The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle...

21
The Binomial Theorem

Transcript of The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle...

Page 1: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

The Binomial Theorem

Page 2: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Expansion of Binomials

0

1

2 2 2

3 3 2 2 3

4 4 3 2 2 3 4

5 5 4 3 2 2 3 4 5

( ) 1

( )

( ) 2

( ) 3 3

( ) 4 6 4

( ) 5 10 10 5

x y

x y x y

x y x xy y

x y x x y xy y

x y x x y x y xy y

x y x x y x y x y xy y

Page 3: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Binomial Expansion Coefficients

Pascal’s Triangle

Row

1 0

1 1 1

1 2 1 2

1 3 3 1 3

1 4 6 4 1 4

1 5 10 10 5 1 5

Page 4: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Binomial Coefficient

nr

nC

r

Page 5: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

n-Factorial or n!

n-Factorial

For any positive integer n,

and

! ( 1)( 2) (3)(2)(1),

0! 1 .

n n n n

Example Evaluate (a) 5! (b) 7!

Solution (a)

(b)

5! 5 4 3 2 1 120

7! 7 6 5 4 3 2 1 5040

Page 6: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Simplifying r!

2!

3!

4!

3!

! ( 1)( 2)...3 2 1r r r r

7! 7 6 5 4 3 2 1

!

!

n

n

4

11

3

Page 7: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Simplifying

( 2)!

( 3)!

n

n

( 5)!

( 4)!

n

n

( 2)n

1

( 4)n

Page 8: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Simplifying

3

4

2

2

n

n

3

2

2

2 2

2

Page 9: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Binomial Coefficient

• The symbols and for the binomial

coefficients are read “n choose r”

• The values of are the values in the nth

row of Pascal’s triangle.

So is the first number in the third row

and is the third.

n rCn

r

n

r

3

0

3

2

Page 10: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Binomial Coefficient

Binomial Coefficient

For non-negative integers n and r, with r < n,

!

!( )!n

r

n nC

r r n r

Page 11: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Formulae

!

! !

n n

r r n r

( 1)( 2)...( 1)

!

n n n n n r

r r

Factorial Formula

Multiplicative Formula

Page 12: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Evaluating Binomial Coefficients

Example Evaluate (a) (b)

Solution

(a)

(b)

6

2

8

0

6 6! 6! 6 5 4 3 2 115

2 2!(6 2)! 2!4! 2 1 4 3 2 1

8 8! 8! 8!1

0 0!(8 0)! 0!8! 1 8!

Page 13: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

The Binomial Theorem

Binomial Theorem

For any positive integers n,

1 2 2 3 3

1

( )1 2 3

... ...1

n n n n n

n r r n n

n n nx y x x y x y x y

n nx y xy y

r n

Page 14: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Applying the Binomial Theorem

Example Write the binomial expansion of .

Solution Use the binomial theorem

9( )x y

9 9 8 7 2 6 3

5 4 4 5 3 6 2 7

8 9

9 9 9( )

1 2 3

9 9 9 9

4 5 6 7

9

8

x y x x y x y x y

x y x y x y x y

xy y

Page 15: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Applying the Binomial Theorem

9 9 8 7 2 6 3

5 4 4 5 3 6 2 7

8 9

9 8 7 2 6 3 5 4 4 5

3 6 2 7 8 9

9! 9! 9!( )

1!8! 2!7! 3!6!9! 9! 9! 9!

4!5! 5!4! 6!3! 7!2!9!

8!1!

9 36 84 126 126

84 36 9

x y x x y x y x y

x y x y x y x y

xy y

x x y x y x y x y x y

x y x y xy y

Page 16: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Applying the Binomial Theorem

Example Expand .

Solution Use the binomial theorem with

and n = 5,

5

2

ba

2 35 5 4 3 2

4 5

5 5 5( )

1 2 32 2 2 2

5

4 2 2

b b b ba a a a a

b ba

,2

bx a y

Page 17: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Applying the Binomial Theorem

Solution

2 35 5 4 3 2

4 5

5 4 3 2 2 3 4 5

( ) 5 10 102 2 2 2

52 2

5 5 5 5 1

2 2 4 16 32

b b b ba a a a a

b ba

a a b a b a b ab b

Page 18: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

r th Term of a Binomial Expansion

rth Term of the Binomial Expansion

The rth term of the binomial expansion of (x + y)n,

where n > r – 1, is

( 1) 1

1n r rnx y

r

Page 19: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Finding a Specific Term of a Binomial Expansion.

Example Find the fourth term of .

Solution Using n = 10, r = 4, x = a, y = 2b in the

formula, we find the fourth term is

10( 2 )a b

7 3 7 3 7 310(2 ) 120 8 960 .

3a b a b a b

Page 20: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Pg 130 E.g 11(a)Find, in ascending powers of x, the 1st 4 terms of

the expansion (1+2x)n, where n > 2. Given that the coefficients of x3 and x2 are in the ratio 14 : 3, find n.

( 1)( 2)...( 1)

!

n n n n n r

r r

Using Multiplicative Formula:

2 3(1 2 ) 1 (2 ) (2 ) (2 ) ...1 2 3

n n n nx x x x

3

2

(2)3 14

3(2)

2

n

n

2 ( 1)( 2) ( 1) 14

3! 2! 3

n n n n n

2 ( 1)( 2) 2! 14

3! ( 1) 3

n n n

n n

2( 2) 14

3 32 7

9

n

n

n

Using Factorial Formula:

!

! !

n n

r r n r

! ! 14

( 3)!3! ( 2)!2! 3

n n

n n

! ( 2)!2! 14

( 3)!3! ! 3

n n

n n

2( 2) 14

3 32 7

9

n

n

n

2

2

Page 21: The Binomial Theorem. Expansion of Binomials Binomial Expansion Coefficients Pascal’s Triangle Row.

Pg 132 Q9(a)In the expansion of (2+3x)n, the coefficients of x3

and x4 are in the ratio 8 : 15. Find n.

1 2 2 3 3 4 4(2 3 ) 2 2 (3 ) 2 (3 ) 2 (3 ) 2 (3 ) ...1 2 3 4

n n n n n nn n n nx x x x x

3 3

4 4

2 (3)3 8

152 (3)

4

n

n

n

n

Using Factorial Formula: !

! !

n n

r r n r

3 3 4 4!2 (3) !2 (3) 8

( 3)!3! ( 4)!4! 15

n nn n

n n

8 8

3( 3) 15

3 5

8

n

n

n

3 3

4 4

!2 (3) ( 4)!4! 8

( 3)!3! !2 (3) 15

n

n

n n

n n