The basic relation connecting the Gibbs energy to the...

56

Transcript of The basic relation connecting the Gibbs energy to the...

Page 1: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and
Page 2: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The basic relation connecting the Gibbs energy to the temperature and pressure in any closed system:

(nG) (nG)d(nG) dP dT (nV)dP (nS)dTP T

and pressure in any closed system:

T,n P,nP T

applied to a single-phase fluid in a closed system wherein no h i l tichemical reactions occur.

Consider a single-phase, open system:

Chemical potential

i(nG) (nG) (nG)d(nG) dP dT dn

P T

jT,n P,n i P,T,niP T n

Page 3: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Define the chemical potential:

j

ii P,T,n

(nG)n

The fundamental property relation for single-phase fluid systems of constant or variable composition:

i ii

d(nG) (nV)dP (nS)dT dn

When n = 1,

dG VdP SdT dT,x

GVP

i i

idG VdP SdT dx

GST

P,xT

Page 4: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

C id l d t i ti Consider a closed system consisting of two phases in equilibrium:

i ii

d(nG) (nV) dP (nS) dT dn

i ii

d(nG) (nV) dP (nS) dT dn

nM (nM) (nM)

i i i ii i

d(nG) (nV)dP (nS)dT dn dn

Page 5: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

i i i ii i

d(nG) (nV)dP (nS)dT dn dn

The two phase system is closed thus:

d(nG) (nV)dP (nS)dT

i i i ii i

dn dn 0

i idn dn

ii

M lti l h t th T d P i ilib i h

i i ii

( ) dn 0

Multiple phases at the same T and P are in equilibrium when chemical potential of each species is the same in all phases.

Page 6: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Define the partial molar property of species i:

j

ii P,T,n

(nM)Mn

The chemical potential and the particle molar Gibbs energy are

i iG

The chemical potential and the particle molar Gibbs energy are identical:

1 2 inM M(P,T, n , n ,..., n ,...)

For thermodynamic property M:

M M i i

iT,n P,n

M Md(nM) n dP n dT M dnP T

Page 7: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

i iiT ,n P ,n

M Md(nM) n dP n dT M dnP T

M M

i i id n x dn n dx d nM n dM M dn

i i iiT ,n P ,n

M MndM Mdn n dP n dT M (x dn ndx )P T

i i i ii iT n P n

M MdM dP dT M dx n M x M dn 0P T

i iT,n P,nP T

0

dxMdTMdPMdM 0

,,

i

iinPnT

dxMdTT

dPP

dM

0 iiMxM0 iiMnnMSummability i

ii

Calculation of mixture properties from partial properties

i

iiyrelations

Page 8: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

i iiT P

M MdM dP dT M dx 0P T

iT,n P,nP T

i i i ii i

dM x dM M dx

i iiT,n P,n

M MdP dT x dM 0P T

The Gibbs/Duhem equation

This equation must be satisfied for all changes in P, T and the caused by changes of state in a homogeneous phase

iMchanges of state in a homogeneous phase.

For the important special case of changes at constant T and P:and P

i ii

x dM 0

Page 9: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

2211 MxMxM For binary systems 2211 MxMxM

Const. P and T, using Gibbs/Duhem equation

y y

22221111 dxMMdxdxMMdxdM

dMdMdM dM2211 dxMdxMdM

121 xx

211

MMdxdM

21 ddMxMM 12 dx

dMxMM 1 12

M x MM (A) (B)

121 dx 1dx

2x (A)

Page 10: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The three kinds of properties used in solution thermodynamicsthermodynamics

Solution properties M, for example G,S, H, Up p p , , ,

G ,S , H , Ui i i iPartial properties, , for exampleiM

G ,S , H , Ui i i iPure-species properties Mi, for example

, , ,i i i ii

, , ,i i i ii

Page 11: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

EXAMPLEDescribe a graphical interpretation of equations (A) and (B)Describe a graphical interpretation of equations (A) and (B)

2dM M I

1 1d x x

1 21 2

dM I I I I 1 2

1I I

d x 1 0

dMI M x2 1

1I M x

d x

1 11

dMI M 1 x

d x

1

1 1I M 2 2I M

Page 12: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and
Page 13: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The need arises in a laboratory for 2000 cm3 of an antifreeze solution consisting of 30 mol-% methanol in water. What volumes of pure methanol and of pure water at 25°C must be mixed to form the 2000 cm3 of antifreeze at 25°C? The partial and pure molarmust be mixed to form the 2000 cm3 of antifreeze at 25 C? The partial and pure molar volumes are given.

3 -1 3 -11 1V 38.632 cm mol V 40.727Methan cm ool : m l 1 1

3 -1 3 -12 2V 17.765 cm mol V 18.06Water 8 cm m: ol

2211 VxVxV molcmV /025.24)765.17)(7.0()632.38)(3.0( 3

molVVn

t

246.83025.24

2000

moln 974.24)246.83)(3.0(1

moln 272.58)246.83)(7.0(2

3111 1017)727.40)(974.24( cmVnV t

31053)06818)(27258( cmVnV t222 1053)068.18)(272.58( cmVnV

Page 14: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and
Page 15: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is:

)2040(600400 212121 xxxxxxH

Determine expressions for and as functions of x1, numerical values for the pure-species enthalpies H1 and H2, and numerical values for the partial enthalpies at infinite dilution and

1H 2H

1H

2Hinfinite dilution and1H 2H

)2040(600400 212121 xxxxxxH

12 1x 1 x

311 20180600 xxH

21dHxHH

31

211 4060420 xxH 3

12 40600 xH

121 dx

xHH

01 x 11 x01x

molJH 4201

11x

molJH 6402

mol mol

Page 16: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

i

iidnGdTnSdPnVnGd )()()(

iG (nS) iG (nV)

jP ,n i P,T,nT n

jT ,n i P,T,nP n

i

xP

i STG

, i

iT ,x

GV

P

dTSdPVGd iii

Page 17: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

H U PV

nH nU P (nV)

(nH) (n U) (n V)Pn n ni i iP,T,n P,T,n P,T,nj j j

, , , , , ,j j j

H U P Vi i i

كه رابطه اي خطي بين خواص ترموديناميكي يك محلول با تركيب ثابت هر معادلهاز ك اظ ا خ ك ا ث ال ل ا ك ا ا ا ن ا ق

For every equation providing a linear relation among the thermodynamic properties of a constant-composition برقرار نمايد، داراي يك معادله المثني است كه خواص جزيي متناظر هر يك از

.هم مربوط مي نمايد اجزاء مخلوط را بهthermodynamic properties of a constant composition solution there exists a corresponding equation connecting the corresponding partial properties of each species in the p g p p p psolution.

Page 18: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

nRTPt

p ni i yi tVyiP n

n RTipi tV p y P i 1,2,... , Ni i

V

Page 19: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Gibbs’s theoremA partial molar property (other than volume) of a constituent آل دهنده مخلوط گاز ايده يك جزء تشكيل) غير از حجم ( هر خاصيت جزيي مولي

آل در دماي مخلوط ولي صورت گاز ايده برابر همان خاصيت مولي جزء خالص بهم مخلوط در آن جزي فشار معادل فشاري باشددر

A partial molar property (other than volume) of a constituent species in an ideal-gas mixture is equal to the corresponding

molar property of the species as a pure ideal gas at the mixtureباشد در فشاري معادل فشار جزيي آن در مخلوط مي.molar property of the species as a pure ideal gas at the mixture temperature but at a pressure equal to its partial pressure in the

mixture.ig

iigi VM ),(),( i

igi

igi pTMPTM

ig ig(nV ) (nRT P) RT n RTigVi n n P n Pi i iT,P,n nT,P,n j jj

j jjig igV Vi i

Page 20: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Since the enthalpy of an ideal gas is independent of pressure:

ig ig igH (T P) H (T ) H (T P) ig igH Hig ig igi i i iH (T, P) H (T, p ) H (T, P) ig ig

i ii

H y H

i iM y M i ii

yig ig ig

i ii

H H y H 0 M M y M i i

iM M y M

Property change of mixingEnthalpy change of mixing

ig igU y U Similarly

Property change of mixing

g gi i

iU y U Similarly

ig ig igU U y U 0 i ii

U U y U 0 Internal energy change of mixing

Page 21: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The entropy of an ideal gas does depend on pressure

dT dPig igP

dT dPdS C RT P

igidS Rd ln P (T const.)

ig igi i i i

i i

P PS (T, P) S (T, p ) R ln R ln R ln yp y P

ig igi i iM (T, P) M (T, p )

ig igi i iS (T, P) S (T, P) R ln y

ig ig ig igi i i i

i iS y S R y ln y

ig ig igi i i i

i iS S y S R y ln y

Page 22: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

ig ig igi i iG H TS

ig ig igi i i iG H TS RT ln y ig ig

i iH (T, P) H (T, P)

ig igS (T P) S (T P) R ln y

ig ig igi i i iG G RT ln y

i i iS (T, P) S (T, P) R ln y

RTig igdG V dP dP RT d ln P (const. T)i i P

igi i i(T) RT ln y P ig

i iG (T) RT ln P

igi i i i

i iG y (T) RT y ln y P

Page 23: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Chemical potential:Chemical potential:

id f d t l it i f h ilib i– provides fundamental criterion for phase equilibria

– however the Gibbs energy hence μi is defined in relation tohowever, the Gibbs energy, hence μi, is defined in relation to the internal energy and entropy - (absolute values are unknown).

Page 24: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

igi iG (T) RT ln P i i ( )

Fugacity: a quantity that takes the place of μi

G (T) RT l fi i iG (T) RT ln f

With units of pressureWith units of pressure

Page 25: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

i i iG (T) RT ln f ig i

i ifG G RT lnP

igi iG (T) RT ln P

i i P

ii

fP

RG RT ln

PFugacity coefficient

i iG RT ln

ig

Ri

iGlnRT

Ri 0G For ideal gases ig

i 1

P dPl (Z 1) ( t T) i i0ln (Z 1) (const. T)

P

Page 26: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

When the compressibility factor is given by two terms virial equation

iii

B PZ 1

RT

P Biiln dPi 0ln dPi RT

P

i i0

dPln (Z 1) (const. T)P

B Piiln i RT

Page 27: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

v vi i iG (T) RT ln f Saturated vapor:

l li i iG (T) RT ln f Saturated liquid:

vv l ii i l

i

fG G RT ln

f v l

i iG G

vili

fRT ln 0

f

v l satf f fi v l sati i if f f

v l sati i i= =

For a pure species coexisting liquid and vapor phases are in equilibrium p p g q p p qwhen they have the same temperature, pressure, fugacity and fugacity coefficient.

Page 28: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

f

The fugacity of pure species i as a compressed liquid:

i i iG (T) RT ln f sat i

i i sati

fG G RT ln

f

sat sati i iG (T) RT ln f

i i iG (T) RT ln f

Psati i iPsat

iG G V dP (const. T) dG = V dP – S dT

Pi

isat

f 1ln V dPRTf

Since Vi is a weak function of P

satPi sati

RTf l satf V (P-P ) sat sat sat

i i if = P l satV (P P )i i isati

f V (P-P )ln =f RT

i i if P l satsat sat i i

i i iV (P-P )f = P exp

RT

Page 29: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

For H2O at a temperature of 300°C and for pressures up to 10,000 kPa (100 bar) calculate values of fi and i from data in the steam tables and plot them vs. P.

For a state at P: iii fRTTG ln)(

For a low pressure reference state: ** ln)( iii fRTTG

)(1ln *i GGf

iii TSHG

)(1ln **iii SSHHf

)(ln * iii

GGRTf

)(ln * iii

SSTRf

kPaPfi 1**

The low pressure (say 1 kPa) at 300°C: gJHi 8.3076*

gKJSi 3450.10* gK

i if H 3076.818.015ln (S 10 345)

iln (S 10.345)1 8.314 573.15

Page 30: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

For different values of P up to the saturated pressure at 300°C, one obtains the values of fi ,and hence . Note, values of fi and at 8592.7 kPa are obtainedi i

P = 4000 kPaT = 300 ºC

Hi = 2962 J/gS 6 3642 J/gKT = 300 C Si = 6.3642 J/gK

if 18.015 2962 3076.8ln (6.3642 10.345)1 8.314 573.15

if 3611 kPa

i 3611/ 4000 0.9028

Page 31: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

T = 300 ºC Psat = 8592.7 kPa

Hi = 2751 J/gSi = 5.7081 J/gKVi = 1.403 cm3/g

satif 18 015 2751 3076 8 i 18.015 2751 3076.8ln (5.7081 10.345)1 8.314 573.15

satf 6738 9 kPaif 6738.9 kPa

sati 6738.9 / 8592.7 0.7843 i

Page 32: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and
Page 33: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Values of fi and i at higher pressure

l satsat sat i i

i i i

V (P P )f P exp

RT

l 3iV (1.403)(18.015) 25.28 cm / mol

i25.28(P 8592.7)f 6738.9exp

8314 573.15

P = 10000 kPa

i25.28(10000 8592.7)f 6738.9exp 6789.4 kPa

if 6738.9exp 6789.4 kPa8314 573.15

i 6789.4 /10000 0.6789 i

Page 34: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and
Page 35: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Fugacity and fugacity coefficient: species in solution

igi i i(T) RTln y P

For species i in an ideal gas mixture:

For species i in a mixture of real gases or in a solution of liquids:

i i i(T) RTln y P

i i iˆ(T) RT ln f

Fugacity of species i in solution (replacing the partial pressure)

Multiple phases at the same T and P are in equilibrium when the fugacity of each constituent species is the same in all phases:

ˆ ˆ ˆi i i

ˆ ˆ ˆf f ... f

Page 36: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

R igM M M The residual property:

R igi i iM M M The partial residual property:

R igR igi i iG G G

ig ii i

i

f̂G G RT ln

y P

i i i iˆG (T) RT ln f

ig igi i i iG (T) RT ln y P i i i i( ) y

ii

i

f̂ˆy P

The fugacity coefficient of species i in solution

Ri i

ˆG RT ln

Page 37: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

For ideal gas RiG 0 ig

ig if̂ˆ 1 Ri i

ˆG RT ln i

i1

y P

igi if̂ y P

Page 38: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Fundamental residual-property relationrelation

2nG 1 nGd d(nG) dTRT RT RT

i ii

d(nG) (nV)dP (nS)dT dn G H TS

ii

i dnRTGdT

RTnHdP

RTnV

RTnGd 2 ),,( inTPf

RTnG

G/RT as a function of its canonical variables allows evaluation of all other thermodynamic properties, and implicitly contains complete property information.

ii2

i

GnG nV nHd dP dT dnRT RT RTRT

igig ig ig GG V H

RR R Ri

i2i

GnG nV nHd dP dT dnRT RT RTRT

igig ig igi

i2i

GnG nV nHd dP dT dnRT RT RTRT

R R R

i i2i

nG nV nH ˆd dP dT ln dnRT RT RT

or

Page 39: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

R R R

i i2i

nG nV nH ˆd dP dT ln dnRT RT RT

R R

T x

V (G / RT)RT P

T,x

R RH (G / RT)TRT T

P,xRT T

R

i(nG / RT)ˆln

n

j

ii P,T,n

n

Page 40: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Develop a general equation for calculation of values form compressibility-factor data.

iˆln

j

R

ii P,T,n

(nG RT)ˆlnn

P (nZ n) dPˆl

j

PR

PdPnnZ

RTnG

0)( j

i0 i P,T,n

( ) dlnn P

(nZ)i

i

(nZ) Zn

n 1

i1

n

d

P

ii PdPZ

0)1(ˆln Integration at constant

temperature and composition

Page 41: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Generalized correlations for the fugacity coefficient

rP dP )()1(l r

rr

rii Tconst

PdPZ

0).()1(ln

10 10 ZZZ

r rP P

TdPZdPZ 10 )()1(l r r

rr

r

r

r TconstP

dPZP

dPZ0 0

10 ).()1(ln

rP dP00 r

r

r

PdPZ

0

00 )1(ln

rP rdPZ 11ln

10 lnlnln

rP

Z0

ln

For pure gas

Table E13-E16

p g0 1( )

Page 42: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Estimate a value for the fugacity of 1-butene vapor at 200°C and 70 bar.

1271T 0127.1rT

731.1P

0 0.627

1 1.096

Table E15 and E16

731.1rP

0.191

1.096

0 1( )

0.638

f P (0.638)(70) 44.7 bar

Page 43: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Generalized correlations for the fugacity coefficient

BPP0 1rPZ 1 (B B )

cr

r c

BPPZ 1T RT

P dP

r

( )T

0 1cBP B BRT

rP

ri r0

r

dPln (Z 1) (const. T )P

cRT

0 1rPln = (B +ωB )0

1.6r

0.422B 0.083T

r

ln (B +ωB )T

1

4.2r

0.172B 0.139T

For pure gasr

Page 44: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Fugacity coefficient from the virial E.O.SThe virial equation

BPRTBPZ 1

The mixture second virial coefficient B

i j

ijji ByyB

For a binary mixture

2222211212211111 ByyByyByyByyB

Page 45: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Fugacity coefficient from the virial E.O.S

nBPZRT

nnZ

22 ,1,,11

)(1)(

nTnTP nnB

RTP

nnZZ

22 ,,, nTnTP

)()(1ˆlP nBPdnB

22 ,10

,11

)()(1lnnTnT n

nBRTPdP

nnB

RT

Page 46: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

1 1 11 1 2 12 2 1 21 2 2 22B y y B y y B y y B y y B

1 2 11 1 2 12 2 1 21 2 1 22B y (1 y )B y y B y y B y (1 y )B

1 11 2 22 1 2 12 11 22B y B y B y y (2B B B )

12 12 11 222B B B

1 11 2 22 1 2 12 11 22B y B y B y y (2B B B )

nny /

1 11 2 22 1 2 12B y B y B y y 1 2 1 2

11 22 12n n n nB B Bn n n n

nny ii /

1 21 11 2 22 12

n nnB n B n B

2 1 2n n n n(nB) B

1 11 2 22 12nB n B n Bn

2

2 1 211 122

1 T,n

( ) Bn n

Page 47: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

2

2 1 211 122 2

1 T,n

n n n n(nB) B ( )n n n

2,

2 1 211 12

1

n n n(nB) B ( )n n n n

21 T,n

n n n n

11 2 1 2 12(nB) B (y y y )n

11 2 1 12(nB) B y (1 y )n

21 T,n

n 21 T,nn

2(nB) B

P (nB)ˆ 2

1 11 2 12Pˆln = B +y δ

RT2

211 2 12

1 T,n

( ) B yn

2

11 T,n

P (nB)ˆlnRT n

RT

PˆSimilarly: 22 22 1 12

Pˆln B yRT

Page 48: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

For multi-component systems

k kk i j ik ijP 1ˆln B y y (2 )

RT 2

i jRT 2

Where: 2B B B Where: ik ik ii kk2B B B

Page 49: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

cij 0 1ij ij

RTB = (B +ω B ) i jω +ω

ω =ij ijcij

B (B ω B )P ijω

2

cij ci cj ijT = (T T )(1-k )

E i i l i t ti t

cij cijZ RTP ci cjZ +Z

Z

Empirical interaction parameter

cij cijcij

cij

P =V

c cjcijZ =

2

31/3 1/3ci cj

cij

V +VV =

2 cij 2

Page 50: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Determine the fugacity coefficients for nitrogen and methane in N2(1)/CH4(2) mixture at 200K and 30 bar if the mixture contains 40 mol-% N2.

molcmBBB

3

22111212 6.200.1052.35)8.59(22

30P 0501.0)6.20()6.0(2.35)200)(14.83(

30ˆln 212

22111 yB

RTP

ˆ

18350)620()40(010530ˆl 22 BP

9511.01

1835.0)6.20()4.0(0.105)200)(14.83(

ln 212

21222 yB

RT

83240̂ 8324.02

Page 51: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Estimate and for an equimolar mixture of methyl ethyl ketone (1) / toluene (2) at 50°C and 25 kPa. Set all kij = 0.

1̂ 2̂

2ji

ij

cij

cijcijcij V

RTZP

2cjci

cij

ZZZ

33/13/1

2

cjci

cij

VVV

)1()( ijcjcicij kTTT

)( 10 BBP

RTB ij

cij

cijij 22111212 2 BBB

0128.0ˆln 1222111 yB

RTP

987.01̂

0172.0ˆln 1221222 yB

RTP

983.02̂

Page 52: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The ideal solution

• Serves as a standard to be compared:

idii

id MxM

iiid

i xRTGG ln

cf igig yRTGG ln

i

iii

iiid xxRTGxG ln

i

iiMxM

cf. iii yRTGG ln

iP

i

xP

idiid

i xRTG

TGS ln

ii

idi xRSS ln i

iii

ii

id xxRSxS ln PxP ,

iid

iidi P

GP

GV

iid

i VV ii

iid VxV

TxT PP ,

iiiiid

iid

iidi xRTTSxRTGSTGH lnln i

idi HH

i

ii

iid HxH

Page 53: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The Lewis/Randall Rule

iii fRTT ˆln)(

• For a special case of species i in an ideal solution:id

iiid

iidi fRTTG ˆln)(

iiid

i xRTGG ln

iii fRTTG ln)( iii fRTTG ln)(

iiid

i fxf ˆThe Lewis/Randall rule

iidi ˆ

The fugacity coefficient of species i in an ideal solution is equal to the fugacity coefficient of pure species i in the same physical state as the solution and at the same T and P.

Page 54: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

Excess properties

• The mathematical formalism of excess properties is analogous to that of the residual properties:

– where M represents the molar (or unit-mass) value of i h d i (

idE MMM

any extensive thermodynamic property (e.g., V, U, H, S, G, etc.)

– Similarly we have:Similarly, we have:

ii

Ei

EEE

dnRTGdT

RTnHdP

RTnV

RTnGd 2

The fundamental excess-property relation

Page 55: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

The excess Gibbs energy and theThe excess Gibbs energy and the activity coefficient

• The excess Gibbs energy is of particular interest:idE GGG

iii fRTTG ˆln)(

iiiid

i fxRTTG ln)(

ii

iEi fx

fRTGˆ

ln

ii

ii fx

The activity coefficient of species i in solution.A factor introduced into Raoult’s law to account for liquid-phase non-idealities.

iE

i RTG lnq p

For ideal solution,

c.f. iR

i RTG ̂ln

1,0 iE

iG

Page 56: The basic relation connecting the Gibbs energy to the ...drhojjat.iauq.ac.ir/assets/subdomains/drhojjat/file/...The basic relation connecting the Gibbs energy to the temperature and

ii

Ei

EEE

dnRTGdT

RTnHdP

RTnV

RTnGd 2

iii

EEE

dndTRTnHdP

RTnV

RTnGd ln2

EE

PRTG

RTV )/(

xTPRT ,

xP

EE

TRTGT

RTH )/(

Experimental accessible values:activity coefficients from VLE data,VE and HE values come from mixing experimentsxP ,

jnTPi

E

i nRTnG

,,

)/(ln

V and H values come from mixing experiments.

i

ii

E

xRTG ln

Important application in phase-equilibrium thermod namics),.(0ln PTconstdx

iii thermodynamics.