The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance...

57
The Bayesian Statistics behind Calibration Concordance Yang Chen Harvard University June 5, 2017 Yang Chen (Harvard University) Calibration Concordance June 5, 2017 1 / 35

Transcript of The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance...

Page 1: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

The Bayesian Statistics behind Calibration Concordance

Yang Chen

Harvard University

June 5, 2017

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 1 / 35

Page 2: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Outline

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 2 / 35

Page 3: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 3 / 35

Page 4: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

E0102 – the remnant of a supernova that exploded in a neighboring galaxyknown as the Small Magellanic Cloud.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 4 / 35

Page 5: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Four “sources” – spectral lines that appear in the E0102 spectrum.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 5 / 35

Page 6: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

2 lines — Hydrogen like OVIII at 18.969A & the resonance line of OVIIfrom the Helium like triplet at 21.805A.2 lines – Hydrogen like NeX at 12.135A & the resonance line of Ne IXfrom the Helium like triplet at 13.447A.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 6 / 35

Page 7: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

13 detectors over 4 telescopes, Chandra (ACIS-S with and without HETG,and ACIS-I), XMM-Newton (RGS, EPIC-MOS, EPIC-pn), Suzaku (XIS),and Swift (XRT). (Plucinsky et al. 2017).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 7 / 35

Page 8: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 9: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 10: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 11: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 12: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 13: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Introduction

Calibration Concordance Problem (Example: E0102)

Notations

N Instruments with true e↵ective area Ai , 1 i N.For each instrument i , we know estimated ai (⇡ Ai ) but not Ai .

M Sources with fluxes Fj , 1 j M.For each source j , Fj is unknown.

Photon counts cij : from measuring flux Fj with instrument i .

Lower cases: data / estimators. Upper cases: parameter / estimand.

Original Questions

Systematic errors in comparing e↵ective areas ) absolute measurements.

1 How to adjust Ai s.t. cij/Ai ⇡ Fj within statistical uncertainty?

2 How to estimate the systematic error on the Ai?

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 8 / 35

Page 14: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Scientific and Statistical Models

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 9 / 35

Page 15: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Scientific and Statistical Models

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure⇥ E↵ective Area⇥ Flux,

Cij = TijAiFj , , logCij = Bi + Gj ,

where log area = Bi = logAi , log flux = Gj = log Fj ; let Tij = 1.

Statistical Model

log counts yij = log cij = ↵ij + Bi + Gj + eij , eijindep⇠ N (0,�2

ij);

where ↵ij = �0.5�2ij to ensure E (cij) = Cij = AiFj .

Known Variances: �ij known.

Unknown Variances: �ij = �i unknown.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 10 / 35

Page 16: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Scientific and Statistical Models

Scientific and Statistical Models

Scientific Model

Multiplicative in original scale and additive on the log scale.

Counts = Exposure⇥ E↵ective Area⇥ Flux,

Cij = TijAiFj , , logCij = Bi + Gj ,

where log area = Bi = logAi , log flux = Gj = log Fj ; let Tij = 1.

Statistical Model

log counts yij = log cij = ↵ij + Bi + Gj + eij , eijindep⇠ N (0,�2

ij);

where ↵ij = �0.5�2ij to ensure E (cij) = Cij = AiFj .

Known Variances: �ij known.

Unknown Variances: �ij = �i unknown.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 10 / 35

Page 17: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 11 / 35

Page 18: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 12 / 35

Page 19: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 12 / 35

Page 20: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 13 / 35

Page 21: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 14 / 35

Page 22: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 15 / 35

Page 23: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Hierarchical Model

Bayesian Hierarchical Model

Log-Normal Hierarchical Model.

log counts |area &flux &variance

indep⇠ Gaussian distribution,

yij | Bi , Gj , �2i

indep⇠ N✓��2

i

2+ Bi + Gj , �2

i

◆,

Biindep⇠ N(bi , ⌧2i ), Gj

indep⇠ flat prior,

Unknown variance: �2i

indep⇠ Inv-Gamma(dfg , �g ).

Setting up priors for unknowns.

1 Prior for log-flux Gj : flat (improper, non-informative).

2 Prior for log-area Bi : N (bi , ⌧2i ) (conjugate, proper).

3 Unknown variance: Prior for �2i : inverse Gamma (conjugate, proper).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 16 / 35

Page 24: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Shrinkage Estimators

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 17 / 35

Page 25: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Shrinkage Estimators

Shrinkage Estimators (Known Variances)

Hierarchical model ) Shrinkage estimators [Example: temperature.]

(weighted averages of evidence from ’Prior’ and evidence from ’Data’).

bBi = Wibi + (1�Wi )(y

0i · � Gi ), b

Gj = y

0·j � Bi ,

where

Wi =⌧�2i

⌧�2i + |Ji |��2

i

are the precisions of the direct information in the bi relative to the indirectinformation for estimating the Bi with

Gi =P

j2JibGj�

�2iP

j2Ji��2i

, Bj =

Pi2Ij

bBi��2i

Pi2Ij

��2i

, y 0i · =P

j2Jiy 0ij�

�2iP

j2Ji��2i

, y

0·j =

Pi2Ij

y 0ij�

�2i

Pi2Ij

��2i

.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 18 / 35

Page 26: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Shrinkage Estimators

Shrinkage Estimators (Known Variances)

Hierarchical model ) Shrinkage estimators [Example: temperature.]

(weighted averages of evidence from ’Prior’ and evidence from ’Data’).

bBi = Wibi + (1�Wi )(y

0i · � Gi ), b

Gj = y

0·j � Bi ,

where

Wi =⌧�2i

⌧�2i + |Ji |��2

i

are the precisions of the direct information in the bi relative to the indirectinformation for estimating the Bi with

Gi =P

j2JibGj�

�2iP

j2Ji��2i

, Bj =

Pi2Ij

bBi��2i

Pi2Ij

��2i

, y 0i · =P

j2Jiy 0ij�

�2iP

j2Ji��2i

, y

0·j =

Pi2Ij

y 0ij�

�2i

Pi2Ij

��2i

.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 18 / 35

Page 27: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Shrinkage Estimators

Shrinkage Estimators (A special case)

Assume that Gj = gj is known, i.e. fluxes known apriori. Then

bAi = b

Ai = a

Wii

h(ci · f

�1i )e�

2i /2

i1�Wi

,

where ci · and fi are the geometric means,

ci · =

2

4Y

j2Ji

cij

3

51/Mi

and fi =

2

4Y

j2Ji

fj

3

51/Mi

.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 19 / 35

Page 28: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 20 / 35

Page 29: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation: MCMC

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 21 / 35

Page 30: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation: MCMC

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 22 / 35

Page 31: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 32: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 33: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 34: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 35: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 36: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (Unknown Variances)

Markov Chain Monte Carlo (MCMC) algorithms.

Gibbs Sampling: update parameters one-at-a-time.

Block Gibbs Sampling: update vectors of parameters.

The joint distribution of the Bi and Gj is Gaussian.

Hamiltonian Monte Carlo (HMC) – STAN package.

Highly correlated parameters, high-dim parameter space.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 23 / 35

Page 37: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (STAN)

From STAN homepage —

Users specify log density functions in Stan’s probabilistic programminglanguage and get:

full Bayesian statistical inference with MCMC sampling (NUTS,HMC)

approximate Bayesian inference with variational inference (ADVI)

penalized maximum likelihood estimation with optimization (L-BFGS)

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 24 / 35

Page 38: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (STAN Example)

Start by writing a Stan program for the model.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 25 / 35

Page 39: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (STAN Example)

Assuming we have the 8schools.stan file in our working directory, we canprepare the data and fit the model as the following R code shows.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 26 / 35

Page 40: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Bayesian Computation

Bayesian Computation (STAN Example)

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 27 / 35

Page 41: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Numerical Results

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 28 / 35

Page 42: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Numerical Results

Numerical Results (E0102)

Recap: Highly ionized Oxygen (2 lines). Neon (2 lines). 13 detectors over4 telescopes, Chandra (ACIS-S with & without HETG, ACIS-I), XMM -Newton (RGS, EPIC-MOS, EPIC-pn), Suzaku (XIS), & Swift (XRT).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 29 / 35

Page 43: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Numerical Results

Numerical Results (E0102)−0.2

−0.1

0.0

0.1

Ne (STAN)

instruments

B

RGS1 MOS1 MOS2 pn ACIS−S3 ACIS−I3 HETG XIS0 XIS1 XIS2 XIS3 XRT−WT XRT−PC

−0.2

−0.1

0.0

0.1

O2 (STAN)

instruments

B

RGS1 MOS1 MOS2 pn ACIS−S3 ACIS−I3 HETG XIS0 XIS1 XIS2 XIS3 XRT−WT XRT−PC

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 30 / 35

Page 44: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

1 Introduction

2 Scientific and Statistical Models

3 Bayesian Hierarchical Model

4 Shrinkage Estimators

5 Bayesian Computation

6 Numerical Results

7 Summary

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 31 / 35

Page 45: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 46: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 47: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 48: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 49: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 50: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Summary

Statistics1

Multiplicative mean modeling:

log-Normal hierarchical model.

2 Shrinkage estimators.

3 Bayesian computation: MCMC & STAN.

4 The potential pitfalls of assuming ’known’ variances.

Astronomy

1 Adjustments of e↵ective areas of each instrument.

2 Calibration concordance achieved.

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 32 / 35

Page 51: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Summary

Acknowledgement

Xufei Wang (Harvard), Xiao-Li Meng (Harvard), David van Dyk (ICL),Herman Marshall (MIT) & Vinay Kashyap (cfA)

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 33 / 35

Page 52: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newtoncross-calibration sample.

The “pileup”: Image data are clipped to eliminate the regionsa↵ected by pileup, determined using epatplot.

Three data sets: the hard, medium, and soft energy bands.

Three detectors: MOS1, MOS2 and pn.

Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 34 / 35

Page 53: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newtoncross-calibration sample.

The “pileup”: Image data are clipped to eliminate the regionsa↵ected by pileup, determined using epatplot.

Three data sets: the hard, medium, and soft energy bands.

Three detectors: MOS1, MOS2 and pn.

Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 34 / 35

Page 54: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newtoncross-calibration sample.

The “pileup”: Image data are clipped to eliminate the regionsa↵ected by pileup, determined using epatplot.

Three data sets: the hard, medium, and soft energy bands.

Three detectors: MOS1, MOS2 and pn.

Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 34 / 35

Page 55: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newtoncross-calibration sample.

The “pileup”: Image data are clipped to eliminate the regionsa↵ected by pileup, determined using epatplot.

Three data sets: the hard, medium, and soft energy bands.

Three detectors: MOS1, MOS2 and pn.

Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 34 / 35

Page 56: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

XCAL data: Bright active galactic nuclei from the XMM-Newtoncross-calibration sample.

The “pileup”: Image data are clipped to eliminate the regionsa↵ected by pileup, determined using epatplot.

Three data sets: the hard, medium, and soft energy bands.

Three detectors: MOS1, MOS2 and pn.

Sources: 94 (hard band), 103 (medium band), and 108 (soft band).

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 34 / 35

Page 57: The Bayesian Statistics behind Calibration Concordance · 2017-06-05 · Calibration Concordance Problem (Example: E0102) 2 lines — Hydrogen like OVIII at 18.969˚A & the resonance

Another Example

Numerical Results (XCAL)

Yang Chen (Harvard University) Calibration Concordance June 5, 2017 35 / 35