croSS 80 1 53 86.2 25.6 88

Cross B00 1 35 31,6 28.8 00

Cross 80 3 35 29.8 00. 66

(, ' Tr L I. .. .1 . .- :rC' ? ci. 70 '. d 6! .1 . J 311 F. Test rl , '. 123 :L' rcr :ich p r i -i, :u,

Tvir:i .'n:n2y! o ' rrdci h:

, Mc C C N H

0.6 2.5 ? 101 37 1

4C

2400 2900 3200 3400

Terrp&oiure, F

FIGURE A-52, EFFECT OF TEZMPERATURE ON THE STRENGTH OFA-,NNEALEI) (l HOUR, 3090 F) Ta-1c W-2, 5 Mo SHEET( . 04C INC-M)(

3 )

Labrtory-prod-aced bu1tton 4ngot,

30

20 2700 F

4- 0-

0! 110 10~t' Doe ~ h4e

GI.; R E A - 53. HIGH- TE 14PE ATURE RJPTURZ- C'HARACTBR:S'TICS OFANNEALED (1 HOUR, 3090 F) Ta-10 W-2. 5 Mo SHEET(0. 040 INCH)( 4 )

Laboratory-produced b-atton 4igt.

F A- 104

- PL -K CfITS 0'1, Z1hG -I]CP' AN1) ANNI3ALtNC _N IF PO-Cx-T.F'CCYNZ 3j9.E t ENt' OFO

ARC -CAST T a -I OW -2, ObQ SHUOT (0. 040 IN CH$'Q

Room -Temperature Minimum Bend Radius, T VaolueA4

)Stress-Relef Recrystallie

Ao~n As-W rought Armealed AnnealedTemp?, CGundltin 1-Hr at 2000 IF IHre:t 2200 F

P:Ior History F Long. Transverse Loig. T'ansverse tong. Tranvenec

9LO PCr Cont F17.16 Redl.o.or Srra*.ghrI Rco ed; No 1,,-Process Anneaas

EIrL eC L6)" F, h~r 3CC F; for u F, ~ .O 3_1 s-9 0-:iiI2h 2822 F

rti cCOC 32 5-'1 C C 0 0

90 Per Cent Finth Reductions Cross Rolgud;(d) No I -process Anne"i

Exrmaded 26230 F, I hr 3000, F; forged 230C F, 803-1000 1-4 3-5 C 0 01 hr 2803 F

Ontrrxded 2600 Fl forged 2223 F, E30-1033 2-3 2-3 C-1 C-1 0 3

Extrced 252C' F, '.ihr320 F; forged 0303' F, S3IO 5 -

33 Pe- Ccx: Fiss e.::a nh o1u;1

Oe :-rcs A:;::eal

Extruded 2800 F, 1 hr 2000 F; forged 2300 F, 800 2-4 1-3 0 n 0 0

0hr 28002?

sr , 2 2c F I :r -Oj orccdU.3 - 7-

(a) Values obtalned from, 2 .c 4 tests for each :oid!rlcn cited.(1c) Ro~led perpendiculai :o 'li crigirra. extruston irectIon.'c) Ri:ced narultol rto !c erg'iul cerstar dlrecrlc-..

tyrricul arrutyses nf CNrrodld surc02)

Per Coon PPM(7Sr N r

F A-1054. Metallurg;cal Properties

'avnrcabih': cgan ssfu-l extruded v 20 F fuiluwed byforging at 22%0 to 2300 F; after condition-:g and processannealing, rolling to sheet ;s perforiiied at 800 to 1000 F( 2)

7.T:a:ns.:. i: uatua:; u-0 F for annealed 0. 30-incn saee: n.a:erlai('t)

C. "eldability: annealed 0. 050-inch sheet material can readily be joined byeither inert-gas tungsten-arc or electron-beam processes;welds are room-tempe rature brittle()

d. Stress-relief temperature: 1 hour at 2000 F(l); 1 hour at 2370 F(P)

e. Recrystalhzaticn temperature: Tables A-50 and A-51

TA3.E A-:. EFFEC7 OF ANNEA2NO TREA7.?FmTS ON 7'!E RECRYSTALIZAION AND CRAIN SIZE

O EXTRUDED AND FORGED S-HEET U2AR0')

A,57\1 Cz:- N AST\M

Pu r C;e n m c s:a U. -u : A IL-e A inu ah .:8 I-h i o.: A , . LI:r I A L

I Hour at Indicatd Temp. F Recryital- Hou at ndicatced Hour at IndicatedAs LA&on Temp, F Temp. F

Prior History Forged 240C 2600 2'700 2800 3000 Temp, F 2800 300 2800 3000

Extruded 2600 F, 0 C 10 98 1CC OO 2800 3.9 3-8 7.0 6.8

forged 22CC F

Extruded 26CC F, 0 0 10 IC 95 100 ~2900 3-8 3-1 7.1 2.3recrystalIzed. ho- 3000F,

forged 2300 F

Extuded 26CC F, 0 20 7 95 -OC 2900 4-3 2-1 '7. 57

rectystal;lzcd' hour 3000 F,

forged 2200 F

Typical analyses of extruded bar:

weight

Per Cent PPMW Mo C 0 N I!

TABLE A-61, RECRYSTALLXZATION AND HARDNESS OF ARC-CAST Ta-,OW- 2.Mo SHEET(0. 040 INCH)(IX)

Rolh.-. Tcta: 1-Hor Hardness, V iNTempera:urc, Recuc;or., Rccrystal..catiou. As Annealed 1 Hour

F P(Cr ccr Temperat-re, F :nitia: Wroght 2000 F 2620 F

8.0 4o ~ 2F0, 20"1 RiO -- 26

r." -. ,; .. ' ~ 2 - - 5

ROC85 2600 26" 401 -- 224

bO 90 23.G 26" 428 374 273

]06- 1,: -2

(a) Extr,0e. at 2600 F Ir! !orgeC to sheer bz at Z200 o 200 F.

Per Ce;t PPM

9.6 Mo C 0 N H

0.6 0.5 10' 0" 0

A-107 and A-108

References

) Maykuth, D. J Ha'iewel, . , and Ogden, H. ., 'Tantalum-Allcy-ProcessingDevelopment, Battelle Menorial Enst:tute, Contract Nn. AF 33(657)-8911,ASR--" 'IR 7-781 (IV) (JTurc. ', 19t3).

P (2) Maykuth, D, J. and Ogden, H, R. , "Tantalu-Alloy-Proceasaing-Development",Battelle Memorial Institute, Contract No. AF 33(657)-8911, ASRCT TR 7-781 (111)(March 1, 1963).

(3) Schir.;dt, F, F, , et al. , 'Investigation of Tantalum and Its Alloys'', BattelleMemorial Institute, ASD-TDR-62-594 (July, 1962).

(4) Sch'midt, F. F. , et al. , ''Investigation of Tantalum and Its Alloys', BattelleMemorial l:ns1tu :. ASD-TDR-62-594 (Par' K) (May, 1963>.

LIST OF D.M10 TECHNICAL REPORTS IS' UFD)

DEFENSEMETALS INFOR!4ATION CENTER

& Battelle Memorial Institute

Columbus 1, Ohio

Copies of the technical reports listed below may be obtained from DMIC at no cost by Government agencies, and by

Government contractors. subcontractors, and their suppliers. Others may obtain copies from the Office of Technical Services,Departmeent of Commerce. Washington 25, D. C. See PB numbers and prices in parentheses.

DMICReport Numnber Title

46D Department of Defense Titanium Sheer-Rolling Program - Uniform Testing Procedre for Sheet Materials.September 12, 1916 (PB 121649 $1. 25)

46E Department of Defense Titanium Sheet-Rolling Program - Therrmal Stability of the Titaniuma Sheer-Rolling-Program Alloys. November 25. 1958 (PB 151061 $1. 25)

46F Department of Defense Titanium Sheet-Rolling Program Staturs Report No. 4. March 20, 1959 (PB 15065S $2. 21)4CG Department of Defense Titanium Sheet-Rolling Program - Time -Temperatree-Transsformation Diagrams of

the Titanium Sheet-Rolling Program Alloys. October 19. 1959 (PB 151075 $2. 25)

46H Department of Defense Titanium Sheet -RoLlisg Program, Status Report No. 5. June 1, 1960 (PB 151087 81Z.00)461 Statistical Analysis of Tensile Properties of Hear-Treated Ti -4A 1-3Mo-IV Sheet, September 16, 1960

(PH 151085 1.25)

461 Statistical Analysis of Tensile Properties of Heat-Treated TI-4A1-3Mo-1V and Ti-2. 5Ai-16V Sheet,

June 6, 06~1 (AD 225 $1. 25)106 Beryllium for Structural Applications. August 15. 1958 (PB 121C48 $3. 00)

107 Tensile Properties of Titanium Alloys at Low Temperature, January 15, 1959 (PB 151062 $1. 25)

108 Welding and Brazing of Molybdenum. March 1, 1959 (PB 151063 81. 25)109 Coatings for Protecting Molybdenum Prom Oxidation at Elevated Temperature, March 6, 1909 (PB 111064

$1.25)lie The AUl-Beta Titanium Alloy (Ti-13V-1ICr-3A1). April 17. 1059 (PB 151066 $3. 00)

ill The Physical Metallurgy of Precipitation -Hardenable Stainless Steels. April 20, 1959 (PH 111067 $2. 00)112 Physical and Mechanical Properties of Nine Commercial Precipitation-Hardenable Stainless Steels,

May 1. 1-9 (PB 111068 $3. 21)113 Properties of Certain Cold-Rolled Ausreniric Stainless Sheet Steels, May 15. 1919 (PB 151069 $.1. I1)

114 Ductile-Brittle Transition in the Refractory Metals. June 25, 1919 (PB 111070 $2. 00)115 The Fabrication of Tungsten, August 14. 1959 (PB 111071 $1.715)116R Design 1information on 5Cr-Mo-V Alloy Steels (H-li and 5Cr-Mo-V Aircraft Steel) for Aircraft and Misiles

(Revised). September 30, 1960 (PB 151072-R $1. 50)117 Titanium Alloys for High -Temperature Use Strengthened by Fibers or Dispersed Particles, August 31, 1859

(PB 151073 $2. 00)118 weldtisg of High-Strength Steels for Aircraft and Missile Applications. October 12, 1919 (PB I51074 $2.25)119 Heat Treatment of High-Strength Steels for Aircraft Applications. November 27. 1959 (PB 111076 $2. S0)120 A Review of Certain Ferrous Castings Applications in Aircraft and Missiles, December 1B. 1959 (PB 111077

$1.10)11 Methods for Conducting Short-Time Tensile. Creep, and Creep -Rapture Tests Under Ccridizina of Rapid

Heating, December 20. 1919 (PB 1510781 $1. 25)122 The Welding of Titanum and Titanium Alloys, Decenmber 31, 1919 (PB 111079 $1.75)123 Oxidation Behavior and Protective Coatiings fcr Columbium and Columbitins-Base Alloys, January 15. l )6O

(PB 151080 $12.25)124 Current Tests for Evaluating Fracture Toisgictss of Shecr Metals at High Su.1ssgzl- Lcck Jvrrvary 28, 1,160

(PB ' a101 82. 05)IPhysical arid Melchsanical Propert ies of Colunbarsins aod Colamblias -Base AIlIOVS. Fcbhiary 22. 190

(I'll 1lhItQ9 2 $1. 75)27 Str ul:turzi Damrage t Thernially Cycled Renjr 41 and Aro v's .~tral.l rvr 3 10

(PIl 1'10v2 SO. ::)127. IsCAi Ald MIL; Xs11 Al Propcrtie ci 0 Tmsig,,toss .sssW lvsgstvv -Bl vi Alloy-, Miarch 15. 19609 (PH 1.510d4 $1. )1'" A >,izn:nasy Mf lonip saivc l'ro),U~ ' A17 1L ZIII \aCsvcrs 1-MelteNd Steels Zlod Superallovi,

1 M,sc al loscseilcs .Is s,,,n \s:cil -baw Alk, ' Y.ay 25., 13160 (PB 151986 $2.15)

Is s~lc~tej >:cIrt-Ttunc Teiil, a558 ( rce Data shtib td Undvi Condiijons of K ipisi 71,atis. fJime1, 9(i Scs.2.25)

Nov Deccopmnrs of the Wclding oi Metalii June 2-1. l2ti (!9 15105361. 250, ss i i to ri i.U !1,1;v ick, i -1a,, All o ys fo A; rc rasli as d i leilcsJils1lv 20, 1'"5G0 (P0 15110 3. 0

:1An At~s I\i1 lo ill .is 7 J~5l7 .( I l 1 ..5L- itm. At In, 't Is (1, Mi ,.,

Best Availjable COPY

OMICRepor Numer . Title

136A The Effects of Alloying Elemrents in Titanium, Volumne A. Constitrrtion, September 16., 1060' (P1 16109-i$3.0)1

13M6 The E~ffects of Alloying Elements in Titanium. Volumne B1. Physical and Chemical Properties, Delorinitiocand Transfnrmasuior Characteristics. May 29, 1961 'AD 260221_6 3. 00)

137 Design Information on 17-7 P1) Staiera Steers for Aircraft and Missiles, September 23, 1960 (P1 101091$1.010)

138 Availabilmty snd Mechanical Properties of Hilgh -Strength Steel Extrusions. October 26. 10360 (P9 1610113 $1. 75)139 Molting aad Casting of the Refractory Metals Mulybduinr, Couurbium. Tantalum, a-id Tungsten,

Novembher 181 PB 15109.011.00)140 Physical and Mechanical Properties of Commercial Molybdenum-Base Alloys, November 30, 13110

(PC 1510998$3. 00)141 Tltansum -Alloy Posgiugs. Decembher 19. 1960 (PB 1011001$2.2)142 Eniv~tonmental Factors Influencing Metals Application., in Space Vehicles, Decemboer7 19)60 (P1 131101

S1.25)143 High-Strength-SteeI Pongings. J anuary 5, 1961 (P8 151102 $1. 75)144 Stress-Corroslon Cracking - A Nontechnical Introducrion to the Problem. January 6, 1961 (PB 151l01 ' .. 7)145 Design Information on Titatnism Alloys for Aircraft a: ':. Missiles, January 10, 1961 (PB 151104 $2.2)146 Manual for Beryllium Prospectors. January 18. 1961 ()B 151105 $1.00)147 The Factors Influencing the Fracture Characteristics cf ltlgh-Strengts Steel, February 6, 1961 (P1 161106

$1.20)148 Review of Current Data on ltre Tensile Properties of Mietals at Vecry Low Temperatures. February .4. 1661

(PBl 151107 $2.00)149 Brazting for Hi1gh Temperature Service, February 21, 1901 (P1 101108 $1.00)159 A Review of Bending Methods for Stainless Steel Tbblng, March 2, 19111 (P1 1011091$1.050)161 Environmental and Metallurgical Factors of Stress -Corrosion Cracking in Iligh-Snrengrb Steels. April 14. 1961

(PC1511110 $0.7)152 Binary and Ternary Phase Diagramos of Columblom, Molybdclr,m, Tantalum, and Tungsten. April 28, 1901

(AD 201739 $3.650)153 Physical Metallurgy of Niclsel-Base Superalloys. Mrlay 0, 1961 (AT, 208041 $1.00)154 Evolution of Ulurahigh-Strengtlt, Hardenable Steels for SoLid-Prorellanr Rocket-Motor cases, May 2b, 161

(AD 267976111.20)156 Oxidation of Tungsten. July 17, 1961 (AD 263098 $3.00)156 1.lnaign Wnorration on AM-30 Stainless Steel for Aircraft and milsUcs. loy 28, 19CI (AD 262407 $1. 66)167, A Summary of the Theory of Fracture in Metals, August 7, 0961 (PB 1111081 $1.70)16 Stiess-Cit-osio.n Cracking of Iligh-Srength Stainless Steels iin Atmolpheric Environments, Septembe'r 15, 1961

(AD 266000 91.26)109 Gas-Pressure Bonding, September 20, 1961 (AD 260133 $1.20)160 Inuorlvetion to metals for Elevated-Temperature Use. October 21, 1961 (AD 268047 $12. SI)161 Status Report No. 1 on Department of Defense Refractory metals Sheet-Rolling Program. November 2, 1961

(AD 26707-7 91.00)1In" C oouIin gs for the P rotec ti on of Re frac tory Mectal s r ron, Ox id a ton. :,ov anni , C4. '.3-1(A D.,u 4Sn 63. 60)163 Cot,ol of Dimensions in flgh-Sreninh ilecat-Treated Steel Parts. N ovemnber 29, 1061 (AD 270046 1. 00)

,,.5 annaustnitic Prelpitarlon-Hardeaabie Stainless Steels. December 6, 1961 (AD 2-14805 $2.75)116 5 Met! osds, of Evaluating Welded joints. Decetmber 211. 1961 (AD 272088 $2.20)1116 Thre Effect of Nuclear Radiation on Srusctural Metals. September 10. 1961 (AD 2665.39 $2. 50)11. Sunmmary of the Fifth Meeting of the Reftactory Ccmposites Working Group. March 12. 1962 (AD 27-1804 $2. Ic,)

S. erylliums for Structural Applications, 1958-1960. May lB. 1962 (AD 278723 113.00)101 Tire Effect of Molten Alkali Metals on Containmtent Mtetals and Alloys at High Temperatures. May 18, 1962

(AD 20-932 $1.050)1'.0 Chemical Vapor Deposirlon. lane 4. 1962 (AD 281887 $2.20)171I The P'hysical Metallurgy of Cobalt-Base Superatloys. July 6, L912 (AD 2300 92. 26)1-12 Background for the Development of Materials To Be Used in lligh-Stnengtb-Stecl Structural Weldints.

July 31, 1962 (AD 284265 $3. 00)113 Newe Developments in Welded Fabrication of Large Solid -Fuel Roekct-m~otor cases. August 6. 4162

(AD 284829 $91. 00)174 Electron-Bear Processes, Septeii~t:,r 15, 19G12 (An) 2el7.139797. 7!17.3Cti Ouinm.1 . o:tn of dile Befractotv Co~rpositcr Working Grourp. Septemtber 24, 19112

(AD1 287 02 j62 1. 7 5)17; St ates Report No. 2 ott Departmternt of lIfe e Ir ic tory Mtctalv Oltet-Rollrng Program. October 16. 19112

(AD $872 1.20)77 7ircl Radiative Properties 01 Selected tteij.Novetnhe. 1'_ 191;2. Vol, I (AD 294345 $3. 00)

I hermral Oara rolrpettiei Of Selected Materials. November 16, 1962. Vol. 11 (AD 2943l16 114. 00)70 Steels for Large Solid -P ropellant noeket-Motot Cases, November 20, 19112

i..41 A Gutde to the Literature on, Iligh-Velocity Metalworking. December 3. 1962ISO riesrgr Gornsi1rations in Selecting Materials for Large Solid -Propellant Oocket-motor Cases, Diccrirlivr 10. 19112.01 ;olting of Nrekel -Base Allo... Deecrrner z0, 111

, i tructural Coirsiderat.n-sT Developing nRefractory Mectal AlIloys. Jaary 31. 1.1633 ,t liii..ry arid rrIrr ,vasy itliar mq ts of C(oiriiiriurr, Moi1,allliurri. Tairtalm, arid 7urgltrr I'l--ari to .llc

ll~R, 167) February 7, 19o1i "'-,rrr ity Of Or~e Sevetli leeting of tne Refractor 'y Coinprosir ci Workilog Group, bray 30. 1911,3

I t3 17c r,tUs ,, d Preperrier of Titanium Alloys forr Ilnici'lte Junc 14, 1963TncIi Elfcit of Frbicatnccl hisory and \iticrortrrrclare en tile Nlechar'rcaI 1'roperrros of Refracrtory Met.1i arid Altly,

1 -7 1 tie A,;lnc.zrr if C llrasornic: Energyf in thre Octerzirirto erf o{Metals, August 70. 19113

OM)ICThe r Tit l

Thc Engiitccrnng Proper tc of COlultnblnl arid Colurubrur Alloys, Septenitber b., 1063

LU LUm 0 (L C5r ct m

CL < 'nm u

m

C C C

cli

'Ei Q. Cl. lu cz2 m 2 2 >'75 >

C,3 o-U

C; .2 - 1, : >Z a-- Oo 000 C - C: cr)

It - w *6 - 5 1 . =5 a. g 0 EL C'_ C) - - 1, L - t- - ! = -E 's r=, W m 4) E

L , - 0- - =1 -0 ce E E 'Ju >

toLn CISwum >* v

0 0 'Clo 0 C:) 0 7 c:0

u > mS - > w u 0 > Q Uz 2 W , u -U u

0 -: o o> u 0 E m u

R. M

X

t: 011- Ea. CO w ul 5, 20

0 Ul) (n(n V) U V)L) < a. u In-u U-13= Z

u n D

:F: m cn

C C

CLw > 2 >

o COL. o :D o72 5 2u 'i1>1 to 121 2 C'00 >

u C,

C4UA

>

U 2 C,

.2

G