The Cross Product

26
The Cross Product The Cross Product Third Type of Multiplying Third Type of Multiplying Vectors Vectors

description

The Cross Product. Third Type of Multiplying Vectors. Cross Products. Determinants. It is much easier to do this using determinants because we do not have to memorize a formula. Determinants were used last year when doing matrices - PowerPoint PPT Presentation

Transcript of The Cross Product

Page 1: The Cross Product

The Cross ProductThe Cross ProductThe Cross ProductThe Cross Product

Third Type of Multiplying VectorsThird Type of Multiplying Vectors

Page 2: The Cross Product

Cross Products

1 1 1 2 2 2

1 2 2 1 1 2 2 1 1 2 2 1

If v and

are two vectors in space, the cross product

v is defined as the vector

v ( ) ( ) ( )

a i b j c k w a i b j c k

w

w b c b c i a c a c j a b a b k

���������������������������������������������������� ����

������������� �

���������������������������������������������������� ����

Page 3: The Cross Product

Determinants• It is much easier to do this using

determinants because we do not have to memorize a formula.

• Determinants were used last year when doing matrices

• Remember that you multiply each number across and subtract their

products

Page 4: The Cross Product

Finding Cross Products Using Equation

2 3

3 2 Find v

( 3 1 2 1 (2 ( 1) 3 1) (2 ( 2) ( 3 3)

(3 2) ( 2 3) ( 4 9)

5 5 5

v i j k

w i j k w

i j k

i j k

i j k

������������������������������������������������������������������������������������

Page 5: The Cross Product

Evaluating a Determinant

2 32 2 1 3 4 3 1

1 2

6 5(6 1) 5 2 6 10 4

2 1

Page 6: The Cross Product

Evaluating Determinants

1 4 2 4 2 12 1 4

3 1 1 1 1 31 3 1

(1 1 3 4) 2 1 1 4 2 3 1 1

11 2 5

A B C

A B C

A B C

A B C

Page 7: The Cross Product

Using Determinants to Find Cross Products

• This concept can help us find cross products.

• Ignore the numbers included in the column under the vector that will be inserted when setting up the determinant.

Page 8: The Cross Product

Using Determinants to Find Cross Products

• Find v x w given• v = i + j• w = 2i + j + k

Page 9: The Cross Product

Using Determinants to Find Cross Products

1 0 1 0 1 11 1 0

1 1 2 1 2 12 1 1

(1 0) (1 0) (1 2)

i j k

i j k

i j k

i j k

Page 10: The Cross Product

Using Determinants to Find Cross Products

• If v = 2i + 3j + 5k and w = i + 2j + 3k,

• find • (a) v x w• (b) w x v• (c) v x v

Page 11: The Cross Product

Using Determinants to Find Cross Products

( )

2 3 5

1 2 3

3 5 2 5 2 3

2 3 1 3 1 2

(9 10) (6 5) (4 3)

a

i j k

v w

i j k

i j k

i j k

������������� �

Page 12: The Cross Product

Using Determinants to Find Cross Products

( )

1 2 3

2 3 5

2 3 1 3 1 2

3 5 2 5 2 3

(10 9) (5 6) 3 4

Notice that this is the same values as but

the signs are opposite. (Neg. is now pos. and vice

versa)

b

i j k

w v

i j k

i j k

i j k

v w

����������������������������

������������� �

Page 13: The Cross Product

Using Determinants to Find Cross Products

2 3 5

2 3 5

3 5 2 5 2 3

3 5 2 5 2 3

(15 15) (10 10) (6 6)

0

This leads us to one of the properties of cross

products.

i j k

v v

i j k

i j k

Page 14: The Cross Product

Algebraic Properties of the Cross Product

• If u, v, and w are vectors in space and if is a scalar, then

• u x u = 0• u x v = -(v x u)• (u x v) = (u) x v = u x (v)• u x (v + w) = (u x v) + (u x w)

Page 15: The Cross Product

Examples• Given u = 2i – 3j + k v = -3i + 3j

+ 2k• w = i + j + 3k• Find• (a) (3u) x v• (b) v . (u x w)

Page 16: The Cross Product

Examples(3 ) 3(2 3 ) 6 9 3

(3 ) 6 9 3

3 3 2

9 3 6 3 6 9

3 2 3 2 3 3

( 18 9) (12 ( 9) (18 27)

27 21 9

u i j k i j k

i j k

u v

i j k

i j k

i j k

Page 17: The Cross Product

Examples

2 3 1

1 1 3

3 1 2 1 2 3

1 3 1 3 1 1

( 9 1) (6 1) (2 ( 3))

10 5 5

( 3 ( 10)) (3 ( 5)) (2 5)

30 15 10 25

i j k

u w

i j k

i j k

i j k

v u w

������������� �

������������� �

Page 18: The Cross Product

Geometric Properties of the Cross Product

• Let u and v be vectors in space• u x v is orthogonal to both u and v.• ||u x v|| = ||u|| ||v|| sin where is

the angle between u and v.• ||u x v|| is the area of the

parallelogram having u ≠ 0 and v ≠ 0 as adjacent sides

Page 19: The Cross Product

Geometric Properties of the Cross Product

• u x v = 0 if and only if u and v are parallel.

Page 20: The Cross Product

Finding a Vector Orthogonal to Two Given

Vectors• Find a vector that is orthogonal to • u = 2i – 3j + k and v = i + j + 3k

• According to the preceding slide, u x v is orthogonal to both u and v. So to find the vector just do u x v

Page 21: The Cross Product

Finding a Vector Orthogonal to Two Given

Vectors

2 3 1

1 1 3

3 1 2 1 2 3

1 3 1 3 1 1

( 9 1) (6 1) (2 ( 3))

10 5 5

i j k

u v

i j k

i j k

i j k

Page 22: The Cross Product

Finding a Vector Orthogonal to Two Given

Vectors • To check to see if the answer is

correct, do a dot product with one of the given vectors. Remember, if the dot product = 0 the vectors are orthogonal

Page 23: The Cross Product

Finding a Vector Orthogonal to Two Given

Vectors

(2 10) ( 3 5) (1 5)

0

u u v

Page 24: The Cross Product

Finding the Area of a Parallelogram

• Find the area of the parallelogram whose vertices are P1 = (0, 0, 0),

• P2 = (3,-2, 1), P3 = (-1, 3, -1) and • P4 = (2, 1, 0)

• Two adjacent sides of this parallelogram are u = P1P2 and v = P1P3.

Page 25: The Cross Product

Finding the Area of the Parallelogram

1 2

1 3

1 2 1 3

1 2 1 3

2 2 2

3 0, 2 0,1 0 3 2

( 1 0,3 0, 1 0) 3

3 2 1 2 7

1 3 1

Area of a Parallelogram =

1 2 7 1 4 49 54 3 6

PP i j k

PP i j k

i j k

PP PP i j k

PP PP

��������������������������������������������������������

��������������������������������������������������������

����������������������������������������������������������������������

����������������������������

Page 26: The Cross Product

Your Turn• Try to do page 653 problems 1 –

47 odd.