The CLIC project

33
The CLIC project Brief overview of the CLIC machine and collaboration organisation Status: Feasibility studies and Conceptual Design Report (CDR) Physics Guidance, stages and energy ranges – the best possible machine Plans for 2012-16 and towards implementation Steinar Stapnes on behalf of the CLIC collaboration

description

The CLIC project. Brief overview of the CLIC machine and collaboration organisation Status: Feasibility studies and Conceptual Design Report (CDR) Physics Guidance, stages and energy ranges – the best possible machine Plans for 2012-16 and towards implementation - PowerPoint PPT Presentation

Transcript of The CLIC project

Page 1: The CLIC project

The CLIC project

• Brief overview of the CLIC machine and collaboration organisation

• Status: Feasibility studies and Conceptual Design Report (CDR) • Physics Guidance, stages and energy ranges – the best

possible machine • Plans for 2012-16 and towards implementation

Steinar Stapnes on behalf of the CLIC collaboration

Page 2: The CLIC project

The CLIC Layout

ICHEP Paris, July 24, 2010 2D. Schulte

Page 3: The CLIC project

140 ms train length - 24 24 sub-pulses4.2 A - 2.4 GeV – 60 cm between bunches

240 ns

24 pulses – 101 A – 2.5 cm between bunches

240 ns5.8 ms

Drive beam time structure - initial

Drive beam time structure - final

CLIC RF POWER SOURCE LAYOUT

Drive Beam Acceleratorefficient acceleration in fully loaded linac

Power Extraction

Drive Beam Decelerator Section (2 24 in total)

Combiner Ring 3

Combiner Ring 4

pulse compression & frequency multiplication

pulse compression & frequency multiplication

Delay Loop 2gap creation, pulse compression & frequency multiplication

RF Transverse Deflectors

CLIC Power Source Concept

3ICHEP Paris, July 24, 2010D. Schulte

Page 4: The CLIC project

Helsinki Institute of Physics (Finland)IAP (Russia)IAP NASU (Ukraine)IHEP (China)INFN / LNF (Italy)Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France)Jefferson Lab (USA)John Adams Institute/Oxford (UK)

Polytech. University of Catalonia (Spain)PSI (Switzerland)RAL (UK)RRCAT / Indore (India)SLAC (USA)Thrace University (Greece)Tsinghua University (China)University of Oslo (Norway)Uppsala University (Sweden)UCSC SCIPP (USA)

ACAS (Australia)Aarhus University (Denmark)Ankara University (Turkey)Argonne National Laboratory (USA)Athens University (Greece)BINP (Russia)CERNCIEMAT (Spain)Cockcroft Institute (UK)ETHZurich (Switzerland)FNAL (USA) Gazi Universities (Turkey)

John Adams Institute/RHUL (UK)JINR (Russia)Karlsruhe University (Germany)KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France)NIKHEF/Amsterdam (Netherland) NCP (Pakistan)North-West. Univ. Illinois (USA)Patras University (Greece)

The CLIC collaboration

CLIC multi-lateral collaboration41 Institutes from 21 countries

Page 5: The CLIC project

Structure of the project

CLIC/CTF3 Collab. Board

CLIC Steering CommitteeRepr. from accelerator and

detector/physics management structures

CLJC accelerator activities and management

Detector/Physics activities and management

Might interact with overall global LC consortium at some stage (CB and CSC)

CB: Every 6 months, links to WP update and status to provide active feedback/discussion basis to collaborators

Page 6: The CLIC project

CLIC Detector Issues

• Detector requirements are close to those for ILC detectors• First studies indicate that ILC performances are sufficient in many cases• Adapt ILD and SID concepts for CLIC• Close collaboration with validated ILC designs and work

• Differences to ILC• Larger beam energy loss• Time structure (0.5 ns vs. 738 ns)• Higher background due to:

• Higher energy• Smaller bunch spacing

• Other parameters are slightly modified• Crossing angle of 20 mradian (ILC: 14 mradian)

• Larger beam pipe radius in CLIC (30mm)• Denser and deeper calorimetry

• Linear Collider Detector study has been established at CERN beginning of 2009 (see http://www.cern.ch/lcd)

6

Page 7: The CLIC project

CLIC main parameters Centre-of-mass energy 500 GeV 3 TeV

Total (Peak 1%) luminosity 2.3(1.4)·1034 5.9(2.0)·1034

Total site length (km) 13.0 48.3

Loaded accel. gradient (MV/m) 80 100

Main linac RF frequency (GHz) 12

Beam power/beam (MW) 4.9 14

Bunch charge (109 e+/-) 6.8 3.72

Bunch separation (ns) 0.5

Beam pulse duration (ns) 177 156

Repetition rate (Hz) 50

Hor./vert. norm. emitt (10-6/10-9) 4.8/25 0.66/20

Hor./vert. IP beam size (nm) 202 / 2.3 40 / 1

Hadronic events/crossing at IP 0.19 2.7

Coherent pairs at IP 100 3.8 108

Wall plug to beam transfer eff 4.1% 5.0%

Total power consumption (MW) 240 560

Page 8: The CLIC project

Feasibility issues (some examples in the following slides): • Drive beam generation • Beam driven RF power generation • Accelerating Structures• Two Beam Acceleration• Ultra low emittances and beam sizes• Alignment • Vertical stabilization • Operation and Machine Protection System

CDRs: • Vol 1: The CLIC accelerator and site facilities (H.Schmickler)

• CLIC concept with exploration over multi-TeV energy range up to 3 TeV• Feasibility study of CLIC parameters optimized at 3 TeV (most demanding) • Consider also 500 GeV, and intermediate energy ranges

• Vol 2: The CLIC physics and detectors (L.Linssen)• Vol 3: CLIC study summary (S.Stapnes)

• Summary and input to the European Strategy process, including possible implementation stages for a CLIC machine as well as costing and cost-drives

• Proposing objectives and work plan of post CDR phase (2012-16)• Timescales:

• By end 2011: Vol 1 and 2 completed • Spring/mid 2012: Vol 3 ready for the European Strategy Open Meeting

Feasibility studies and the CDR

Page 9: The CLIC project

Fully loaded acceleration RF to beam transfer: 95.3 % measured.No issues found with transverse wakes in structures. Operation is routinely with full loading

Full commissioning of x 4 combiner ring

Drive beam current stability at the end of the fully loaded linac : better than CLIC specification: 0.75 10-3

1.2 us drive beam pulse

Key CTF3 feasibility milestones: drive beam generation

Page 10: The CLIC project
Page 11: The CLIC project

60 70 80 90 100 110 120 130

Unloaded gradient at CLIC 4*10-7 BDR and 180 ns pulse length

T18 – strong tapering

T18 – strong tapering

T18 – strong tapering (now with recirculation)

T18 – strong tapering (CERN built)

TD18 – waveguide damping

T24 – high efficiency

TD18 – waveguide damping

T24 – high efficiency

MV/m

1400

3900

550

1300

3200

280

600

conditioning time [hr]

Interrupted by earthquake in Japan

1570

Page 12: The CLIC project

Generations of structures

Page 13: The CLIC project

Gradient, BDR and pulse length

Page 14: The CLIC project

December 14, 2010:

Probe beam accelerated by 23 MV in a TD24 accelerating structure, corresponding to 106 MV/m, in a reproducible way.

Meas. PETS power input to structure ~ 80 MW (~200 MW in the resonant loop)

Drive beam: 12.5 A, 113 MV, 12 GHz in CLEX (1.5 GHz beam combined factor 8), 140 ns pulse length

Probe beam: 0.08 A, 173 MV, 1.5 GHz, 8 ns pulse length

2010: Two-beam acceleration with a gradient of 106 MV/m

Page 15: The CLIC project

Two Beam Test Stand (TBST) results 2011 Well established two beam acceleration experiments Calibration converging, structure correctly tuned Interesting breakdown studies started

2011 : CTF3 TBTS running for full after winter shut-down. Gradients of 110 – 130 MV/m are routinely reached (20% above CLIC target).

Very

pre

limin

ary,

RF p

arts

in e

arly

cond

itioni

ng p

hase

Blue

: all c

ompo

nent

s, O

rang

e: lim

ited

to s

truct

ures

Page 16: The CLIC project

Experimental results on vertical nano stabilization

Design, hardware and methods are being developed.Methods: Stabilization (mechanical filters), beam-based feedback and vibration sensor based feed-forward used

No dynamic imperfections (but budget for static ones used fully) L = 120% (20% overhead for dynamic effects)

CMS-based ground motion model (hall floor) L = 53%

Plus transfer function of tested system L = 108%

Plus transfer function of system that will be developed L = 118%

Page 17: The CLIC project

DR: comparison to other projects

• CLIC requirements close to new generation synchrotron light sources (Operation- Projects)

• CLIC 500 GeV similar as ILC and demonstrated in ATF/KEK (normalized emittance)

• CLIC 3 TeV similar as PEPX/SLAC project.• Close collaboration with ATF/KEK (small

emittances) and CESRTA/Cornell (electron clouds)

Emittance conservation a challenges: • For example, CLIC main linac design fulfills

emittance requirements. Tight, but feasible component specification

Page 18: The CLIC project

18

Tunnel implementations (laser straight)

Central Injector complex

Central MDI & Interaction Region

Page 19: The CLIC project

Linear Collider Detector project @ CERNLCD: addressing physics and detectors at CLIC and ILC

Europe

Americas

Asia

CERN

Current focus: Preparation of conceptual design report for CLIC detectors => developed into a truly international effort in 2010

Experimental issues for a CLIC experiment now well understood, and detector geometries for the CLIC benchmark studies were fixed

Affiliation of CLIC CDR editors

Beam test with a tungsten-based HCAL for linear collider, CALICE collaboration

Page 20: The CLIC project

CLIC energy scans (for a single stage)

Requirement from physics : vary the c.m. energy for a given CLIC machine. Main options :• Early extraction lines : significant hardware modifications needed• Reduce gradient : disadvantage: need to scale down bunch charge linearly with gradient for

stability, leading to a significant luminosity loss (green)• CLIC drive beam scheme: gradient can be reduced while increasing pulse length. A large

fraction of the luminosity loss is recovered (black). Modifications to drive beam generation are minimal.

Lower gradient can be achieved by switching of phase of incoming drive beam bunches :

Drive beam energy after extraction

Page 21: The CLIC project

There are limits to the CLIC performance (luminosity) during an energy scan

Page 22: The CLIC project

What is the physics ?- some production cross-sections -

One of many possible models for new physics

SM physics, for example top studies should not be forgotten (not included in this plot)

Or whatever your favorite model is …

Page 23: The CLIC project

CLIC energy staging

3 TeV StageLinac 1 Linac 2

Injector Complex

I.P.

3 km20.8 km 20.8 km 3 km

48.2 km

Linac 1 Linac 2

Injector Complex

I.P.

7.0 km 7.0 km

1 TeV Stage

0.5 TeV Stage

Linac 1 Linac 2

Injector Complex

I.P.

4 km

~14 km

4 km

~20 km

CLIC two-beam scheme compatible with energy staging to provide the optimal machine for a large energy range

Lower energy machine can run most of the time during the construction of the next stage.Physics results will determine the energies of the stages.

Optimization need to take into many account many others parameters: performance and luminosities at various energies, costs, construction and commissioning times, manufacturing/re-use/move of components, etc

The drive beam setups can deal with various stages of the machine

Page 24: The CLIC project

CLIC implementation questions• Many questions:

• Waiting for physics guidance: Current trend are increasing limits on squark/gluino masses (but loop holes exist) – and currently no information about other SUSY particles (can be much lighter in some models) or Higgs (Standard Model or several)– Any wiser after summer conferences ? – Benefits of running close to thresholds versus at highest energy, and distribution of luminosities as

function of energy – We assume that we have to be sensitive from a light Higgs threshold (~200 GeV) to multi-TeV, in several

stages • What are the integrated luminosities needed and what it is the flexibility needed within a stage

– Interested in looking in more detail for at least one model in order to make sure the machine implementation plan can cope with whatever will be needed

– Complementarity with LHC a key • What are reasonable commissioning and luminosity ramp up times ?

– LHC will need 3 years to get to 50 fb-1 and collects ~50 fb-1/year at 1034 (roughly) • How would we in practice do the tunneling and productions/installation of parts in a multistage approach

– Cheapest (overall) to do in one go but we don’t know final energy needed, and it is likely that we can make significant technical process before we get to stage 3 (or even 2?)

– Timescales for getting into operation, and getting from one stage to another

• Answers are possible but must be found based on all available information at the time the project is launched

Page 25: The CLIC project

2011-2016 – Goal: Develop a project implementation plan for a Linear Collider :• Addressing the key physics goals as emerging from the LHC data • With a well-defined scope (i.e. technical implementation and operation model, energy and luminosity), cost and schedule• With a solid technical basis for the key elements of the machine and detector• Including the necessary preparation for siting the machine at CERN • Within a project governance structure as defined with international partners

After 2016 – Project Implementation phase:• Including an initial project to lay the grounds for full construction (CLIC 0 – a significant part of

the drive beam facility) • Finalization of the CLIC technical design, taking into accoun the results of technical studies done

in the previous phase, and final energy staging scenario based on the LHC Physics results, which should be fully available by the time

• Further industrialization and pre-series production of large series components with validation facilities

CLIC next phases

Final CLIC CDR andfeasibility established

European Strategyfor Particle Physics @ CERN Council

Page 26: The CLIC project

The next steps – focusing points

Define the scope, strategy and cost of the project implementation. Main input:• The evolution of the physics findings at LHC and other relevant data • Findings from the CDR and further studies, in particular concerning minimization of the technical risks, cost, power as well as the

site implementation.• A Governance Model as developed with partners.

In order to achieve the overall goal for 2016 the follow four primary objectives for 2011—16 can defined: These are to be addressed by activities (studies, working groups, task forces) or work-packages (technical developments, prototyping and tests of single components or larger systems at various places)

Define and keep an up-to-date optimized overall baseline design that can achieve the scope within a reasonable schedule, budget and risk. • Beyond beam line design, the energy and luminosity of the machine, key studies will address stability and alignment, timing and

phasing, stray fields and dynamic vacuum including collective effects. • Other studies will address failure modes and operation issues.

Indentify and carry out system tests and programs to address the key performance and operation goals and mitigate risks associated to the project implementation. • The priorities are the measurements in: CTF3+, ATF and related to the CLIC Zero Injector addressing the issues of drivebeam

stability, RF power generation and two beam acceleration, as we as the beam delivery system. (other system tests to be specified)

(technical work-packages and studies addressing system performance parameters)

Develop the technical design basis. i.e. move toward a technical design for crucial items of the machine and detectors, the MD interface, and the site. • Priorities are the modulators/klystrons, module/structure development including testing facilities, and site studies.

(technical work-packages providing input and interacting with all points above)

Page 27: The CLIC project

Summary table• Full info (as of end May):https://indico.cern.ch/getFile.py/access?contribId=10&resId=0&materialId=slides&confId=134291

R. Corsini, CLIC Project Meeting1st June2011

TE Name Material [MCHF] Personnel [FTE years]General CLIC-001 CLIC General 6 33

Project Implementation Civil Engineering & Services 0.8 12

Scope. Cost. Power Project Implementation Studies

Beam Physics BPH-BASE Integrated Baseline Design 4.3 232

Beam physics and machine parameters

BPH-LUMI Integrated Dynamic Studies

BPH-BCKG Background

BPH-POL Polarization

BPH-MP Machine Protection & Operational Scenarios

BPH-SRC E Main beam source, e-

BPH-SRC P Main beam source, e+

BPH-DR Damping Rings

BPH-RTML Ring-To-Main-Linac

BPH-ML Main Linac - Two-Beam Acceleration

BPH-BDS Deam Delivery System

BPH-DRV Drive Beam Complex

Beam & System Tests CTF3-001 CTF3 Consolidation & Upgrades 45.5 269

CTF3+ and CLIC zero, other system-tests

CTF3-002 Drive Beam phase feed-forward and feedbacks

CTF3-003 TBL+, X-band high power RF production & structure testing

CTF3-004 Two-Beam module string, test with beam

CLIC0-001 CLIC 0 drive-beam front end facility (includin Photoinjector option)

BTS-001 Accelerator Beam System Tests (ATF, Damping Rings, FACET,…)

BTS-002 Sources Beam System Tests

Technical Systems CTC-001 DR SC Wiggler 42.6 314

Technical design and prototypes of critical

components

CTC-002 Survey & Alignment

CTC-003 Quad Stability

CTC-004 Two-Beam module development

CTC-005 Warm Magnet Prototypes

CTC-006 Beam Instrumentation

CTC-007 Machine-Detector Interface (MDI) activities

CTC-008 Beam Disposal (post-collision line & dumps)

CTC-011 Controls

CTC-012 RF Systems (1 GHz klystrons & DB cavities, DR RF)

CTC-013 Powering (Modulators, magnet converters)

CTC-014 Vacuum Systems

CTC-015 Magnetic stray Fields Measurements

CTC-016 DR Exctraction System

RF RF-DESIGN X-band Rf structure Design 40.0 211

RF components and test-facilities

RF-XPROD X-band Rf structure Production

RF-XTESTING X-band Rf structure High Power Testing

RF-XTESTFAC Creation and Operation of x-band High power Testing Facilities

RF-R&D Basic High Gradient R&D & Outreach

XTBA-FAC Creation of an “In-House” TBA Production Facility

RF-MISC Miscellaneous RF

Total 139.1 1071

Present Status:• Work-program organized in WPs covering from hardware (very straight-

forward WPs) to working-groups (attempt to also describe as WPs)• Description of work-packages in some detail done (see following example)

• Mainly top-down, but input from CERN groups and collaborators in several areas

• All past collaborators have expressed interest to continue• New collaborators have been contacted and are getting involved (in

Germany, US, Russia, Belarus, UK, Spain ...)• Material and personnel profiles over 2012-2016 are reasonable agreement

with expected resources • Some cuts in material budget already implemented• Still need a 20-30% reduction

• Expect to converge by end of 2011 – plan collaboration workshop in November as an important event towards final plan

Page 28: The CLIC project

RF structures & High-power tests

• Basic feasibility ~ OK (for both accelerating structures & PETS)

Goals for the next phase (2011-2016):

• Implement full features (damping material, wake-field monitors, vacuum, cooling, PETS on-off …)

• Increase statistics, long-term running

• Optimization of fabrication techniques for cost/performance

• Start industrialization/large-series production

• Explore potential for further improvements

CLIC

tar

get puls

e

Typical RF pulse shape in ASTA during the last 125h of operation

PETS @ASTA - SLAC, klystron powered

PETS @ CTF3 – TBTS, beam powered

BDR <1.2 x 10-7/pulse/PETS

R. Corsini, CLIC Project Meeting1st June2011

Page 29: The CLIC project

WP: RF-xprod Purpose/Objectives/Goals Deliverables Schedule

Task 1: Construction of baseline accelerating structures

Test structures for statistical and long term high-power testing with all damping features and high power couplers (for SATS and Test modules in CLEX) we have to make sure that we count all the structures. including those for the CLEX modules

3 generations of test structures, total quantity 48, total cost ~6 MCHF.

12 in 201324 in 201512 in 2016

Task 2: Supply of small series development prototypes and/or medium power test structures

Test structures for full features (4), wakefield monitor equipped (4), optimized high-power design (8), different machine energy optima (4), optimized process (8), develop DDS (2) and choke (2), compressor (2)

Typically 12 variants in series of 4 structures each, total quantity 40, total cost ~6 MCHF.

8 structures per year

Task 3: Supply baseline PETS (note: most PETS fabrication accounted elsewhere, e.g. TBL)

PETS for statistical and long term high-power testing 4 PETS, total cost 0.2 MCHF. 3 in 20131 in 2015

Task 4: PETS for ON/OFF testing PETS for on/ off test 2 generations 0.1 MCHF

Task 5: Alternative fabrication method

Explore alternative fabrication methods Structure fabricated with alternative procedure

2012-2016

Task 5: Baseline to pre-series development

Take the fully tested x band rf systems and evolve their production techniques to an industrialized process

2015 onwards

Resources: 2011 2012 2013 2014 2015 2016 Total

Material breakdown - - - - - -

Personnel (CERN or elsewhere)

- - - - - -

Example of activity: X-band Rf structure production

Page 31: The CLIC project

Summary

• CDR underway and good progress on feasibility issues • Increased focus on ensuring the machine can be adapted to

running a several energies and be implemented in stages to provide physics as quickly and efficiently as possible

• Plans 2011-2016 formulated towards implementation plan – resources situation reasonable thanks to collaborative efforts

• CLIC organization adapted to new phase, being implemented now

Page 32: The CLIC project

Combined ILC/CLIC working groups

+ General issues groups for accelerator, chairs M. Harrison (ILC)/P. Lebrun (CLIC)

Page 33: The CLIC project

Activity Description Deliverables (2016) Material budget

Proj. Implementation, scope, cost studies, site, physics reach

Update and improve CLIC cost model & civil engineering studies

• Technical Design (TD) and Project Implementation Plan (PIP) of CLIC Zero• Improved cost model, feedback to CLIC baseline review, site studies

See next slides

Beam physics studies Beam physics and overall design

• Review of the CLIC baseline design • Beam dynamics studies for each area and overall – stability/alignment, timing and phasing, stray

fields … • Studies towards CLIC Zero

CTF3 + CTF3 consolidation and upgrade

• Consolidation and upgrade (higher energy, stability, reliability)• Drive beam phase feed-forward experiments• Upgrade and operate TBL as 12 GHz power production facility• Operation with beam for several CLIC two-beam modules

CLIC Zero Injector for the CLIC drive beam generation complex

• Build and commission 30 MeV Drive Beam injector with nominal CLIC parameters• Build and commission a few Drive Beam accelerator nominal modules• Participation to Technical Design of full CLIC Zero facility

RF Structures Design and fabrication of 12 GHz accelerating structures & PETSand associated R&D

• Build and test close to 100 accelerating structures• Build and test about 10 PETS prototype• Establish manufacturing experience, quality control, brazing and assembly procedures for

structure fabrication at CERN

RF test infrastructure Building, commissioning and operation of high-power RF test stands

• Six 12 GHz klystron-based RF high-power test stations, for about 12 slots, running before 2016• Continue high-power testing at 11.4 GHz (KEK and SLAC)• Contribution to high-power testing in CTF3+ (TBL)

Prototypes of critical components

Technical R&D – design, build and test prototypes of CLIC critical components

• Alignment • Quadrupole stabilization system• Several nominal CLIC two-beam modules, mechanically tested, beam tested• R&D and prototyping of critical beam instrumentation• Design and studies of machine protection system• DR technologies , e.g. superconducting wiggler prototypes, test with beam, extraction kickers

prototypes• Warm magnet prototypes• MDI and Post collision lines and beam dumps• Controls • DB RF system and powering

Preliminary