The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

31
NTU GIEE NanoSiOE RT O RTCV D pol y RTCV D nitride Clean Module Load lock ellipso- m eter foup The Characteristics and The Characteristics and Simulations of Si/SiGe Simulations of Si/SiGe Heterojunction at Strained-Si Heterojunction at Strained-Si Devices Devices 指指指指 指指指 指指 指指 指指指 指指指指指指指指指指指指

description

The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices. 指導教授:劉致為 博士 學生:魏潔瑩 台灣大學電子工程學研究所. Outline. Introduction Introduction to Si-based Heterostructure Device Fabrication Simulation and Result Discussion Conclusion. Technology Scaling. - PowerPoint PPT Presentation

Transcript of The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

Page 1: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

The Characteristics and Simulations of The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Si/SiGe Heterojunction at Strained-Si

DevicesDevices

指導教授:劉致為 博士學生:魏潔瑩

台灣大學電子工程學研究所

Page 2: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

OutlineOutline

• Introduction

• Introduction to Si-based Heterostructure

• Device Fabrication

• Simulation and Result Discussion

• Conclusion

Page 3: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

How much more scaling is left?

• New technology generation introduced every 3 or 2 years. (0.18um, 0.13um, 90nm,.… )

• Scaling improves cost and performance-- leading to new applications and growth.

•Question:Question:

Technology ScalingTechnology Scaling

Page 4: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Smaller FET Needs Thinner Gate OxidesSmaller FET Needs Thinner Gate OxidesThe conduction channel must be controlled by the gate, not byThe drain. As L is reduced, drain-to-channel capacitance increases.Therefore, gate-to-channel capacitance must also be raised,i.e., oxide must be thinner.

1975: 100nm, 2003: 1.2nm. How much thinner can it get?

Gate

Oxide

Source Drain

Cg

Cd

L

Ref [1]

Page 5: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

12Å Gate Oxide -- 3 SiO12Å Gate Oxide -- 3 SiO2 2 molecules thickmolecules thick

Ref [1]

Page 6: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

High-k Dielectrics Reduce Gate High-k Dielectrics Reduce Gate LeakageLeakage

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.0

Jg (

A/c

m2 )

1.5 2.0 2.5

Effect Oxide Thickness (nm)

Jg reduction > 6 orders

SiO2

High-k Dielectric

High-kDielectric

Gate

Ref [1]

Page 7: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

II mobility x charge mobility x charge = mobility x ( V-V = mobility x ( V-Vt t ) / T) / Toxox

• In order to reduce power use, V is reduced and Vt and Tox are kept large. Unfortunately, I drops.

• Large I is needed to keep circuit speed high.

• What is needed : high mobility material

Page 8: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

OutlineOutline

• Introduction

• Introduction to Si-based Heterostructure

• Device Fabrication

• Simulation and Result Discussion

• Conclusion

Page 9: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Lattice Structure and Heterostructures Lattice Structure and Heterostructures

Ref [2]

Page 10: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Strained Silicon TransistorStrained Silicon Transistor

Tensile strain can

increase silicon electron

holes mobilities.

Need strained silicon film

with low defect density at

low cost.

Strained Si

Si1-x Gex

Si

Graded SiGeRegion

Si Substrate

RelaxedSiGe

20nmStrained Si

Ref [1]

Page 11: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

The Effect of Strain on Si The Effect of Strain on Si Conduction BandConduction Band

Ref [2]

Page 12: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Band Alignment between Si and Band Alignment between Si and SiSi0.70.7GeGe0.3 0.3

1% Ge = 6meV for CB and VB

Ref [3]

Page 13: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Effective Mobility of Strained-SiEffective Mobility of Strained-Si

μ= eτ/ m*

τ= scattering time constant

m*=effective mass

65% enhancementat 1.0 MV/cm

Ref [4]

Page 14: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

OutlineOutline

• Introduction

• Introduction to Si-based Heterostructure

• Device Fabrication

• Simulation and Result Discussion

• Conclusion

Page 15: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

The Structure of the surface-channel The Structure of the surface-channel Strained-Si n-MOSFETStrained-Si n-MOSFET

• 0.8 μm design rule

• 100 mm-wafer line

• ~1 μm graded SiGe buffer layer

• ~1 μm uniform relaxed Si0.8Ge0.2

• 12-24nm strained layer thickness

are grown by UHV/CVD

• 20 nm LTO as gate oxide

• Dit = 1E11 cm-2eV-1

Ref [5]

Page 16: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

OutlineOutline

• Introduction

• Introduction to Si-based Heterostructure

• Device Fabrication

• Simulation and Result Discussion

• Conclusion

Page 17: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

ParametersParameters

• χSS = 4.05 + 0.6x• Eg,SS = 1.12 - 0.4x• εr, SS = 11.8• χSiGe = 4.05• Eg,SiGe = 1.12 - 0.4x• εr, SiGe = 11.8 + 4.2x x : Ge content, χ: affinity, Eg : bandgap energy, SS : strained-Si

Simulator: ISE TCAD 8.5 DESSIS

Page 18: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Structure and Band Diagram of Structure and Band Diagram of Strained-Si/SiGe/Si MOS CapacitorStrained-Si/SiGe/Si MOS Capacitor

Al

oxide 20 nm

strained-Si

relaxed-Si1-xGex

1000 nm

graded-Si1-xGex

1000 nm

Si substrate

VG

GND

EV EC

Not to Scale

Page 19: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Simulated Band Diagrams for Simulated Band Diagrams for Different Gate BiasesDifferent Gate Biases

0.00 0.01 0.02 0.03 0.04 0.05-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

EF- pinning

(a)

VG= -2V

VG= -1V

NMOS capacitor

EF

Ener

gy [e

V]

Depth [um]0.00 0.01 0.02 0.03 0.04 0.05

-1.0-0.8-0.6-0.4-0.20.00.20.40.60.81.0

(b)

VG= 0V

VG= -0.5V

PMOS capacitor

EF

Ener

gy [e

V]

Depth [um]

Page 20: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Measured and Simulated Measured and Simulated Quasi Static C-V CharacteristicsQuasi Static C-V Characteristics

-5 -4 -3 -2 -1 0 1 2 3 4

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1(a)

Ge=20%

NMOS capacitor

C/Co

x

VG [V]

fitting data

-5 -4 -3 -2 -1 0 1 2 3 4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1(b)

PMOS capacitor

Ge=20%

C/Co

x

VG[V]

fitting data

Page 21: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Measured NMOS Capacitor C-V wiMeasured NMOS Capacitor C-V with Different Strained-Si Thicknessth Different Strained-Si Thickness

-2 -1 0 1 260.0n

80.0n

100.0n

120.0nNMOS capacitor

Strained-Sithickness

12 nm 18 nm 24 nm

Cap

acit

an

ce [

F/c

m2 ]

VG [V]

Page 22: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Simulated NMOS Capacitor C-V wiSimulated NMOS Capacitor C-V with Different Strained-Si Thicknessth Different Strained-Si Thickness

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.50.4

0.5

0.6

0.7

0.8

0.9

1.0

NMOS capacitor

C

/Co

x

VG

[V]

tsi = 10nm

tsi = 20nm

tsi = 30nm

Page 23: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Simulated NMOS Capacitor C-V as Simulated NMOS Capacitor C-V as A Function of Ge Content A Function of Ge Content

-4 -3 -2 -1 0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1NMOS capacitor

C

/Co

x

VGS

[V]

Ge=10% Ge=20% Ge=30%

Page 24: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Simulated Energy Band Diagram for DiffeSimulated Energy Band Diagram for Different Ge Content in PMOS Capacitorrent Ge Content in PMOS Capacitor

0.00 0.01 0.02 0.03 0.04 0.05-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

VG = -1V

EF

PMOS capacitor

E

ner

gy

[eV

]

Depth [um]

Ge = 30% Ge = 20%

Page 25: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Hole Density Ratio in Strained-Si Hole Density Ratio in Strained-Si

10 15 20 25 30 35 4010-1

100

101

102

103

104

105

106

10710 15 20 25 30 35 40

VG-V

T= -1V

tSi with Ge=20%

Ge with tsi=20nm

nFET

pFET

VG-V

T=1V

strained-Si thickness [nm]

s

urf

ac

e /

bu

rie

d c

ha

nn

el

ho

le d

en

sit

y r

ati

o

Ge [%] in the relaxed SiGe

Page 26: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Asymmetric Strain Asymmetric Strain

Page 27: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

Simulated Current Enhancement in Simulated Current Enhancement in Asymmetric Strain Asymmetric Strain

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.50.98

0.99

1.00

1.01

1.02

1.03

1.04

1.05Asymmetric strain

cu

rren

t en

han

cem

ent(

rati

o)

Vd

2_region(30,10)

Page 28: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

OutlineOutline

• Introduction

• Introduction to Si-based Heterostructure

• Device Fabrication

• Simulation and Result Discussion

• Conclusion

Page 29: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

ConclusionConclusion

• Due to Fermi level pinning effect, the C-V characteristics in NMOS capacitor exhibits a more obvious plateau than in PMOS capacitor.

• Less Ge content and larger strained layer thickness must be chosen to sustain enough great inversion hole density ratios in strained-Si pMOSFET.

Page 30: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

• Since more strain and thinner strained layer are taken to keep mobility enhancement, the compromise must be made.

• Modeling of hole confinement on the C-V characteristics in strained-Si must be investigated.

Page 31: The Characteristics and Simulations of Si/SiGe Heterojunction at Strained-Si Devices

NTU GIEE NanoSiOE

RTO

RTCVDpol

y

RTCVDnitride

CleanModule

Loadlock

ellipso-meter

foup

ReferenceReference

[1] Chenming Hu, IEDMS 2002 presentation.[2] Kern Rim, Ph. D. dissertation 1999.[3] J. J. Welser, Ph. D. dissertation 1994.[4] M. H. Lee et al., “Comprehensive Low-Fre

guency and RF Noise Characteristics in Strained-Si NMOSFETs”, IEDM 2003.

[5] C. C. Lee et al., ”The effects of mobility and saturation velocity on deep submicron strained Si NMOSFETs,” IDEMS, 2002.