The “Checklist” - 3b. Estimation blending and assessing - Bayesian estimation

14
The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimation Bayesian estimation When the data are invariants εt (1b.3), hence i.i.d. variables, the joint distribution is the product of the distribution of the invariants f (i|θ)= f (1|θ) ··· f (¯ t |θ) (2b.36) We want to estimate θ and get the predictive distribution (24.7) for the invariants εt at time t> ¯ t. The invariants are independent only conditionally on the parameters. However unconditionally they are dependent. Example: conditional independency ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

Transcript of The “Checklist” - 3b. Estimation blending and assessing - Bayesian estimation

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimation

Bayesian estimation

• When the data are invariants εt (1b.3), hence i.i.d. variables, the jointdistribution is the product of the distribution of the invariants

f(i|θ) = f(ε1|θ) · · · f(εt|θ) (2b.36)

• We want to estimate θ and get the predictive distribution (24.7) forthe invariants εt at time t > t.

• The invariants are independent only conditionally on the parameters.However unconditionally they are dependent.

Example: conditional independency

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationExponential family invariants

Exponential family invariants

Consider a sample of invariants (i.i.d.) {εt}tt=1 in the exponential family(23.16). Then, the conditional likelihood (23.3)

f(ε1, . . . , εt|θ)i.i.d.= f(ε1|θ) · · · f(εt|θ) = et(θ

′η−ψ(θ)+ln h) (2b.40)

where ln h ≡ 1t

∑tt=1 lnh(εt) and

η ≡ 1

t

t∑t=1

φ(εt) (2b.41)

is still an exponential family with log partition function tψ(·) and featurestη.

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationExponential family invariants

Prior and posterior distributions• The conjugate prior distribution (24.18) reads

Θ|tηpri ,νprit∼ Conj (tψ (·) , tηpri ,

νprit

) = Conj (ψ (·) ,ηpri , νpri)

(2b.42)where ηpri and νpri are pre-specified parameters

• The posterior for θ (24.6) reads

Θ|tηpos ,νpost∼ Conj (tψ (·) , tηpos ,

νpost

) = Conj (ψ (·) ,ηpos , νpos)

(2b.43)with new parameters

ηpos ≡νpri

νpri + tηpri +

t

νpri + tη, νpos ≡ νpri + t (2b.44)

• The MAP estimator (24.9) reads

θMAP = (∇θψ)−1(ηpos) (2b.45)

• The shrinkage relationship holds

E{φ(X)} = ηlow confidence ν

pri←− ηpos

high confidence νpri−→ ηpri (2b.46)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationExponential family invariants

Predictive distribution

The predictive distribution (24.7) is given by

f(εt|ε1, . . . , εt) ≡∫f(εt|θ)fψ(θ|ηpos , νpos)dθ

=g(ηpos , νpos)h(εt)

g( 11+νpos

φ(εt) +νpos

1+νposηpos , 1 + νpos)

, t > t (2b.47)

where fψ(θ|ηpos , νpos) is the density function of Conj (ψ (·) ,ηpos , νpos) and gis defined as in (23.18).

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationExponential family invariants

Bayesian estimation

Model (likelihood) Normal εt|µ,σ2 ∼ N (µ,σ2)

Prior NIW

{M |σ2 ∼ N (µpri ,

1tpriσ2)

(Σ2)−1 ∼Wishart(νpri ,1νpri

(σ2pri)−1)

Posterior NIW

{M |σ2 ∼ N (µpos ,

1tposσ2)

(Σ2)−1 ∼Wishart(νpos ,1νpos

(σ2pos)−1)

Predictive t εt|(ε1, . . . , εt) ∼ t(νpos ,µpos ,tpos+1

tposσ2

pos), t > t

Table 2b.4. NIW model for Bayesian estimation of location and dispersion

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationConditional likelihood

Conditional likelihood

Suppose that the i.i.d. invariants εt (1b.3) are (conditionally) multivariatenormal

εt|µ,σ2 ∼ N (µ,σ2) (2b.37)

Then the conditional likelihood (2b.36) reads

f(i|µ,σ2) = (2π)−ıt2 |σ2|

−t2 e−

t2

[tr(σ2(σ2)−1)+(µ−µ)′(σ2)−1(µ−µ)] (2b.40)

where i ≡ {ε1, . . . , εt},

µ ≡ 1t

t∑t=1

εt (2b.38)

is the sample mean, and

σ2 ≡ 1t

t∑t=1

(εt − µ)(εt − µ)′ (2b.39)

is the sample covariance.

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPrior distribution

Prior distribution

In the Bayesian framework, the parameters θ ⇔ (µ,σ2) are realizations ofthe random variables Θ⇔ (M ,Σ2).The prior distribution (24.4) for (M ,Σ2) is the normal-inverse-Wishart(NIW) distribution, i.e.

(Σ2)−1 ∼Wishart(νpri ,1

νpri(σ2

pri)−1) (2b.41)

where σ2pri is an ı× ı symmetric and positive matrix and νpri is a positive

scalar; and

M |σ2 ∼ N (µpri ,1

tpriσ2) (2b.42)

where µpri is an ı× 1 vector and tpri is a positive scalar.The marginal distribution of M is Student t

M ∼ t(νpri ,µpri ,1

tpriσ2

pri) (2b.43)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPrior distribution

Location and dispersion of the prior distribution

• The expectation of ME{M} = µpri (2b.44)

• The covariance of M

Cv{M} =νpri

νpri − 2

1

tpriσ2

pri (2b.45)

• The expectation of (Σ2)−1

E{(Σ2)−1} = (σ2pri)−1 (2b.46)

• The covariance of (Σ2)−1

Cv{(Σ2)−1} =1

νpri(Iı2 + Kı,ı)((σ2

pri)−1 ⊗ (σ2

pri)−1) (2b.47)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPrior distribution

Example 2b.13. Normal-inverse-Wishart prior distribution

• σ2pri , νpri , µpri , tpri varying.

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPosterior distribution

Posterior distribution

The posterior (24.6) is also normal-inverse-Wishart

(Σ2)−1 ∼Wishart(νpos ,1

νpos(σ2

pos)−1) (2b.48)

andM |σ2 ∼ N (µpos ,

1

tposσ2). (2b.49)

The unconditional posterior of M is also Student t

M ∼ t(νpos ,µpos ,1

tposσ2

pos). (2b.50)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPosterior distribution

Posterior distribution

The posterior expectation µpos reads

µpos =tpri

tpri + tµpri +

t

tpri + tµ (2b.51)

The posterior dispersion parameter σ2pos reads

σ2pos =

νpriνpri + t

σ2pri +

t

νpri + tσ2

+1

(νpri + t)( 1t

+ 1tpri

)(µpri − µ)(µpri − µ)′ (2b.52)

The parameter tpos istpos = tpri + t (2b.53)

The parameter νpos isνpos = νpri + t (2b.54)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationPosterior distribution

Example 2b.14. Normal-inverse-Wishart posterior distribution

• νpri , tpri , t varying.

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationClassical equivalent

Classical equivalent

The classical equivalents (24.8) of the location parameter M and thedispersion parameter Σ2 satisfy the shrinkage effect (24.13)

µlarge dataset t←− µcl_eq = µpos

high confidence tpri−→ µpri (2b.67)

andσ2 large dataset t←− σ2

cl_eq = σ2pos

high confidence νpri−→ σ2pri (2b.68)

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update

The “Checklist” > 2b. Estimation: blending and assessing > 2b.2. Bayesian estimationUncertainty

Uncertainty

• The uncertainty of the expectation estimate (24.10) reads

s2µ =

νpostpos(νpos − 2)

σ2pos (2b.66)

• The uncertainty of the covariance estimate (24.10) reads

s2σ2 = 1

νpos(Iı2 + Kı,ı)((σ2

pos)−1 ⊗ (σ2

pos)−1) (2b.67)

where Kı,ı is the ı2 × ı2 commutation matrix (E.27.212).

ARPM - Advanced Risk and Portfolio Management - arpm.co This update: Apr-21-2017 - Last update