The Activated Sludge Process Part 2. Contact Stabilization Process

download The Activated Sludge Process Part 2. Contact Stabilization Process

of 11

Transcript of The Activated Sludge Process Part 2. Contact Stabilization Process

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    1/11

    WmtT gaem.t'k Vol. 14, pp. 1737 o 1747INwlptmon Prms Ltd 1990. Printed in Great Britain

    T H E A C T I V A T E D S L U D G E P R O C E S S P A R T 2.A P P L IC A T I O N O F T H E G E N E R A L K I N E T IC

    M O D E L T O T H E C O N T A C TS T A B I L I Z A T I O N P R O C E S SW . V. ALEXANDER , G . A . EKAM A a n d G . v . R . M ARXtS~

    1Scot t & de Wanl Inc . , Johannesburg and" W a te r R e s o u r c e s a n d P u b l i c He a l th En g in e e r in g , Un iv e r s i ty o f Ca p e To w n ,Ro n d e b o s c h , S o u th Af r i c a(Received A ugust 1979)

    Ak atzag t- -Th e gene ra l ae ro bic ac t iv a ted s ludg e m ode l inc lud ing n i t r i f ica t ion for pr _oo~__~s t r ea t ing pr in-c ip a l ly mu n ic ip a l wa s te wn te r is a p p l i e d to th e c o n ta c t s t a b il i z a tio n p r o c e s s t r e a t in g mu n ic ip a l wa s te -wa te r s . Th e a p p l i c a tio n in v o lv e s two c h a n lp = to th e m o d e l : ( i) a c h a n g e in o n e o f th e v a lu e s o f th ek i n et ic c o n st a nt s i n t h e e x ~ o f t h e s ub st ra ta u t il iz a ti o n r a te s ; (fi) a c ha n ge in t h e e nm e s h m e ntm a : h m i g m b y a ~ t h a t a f ra c ti o n o f t h e p a rt i cu l at e C O D w h i c h i s m ot a d m r b e d o n t o t h e a c ti v em ' g a n i lm~ d o e s n o t . b e c o me m m e s l m i in th e s lu d g e flo e s a n d e s c a p e s w i th th e e f flue n t. Ac c e p t in g o n lyth e s e d u mg e s i t wa s f o u n d p o s s ib le to s a t i sf a c to r i ly s imu la te th e b e h a v io u r o f th e c o n ta c t a n d s t a b il i z -a t io n r e a z t o ~ o f th e p ro e ss u n d e r b o th c o n s ta n t a n d c y c l ic c o n d i t io n s o f lo a d in g .Fo r des ign , the genera l ac t iva ted s lud ge model , as appl ied to the conta c t s tab i l iza t ion process , r equiresthe W oet~ 8 conf igu ra t ion to b e comp le te ly spec if ied . To a id in the in i t ia l des ign o f the process , ap r 0 1 i l~ d e s ig n p r o c e d u r e i s p r e s e n ted b y me a n s o f wh ic h th e v o lu me s , s lu d g e c o n c e n t r a t io n s a n dr e te h t io n t ime s o f th e c o n ta c t a n d s t a b i l i z a t io n r e a c to r s ma y b e d e te r min e d f r o m f iv e in d e p e n d e n ti a m t m e t e r s w h i s t a r e m u m e d t o g o v e r n th e p r o e e ~ Th e s e a r e th e s lu d g e a g e , re c y c le r a tio , f r a c t io n a ld i s t r ib u t io n o f th e s lu d g e ma s s b e twe e n c o n ta c t a n d s t a b il i z a tio n r e a c to r s , d a l ly CO D ma s s lo a d a n d th eaverage s ludge concentra t ion in the process ,

    NOM ENCLATURE 0 - - g e n e r a l s y mb o l f o r o x y g e n c o n s u m p t io n r a t e(mgO1-1 h-X) . Subscr ip ts c , n and t r e fe r tobh* - a n g u s n~q. i r a t ion ra te (d - l ) ca rbonace ous , n i t r i f ica t ion and to ta l va lues re -CM AS P - Co m p le te ly M ix e d Ac t iv a te d S lu d g e P r o c e s s s p e c tiv e ly . Ad d i t io n a l s u b s cr ip ts c , p a n d sC S A S P , - C o n t a c t S t ab i li za ti o n A c t iv a te d S lu d ge P r o - r ef er ~ e l y t o v a lu e s i n t h e c o n ta c t r ea c-osss to t , overa l l p rocoss and s tab i l iza t ion reac torf m a n b i o d e g r ud a b l e f ra c ti o n o f t h e a c ti v e m a s s P -= C O D t o V S S r a t i o ( m g C O D m g V S S - t )( m g V S S m g V S S - x ) Q = i n fl u en t f lo w r a t e ( l d - s )f , I , t fi t ro lpm f rac t ion of the s ludge mass (mg N m g q = wa s te f lo w r a te 0 d - x )VSS - s ) Rt = hydrauf ic re ten t ion t ime (d) . Subscr ip ts a or nf up " f r a c tio n o f to t a l i n f lu en t C O D wh ic h i s in th e r e f er to a c tu a l o r n o min a l m e n t io n t ime s r e -par t icu la te unbio degrada ble form spec t ive ly . Ad dit iona l subscr ip ts c or s r e fe r tof . , , = f mc t /o n o f th e to t a l i n f lu e n t C O D wh ic h i s in v a lu e s in th e c o n ta c t o r s t a b i li z a t io n r e a c to rth e s o lu b le u n b io d e g r a d a b le f o r m r e s p ec t iv elyKin* =, m axim um spec if ic subs tra ta u t i l iza t ion ra te for R, = s ludge age (d)r e a d ily a s s imi la b le CO D ( mg C O D mg VS S - x r = r e c y c le r a t io w i th r e s p e ~ to a v e r a g e in f lu e n t

    d - ~ ) f lowM = p r e fix d e n o t in g ma s s , i .e . S = g m e r a l s y mb o l f o r C O D c o n c e n t r a t io n( rag C O D I - s) . Subscr ip t t r e fe r s to to ta l con-M(Su) = Su" Q centra t ion L Ad dit iona l subscr ip ts c , e , i , s r e fe r== d a i ly C O D ma s s lo a d respec t ive ly to the va lues in the contac t r eac-( ms C O D d - x ) to r , e lHu en t, i n f lu en t a n d s t a b i li z a t io n r e a c to rM ( X ~ ) = X , . , V p T = t e mp e r a tu r e in Cmass of s ludge in process V = genera l sym bol for vo lu me 0 .~ Subscr ip ts c , p( rag VSS) and s r e fe r tO con tac t r eac tor , overa l l p rocessN =. genera l sym bol for n i t rogen conce ntra t ion and s tab i l iza t ion reac tor r espec t ive ly( mg N 1= xg Subscr ip ts n or t r e fe r to n i t r a te or w = was te I ]ow ra t io with respec t to averageT K N c o n c e n t r a t io n s r e sp e c t iv e ly . Ad d i t io n a l in f lu e n t f lo ws u b g r ip t s c~ e , i o r s r e fe r r e s p e ct iv e ly to th e X = s m e f a l s y mb o l f o r v o la t i l e s lu d g e ~ c e n -

    va lues in the cont ac t r eac tor , e f fluent , in f luent t r a t io n (m gV SS l-1) . Subser ip ts a , n and vor s tab i l iza t ion reac tor r e fe r to ac t ive vola t i le , n i t r i f ie r and to ta l vo la -t i le s ludge concentra t ions respec t ive ly . Ad-di t iona l subscr ip ts c , p and s r e fe r r espec t ive ly* Ad d i t io mt l s u b e c ~p t To t 2 0 r e fe r s to th e v a lu e a t TC to v a l t ie s in th e c o n ta c t r e a c to r, o v e r a l l p r o c e ssor 200C. and s tab i l iza t ion reac tor1737

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    2/11

    1738 W.V. ALEXANDER,G. A. EKAMAand G. v. R. MARAISYh = yield coefficient (rag VSS m g C O D - ~) ,o WASTE= fraction of m ass sludge in process in the con - CONTACT & FLOWtact reactor R E A C T O R / S E T T L I N G0 = temperature sensitivity coefficient INft.U~T ~ [ TANK EFFLUENT~ , , * = m a x im u m s pe ci fi c g r o w th r a t e o f t h e ~ x ~ * ~ ] " ~ - ' - ~ )"nit riflers (d - ') o, sti t i -.~ o, steT II ~ I R E C Y C L E

    I f ~ , j . F LOWL ( : : . ) J , 0NTRODUCTION S T A S I L t Z A T I OIn the l i t e ra tu r e , the k ine t i c theor i e s des c r ib ing the nEACTO~b e h a v i o u r o f t h e c o n t a c t s t a b i l i z a t io n a c t i v a t e d s l u d g ep r o c e s s ( C S A S P ) h a v e b e e n e s s e n t i a l l y o f a n a d h o c Fig. 1 . Diagram ma tic representa t ion of the co ntact s tabi liz-a t ion process .n a t u r e . N o a t t e m p t t o d e s c r i b e t h e b e h a v i o u r o f t h i sp r o c e s s b y a g e n e r a l a c t i v a t e d s l u d g e k i n e t i c t h e o r y s l u d g e m a s s i n t h e C S A S P s y s t e m i s c o n t a i n e d in t h eh a s b e e n s u c c es s fu l , p r i n c i p a l l y b e c a u s e t h e t h e o r i e s s t a b i l i z a t i o n r e a c t o r i n a d e n s i f ie d f o r m , g i v i n g a c o r -p r o p o s e d t o d a t e a r e d e f i c ie n t i n th e m s e l v e s. H o w - r e s p o n d i n g l y s m a l l e r v o l u m e t o t h e w h o l e s y s te m .e v e r . t h e g e n e r a l h i - s u b s t r a t e d e a t h - r e g e n e r a t i o n a e t i- F u r t h e r m o r e , i f t h e e x ce s s s l u d g e is w a s t e d f r o m t h ev a t e d s l u d g e k i n e t i c t h e o r y f o r t h e p r o c e s s t r e a t i n g c o n t a c t r e a c t o r , a s s h o w n i n F . if , 1 , t h e o v e r a l l p r o c e s sp r i n c i p a l l y m u n i c i p a l w a s te w a t e r , p r o p o s e d b y D o l d o x y g e n d e m a n d i s s l ig h t l y r e d u c e d b e c a u s e t h e s l u d geet al . ( 19 8 0) , a p p e a r s t o b e s u f f i ci e n t ly c o m p r e h e n s i v e m a s s i n t h e c o n t a c t r e a c t o r c o n t a i n s a r e l a t i v e l y h i g ht o e n c o m p a s s a l s o t h e k i n e ti c b e h a v i o u r o f t h e f r a ct i o n o f u n m e t a b o l i z e d C O D .C S A S P t r e a t i n g m a i n l y m u n i c i p a l w a s t e w a t e r s . T h i s T h e C S A S P i s a s p a t i a l l y d e l ) e n d c a t s y s te m e v enp a p e r d e s c ri b e s t h e i n t e g r a t io n o f t h e C S A S P w i t h t h e u n d e r s t e a d y f lo w a n d l o a d c o , d i t io n s . T h e c o n c er t -g e n e r a l a c t i v a t e d s l u d ge t h e o ry , t r a t i o n o f s l u d g e a n d t h e f o o d / m i c r o - o r g a n i s m r a t i oI n p r e s e n t in g th i s p a p e r , i t i s a s s u m e d t h a t t h e d i ff e r s i g ni f ic a n t ly i n t h e c o n t a c t a n d : s ~ l i z a t i o nr e a d e r h a s s t u d i e d t h e p a p e r s e t ti n g o u t th e g e n e r a l r e a c t o r s ; t h e s e p a r a m e t e r s a r e d e p f n d e a t o n t h ea c t i v a t e d s lu d g e t h e o r y ( D o l d et al . , 1 9 8 0 ) - - o n l y t h e s l u d g e r e c y c l e r a t e a n d t h e f r a c t i o n a l d i s t r i b u t i o n o fa s p e c t s n e c e s sa r y fo r t h e p a r t i c u l a r r e q u i r e m e n t s o f t h e m a s s o f s l u d g e b e t w e e n t h e t w o r e a c to r s . T h e r e -t h e C S A S P w i l l b e p r e s e n t e d , f o r e, u n l i k e t h e C M A S P w h i c h e s s e n t i a l l y i s d e f i n e d

    b y t h e sl u d g e a g e a n d t h e o r g a m c t o a d i n t h e p r o c e s s ,I N IT IA L P R O CE S S D E SI GN i n t h e C S A S P t h e p r o c e s s d e f i n i t i o n m u s t i n c l u d e , i n

    a d d i t i o n t o t h e a b o v e p a r a m e t e r s , t h e r e c y c l e r a t i o , r ,A d i a g r a m m a t i c r e p r e s e n t a t io n o f t h e C S A S P i s a n d s o m e p a r a m e t e r f ix i ng t h e f r a c t i o n a l d i s t ri b u t i o ng i v e n i n F i g . 1 . T h e c o n t a c t r e a c t o r r e c e i v e s t h e o f t h e m a s s o f s l u d g e b e t w e ~ l t h e c o n t a c t a n d s t a b i l -i n f l u e n t f l o w a n d t h e r e c y c l e f r o m t h e s t a b i l i z a t i o n i z a t i o n r e a c t o r s . O h r o n & J e n k i n s ( i 9 7 2 ) s e l e c t e d . t h er e a c t o r . I n t h e c o n t a c t r e a c t o r , w h i c h h a s a s h o r t f r a c t i o n o f t h e m a s s o f s l u d g e i n c o n t a c t r e a c t o r r e l a -n o m i n a l h y d r a u l i c r e t e n t i o n f , a s m a l l f r a c t i o n o f t h e t iv e to t h e t o t a l m a s s o f s lu d g e i n t h e p r o c e s s , ~ , t os l u d g e m a s s r e m o v e s t h e b u l k o f t h e c a r b o n a c e o u s d e f i n e t h e f r a c t i o n a l p a r a m e t e r , i .e .m a t e r i a l f r o m t h e i n f l u e n t - - p r i n c i p a l l y b y a d s o r p t i o nand enm es hm ent . A m ino r f rac t ion o f the ad s o rb ed ~t = VcXvc /(VcX, ~ - V , X~ ,) {1)o r g a n i c m a t e r i a l i s m e t a b o l i z e d i n t h e c o n t a c t r e a c to r w h e r ea n d c o n s e q u e n t l y t h e s l u d g e m a s s c o n t a i n s a h i g hp r o p o r t i o n o f u n m e t a b o l i z e d C O D . T h e e f fl u en t f r o m V c, V s = v o l u m e s o f t h e c o n t a c t a n d s t a b i li z a t i o nt h e c o n t a c t r e a c t o r i s d i s c h a r g e d t o t h e s e t t l in g t a n k . r e a c t o r s r e s p e c t i v e l y (1 .)T h e s e t t l i n g t a n k o v e r f l o w l ea v e s t h e p r o c e s s a s e f fl u - X ,0 , X , , = v o l a t i l e s l u d g e c o n c e n t r a t i o n s i n t h e c o n -e n t ; t h e u n d e r t o w i s d i s c h a r g e d t o t h e s t a b i l iz a t i o n t a c t a n d s t a b i li z a t i o n r e a c t o r s r e s pe c t -r e a c t o r , w h i c h h a s a l o n g n o m i n a l r e t e n t i o n t i m e i n i v e l y ( m g V S S 1 -1 ).w h i c h t h e d e n s i f l e d m i x e d l i q u o r i s s t a b i l i z e d . S t a b i l - I t w i l l b e a p p a r e n t f r o m t h e a b o v e , t h a t t h e d e s ig ni z e d s l u d g e i s r e t u r n e d t o t h e c o n t a c t r e a c t o r v i a a o f a s p ec i f ic C S A S P is n o t a s s t r a i g h t f o r w a r d a s t h es lu d g e r e c y c le f lo w . C l o s e c o n t r o l o f t h e s lu d g e ag e o f C M A S P a n d m u s t p r o c e e d o n a t r ia l a n d e r r o r b a s is .t h e p r o c e s s i s p o s s i b l e b y h y d r a u l i c c o n t r o l , i.e . b y I n d e s i g n i n g a C S A S P c o n f i g u r a t i o n it i s p a r t i c u l a r l yw a s t i n g a n a p p r o p r i a t e v o l u m e o f m i x e d l iq u o r d i - u s e f u l t o h a v e a p r o c e d u r e f o r i n i t i a l l y e s t i m a t i n g t h er e c t l y f r o m e i t h e r t h e c o n t a c t o r s t a b i l i z a t i o n r e a c t o r , s i z es o f t h e r e a c t o r s a n d t h e i r r e s p e c ( i v e s l u d g e c o n -

    T h e a d v a n t a g e o f th e C S A S P o v e r th e C o m p l e t e l y o e n t r a t io n s i n o r d e r t o d e c i d e w h e t h e r t h e l i q u i d s o l idM i x e d A c t i v a t e d S l u d g e P r o ~ e ss ( C M A S P ) s t em s s e p a r a t i o n e f fi c ie n cy i n th e s e t tl i n g t a n k a n d t h ef r o m i ts c o n f i g u r at i o n . T h e m a j o r f r a c ti o n o f t h e a c t u a l h y d r a u l i c r e t e n t i o n t i m e i n t h e c o n t a c t re a c t o ra r e w i t h i n a c c e p t a b l e l i m i t s .

    ~"N ~ i n a l h y d r a u li c r e te n t io n t i m e is g iv en b y t h e A b a s i s f o r m a k i n g a n i n i t i a l e s t i m a t e o f t h e r e a c t o rvolume -~ the reactor divided by the dai ly average influent s izes is to ac ce pt tha t the C S A S P p r o d lg ~ : tk e '~ a m eflow. m a s s o f sl u dg e a s t h e C M A S P f o r t h e sa m e s l u dg e a g e,

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    3/11

    The activated sludge pro cess --Pa rt 2 1739R,, and da i ly organic mass load, M(S~) . T h i s a s s u m p - a d v a n t a g e , H i g h e r X , p c o n c e n t r a t i o n s f o r t h e C S A S Pt ion i s ba sed on the f i nd ings o f Gu je r & Jenk ins a re pe rmiss ib le because t he se t t li ng t ank o f t he p ro-(1975a) and has been ve r i fi ed dur ing t h i s i nves t iga - ce ss has t o dea l wi th t he re l at i ve ly low conc en t ra t i ont ion . The re fore , an e s t ima te o f t he t o t a l ma ss o f s lUdge o f sl udge f rom the con tac t r eac to r .i n t h e p r o c e s s M ( X ~ ) c a n b e o b t a i n e d f r o m t h e s t e a d y W h e r e t h e s l u d g e ag e , R , , o f t h e C S A S P i s c o n -s t a t e equaU'ons i 'o r t he C M A SP (M ara i s & Ek am a , t ro l led by was t ing s ludge d i rec t l y f rom the con tac t1976) , i .e . r eac to r , i . e . hydra u l i c con t ro l o f t he s ludge age , t hes ludge age o f t he p rocess i s g iven by{ ~ ( l + f b h r R , )M ( X . p) = M ( S , ) R , + b h rR , ) R, = mass o f s l udge in p rocess

    m a s s o f s lu d g e w a s t e d p e r d a y3x (1 - fu. - fup P) + fup (2) - - - X v p V p / ( X v c q ) (6 )w h e r e w h e r eM ( X v ) - - m a s s o f v ol a ti le s l u d ge i n p ro c e s s( rag VSS) q = was t e f l ow ra t e (1 d - t )

    = XvpVp In t he ana lys i s o f the CS AS P s ign i fi can t s impl if ica -Xvp = ave rage p rocess vo l a t il e s l udge conce r t- t i on i n t he fo rm ula t i ons i s a t t a ined b y express ing q a st ra t i on ( rag VSS 1- J )a f r ac t i on o f t he ave rage i n f luen t f l ow ra t e , i .e .Vp = vo lum e of p rocess (1.)M ( S tl ) = d a i l y o r g a n i c m a s s l o a d ( m g C O D d - l ) q = w Q (7 )

    = Q" Sit wh ereSti - t o t a l i n f luen t C O D conc en t ra t i on( rag C O D 1-1) Q = ave rage i n f luen t f l ow (1 d - 1 )R, = s ludge age (d ) w = s ludge was t e f l ow ra t e f rom the con tac t r eac to rYh - y i e ld coe f f ic i en t ( r ag VSS m g C O D -1 ) a s a f r ac t i on o f t he ave rage i n f luen t f l ow ra te .

    = 0.45f = unb iodegra dab le f rac t i on o f t h e ac t i ve Hence , fo r a g iven s ludge age , w i s g iven byvo la t il e mass (mg VSS m g V SS - 1 ) w - - XvpVp/(RsQXvc (8 )

    = 0 .20 In o rde r t o s ize t he two reac to r s o f t he CSA SP, abhr = end ogen ous re sp i ra t i on ra t e a t T C (d ) dec i s ion on the two add i t i ona l i ndepen den t pa r -_. _ b h 2 o ( T T - 2 o )bh2o - end ogen ous re sp i ra t i on ra t e a t 20C ame te r s ~ and r i s r equ i red . Kn ow ing ~ , r , R8 and X,p= 0 .24 a s we ll a s Vp , which can be de t e rmined f rom equa -

    0 - t empe ra tu re sens i ti v i ty coe f f ic i en t t i ons (2 ) and (3 ) , t hen by do in g a s ludge mass ba l ance= 1 .0 29 a r o u n d e a c h r e a c t o r a n d m a n i p u l a t i n g e q u a t i o n sT = t empe ra tu re ( C) (4 )- (7 ) , t he conc en t ra t i on o f t he s ludge in , and the

    fu , = so lub l e unb io degrad ab le f rac t i on o f t he vo lum es o f t he two reac to r s can be expressed in t e rmsi n fl u e n t C O D ( ra g C O D m g C O D - 1 ) o f t h e f iv e k n o w n p a r a m e t e rs , i. e.

    f~p = pa r t i cu l a t e unb iodegra dab le f rac t i on o f Vc = Vpa(1 + r - w)/(~t + r - otw) (9 )t h e i nt tu e n t C O D ( ra g V S S m g C O D - i )P = C O D t o V S S r a t i o ( m g C O D m g V S S - 1 ) V , = V p r( 1 - ~ )/ (~ + r - ~ tw ) ( 10 )X,c = Xvp(~ + r - uw)/(1 + r - w) '(11)On ce an e s t ima te o f M(Xvp) i s ava i lab l e , a dec i s ionm u s t b e m a d e o n t h e o v e r a l l m e a n s lu d o e c o n ce n - X ~ , = X ~ ( ~ + r - ~ w ) / r (12)t ra t ion , Xv t# f o r t h e p r o c e s ~ T h e o v e r a ll v o l u m e o f t h e X , , = X ~ (1 + r - w) / r . (13)C S A S P , V p , i s d e te r m i n e d b y An express ion fo r w in equa t ions (9 ) - (13) can be de -

    V p - -- M ( X ~ p ) / X v p , (3) r ived as fol low s:w h e r e S u b s t i tu t in g e q u a t i o n ( 5 ) f o r VpXvp i n equa t ion (8 ) :

    Vp - V , + V ~ ( 4 ) w = (X~cV + X ~ , V , ) / ( R , X v c ) . ( 1 4 )a n dS u b s t i tu t i n g e q u a t i o n ( 1 3 ) f o r X v , a n d e q u a t i o n ( I 0 )VpXvp = VcXvc + VtXvs. (5) fo r V, i n to equa t ion (14) and rea r rang ing , y i e lds :

    I f X , p f o r th e C S A S P i s c h o s e n t o b e t h e s a m e a st h a t f o r a C M A S P t h e v o l u m e s o f t h e t w o p r o c e s s e s w = V p (1 + r - w ) / { R , Q ( , , + r - ~tw)}. (1 5)wi l l be ident ica l , resu! tin_g " n o space sa ~ Co nse -quen t ly , ~ ,p fo r t he ' CS AS P usua l ly i s se l ect ed t o be Un de r norm a l ope ra t i ng cond i t i ons , ~ov i s sma l l r e l a -apprec i ab ly h ighe r ~ than tha t norm a l ly accep ted fo r f i ve t o (c( + r~ Con sequen t ly , i gnor ing ~,w in equa t iont h e C M A S P in o r d e r t o g a i n a p l a n t v o l u m e t r i c ( 1 5 )and so lv ing fo r w, an ex press ion fo r w in t e rms o f

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    4/11

    1 7 4 0 W . V. ALEXANDER,G. A. EKAMAand G. v. R. MARAISth e k n o w n p a r a m e te r s i s o b t a in e d , i .e . c a r b o n a c e o u s s u b st r at e , wh ic h f o r ms th e b u lk o f th ein f lu e n t COD, i s e i th e r a d s o r b e d b y th e o r g a n i s ms o rw = (1 + r) /{ 1 + (~ + r)QRs/Vp}. (16) enmeshe d in the s ludge f loes and remo ved f rom the e f fluentin the settling tank.F r o m e q u a t io n s ( 9) a n d ( 10 ), t h e a c tu a l a n d Ad s o r p t io n a n d e n me s h me n t a r e r a p id p ro ce ss es , s o th a tn o m i n a l r e t e n t i o n t i m e s i n t h e t w o r e a c t o r s c a n b e t h ey a r e e x p ec t ed t o b e n e a r c o m p l e t io n e v e n i n r el a ti v el yfoun d, i .e . shor t ac tua l hydraul ic r e ten t ion t imes . The remo val of the

    so luble COD f rac t ion in the inf luent by the contac t r eac torR ~ c = V p ( 1 + r - w)/[(1 + r)(0c + r - 0~w )~] (17) is affected by the length of the contac t t im e: any so luble CO D c o n c e n t r a t io n n o t me ta b o l i z e d d u r in g th e c o n ta c tRha = Vp (I - ~t) /[(~ + r - 0tw)Q] (18) perio d in the con tact reac tor escapes with the eff luent f low.Rh. = (1 + s )" Rhoc (19) How ever , as on ly abou t 25% of the b iodegrad able C O D isin so luble form (D old et al . , 1980) and the rem oval is r ap id ,Rhns = Rh~ (20) the escape of the so luble C O D concen tra t ion is un l ike ly toaffect the ov era l l CO D rem oval e f fic iency.wh ere With regard to ~ , a va lue of 0 .1 was se lec ted as with th isva lue only one ten th of the mass of s ludge in the process isRh = h y d r a u l i c r e t e n t io n t im e ( d) . S e c o n d s u b - r e s p o n sib le f o r th e in i ti a l r e mo v a l o f th e c a r b o n a c e o u s ma -scr ip ts a or n re fe r to ac tua l or no m in a l te r ia l f rom the influent . I t r epresents , there fore , an ex tremes i tua t ion and cons t i tu tes a severe tes t o f the pred ic t ive ca-v a l u e s r e s p e c ti v e l y . A d d i t i o n a l s u b s c r i p t s c p a ci t y o f t h e m o d e l

    o r s r e f e r to c o n t a c t o r s t a b i l i z a t io n r e a c to r s W i th re g a r d to th e c h o ic e o f r , a h ig h v a lu e ( r > 4 ) in th erespe c t ive ly . CS AS P resu l ts in a smalle r r e la t ive d iffe rence be tween theconcen tra t ions of s ludge in the conta c t and s tab i l iza t ionF r o m t h e e q u a t i o n s s e t o u t a b o v e e s t i m a t e s o f Vc , r e ac t o rs a n d t h e p r oc e ss a p p r o x im a t e s t h e C M A S P w hi c hV, , X , o , a n d X , , i n t e r m s o f th e v a lu e s a , r , M ( S t, g X~p wo u ld t e n d to d e t r a c t f ro m th e u n iq u e n e ss o f th e CS A S Pa n d R , a r e n o w a v a i l a b le a n d c o n s t i tu t e a n in i t i a l c o n f ig u r a t io n . I n c o n t r as t , a lo w r e cy c le r a t io ( r < 1 )d e s ig n . Ch e c k s c a n b e m a d e to e n s u r e th a t t h e a c tu a l r e su l t s in a lo w p r o c e ss n i t r if i c a tio n e ff ic ie nc y , a s o n ly asmall f r ac t ion of the inf luent ammonia is r ecyc led to theh y d r a u l i c r e t e n t i o n i n t h e c o n t a c t r e a c t o r i s a d e q u a t e s ta b il i za t io n re a c to r i n w h i ch t h e b u l k o f t h e s l ud g e m a s s i sa n d th a t th e d e n s i f i c a t io n r a t i o in th e s e t t l in g t a n k i s r e t ain e d ( Gu je r & Je n k ins , 19 7 5b ). Co n s e q u e n t ly , a r e cy c leno t to o grea t , r a t io of 2 :1 with respec t to average f low was se lec ted .E x p e r i e n c e w i t h e x p e r i m e n t a l p l a n t s a n d t h e g e n - T h e e x p e ri m e n t al i n v es t ig a ti o n w a s t o b e u n d e r ta k e n a te r a l a c t i v a t e d s lu d g e m o d e l a s a p p l i e d t o t h e C S A S P , 2 0 C. T o e n s ur e c o m p l e t e n i t r if i ca t io n o f t h e r e c y c le dammonia in the s tab i l iza t ion reac tor , s ludge ages longerh a s i n d i c a t e d t h a t t h i s p r e l i m i n a r y d e s i g n p r o c e d u r e t h an a b o u t 4 d a y s a r e r eq u ir e d. C o n s eq u e n tl y , s lu d g e a g es

    p r e d ic t s X~c a n d X , , a c c u r a te l y . A l s o , th e a v e r a g e p r o - o f 6 a n d 1 0 d a y s we r e s el ec te d.c e s s c a r b o n a c e o u s o x y g e n d e m a n d f o r t h e s y s t e m a p - I f t h e C S A S P o p e ra t e s u n d e r c y cl ic f lo w c o n d it i on s , t h ep r o x i m a t e l y e q u a l s t h a t f o r t h e e q u i v a l e n t C M A S P a c tu a l h y d r au l i c r e te n t io n ti m e i n t h e c o n t a c t r e ac t o r i sreduced dur ing the peak f low per iod . Should the ac tua l[ i. e. f o r t h e s a m e R , a n d M ( S ~ ) ] . H o w e v e r , t h e p r o - h y d r au l i c r e t en t io n t i m e u n d e r p e a k f lo w c o n d i ti o n sc e d u r e p r o v i d e s n o e s t i m a t i o n o f t h e r e l a t i v e O x y g e n b e c o m e t o o s h o rt , p a r ti c u la t e C O D r e m o v a l b y a d s o rp t i o nd e m a n d s in t h e t w o r e a c t o rs , n o r th e C O D , T K N a n d a n d e n m e sh m e n t a nd s ol ub le C O D r e m o va l b y m et ab -nitrate concentration in the r e a c t o r s o r e~uent under olism will be insuff icient, resultin$ in a ~ o r effluentc o n s t a n t o r c y c li c l o a d i n g c o n d i t i o n s . U n d e r c o n s t a n t q u a li t y. C o n s e q u en t l y a l o w e r l i m it t o / l i e ~ i h / U / f i a~ c/ ~-ihydraul ic r e ten t ion t ime in the contac t r eac tor needs to bef lo w c o n d i t io n s th e s e p r o c e s s v a r i a b le s m a y b e e s t i - s et . To sa ti sf y th i s lo we r l imi t , i t w i l l b e f o u n d th a t lo we rm a t e d f r o m m o d e l s w i t h c o n s t a n t s d e t e r m i n e d o n a n v a lu e s o f X ~p o r hi g h er v a l ue s o f a n e e d t o b e c h o s en a s t h ea d h o c b a s i s ( G u je r & J e n k in s , 1 9 7 5 a , b g Ho w e v e r , p e a k /a v e r a g e f low r a t io inc re as es , th a n wo u ld b e r e q u i r e du n d e r c y c l i c l o a d i n g c o n d i t i o n s t h e o n l y r e l i a b l e p r o - u n d e r t h e a v e ra g e f lo w c o n di ti o n s.I n th i s e x p e r ime n ta l in v e s t ig a t io n , th e min imu m a c tu a lc e d u r e f o r d e te r m in i n g t h e s e p r o c e s s v a r i a b le s i s b y h y d r a u l ic r e t e n t io n time in th e c o n ta c t re a c to r wa s se t a tu t i l i z in g t h e g e n e r a l a c t i v a t e d s l u d g e m o d e l a s a p p l i e d a b o u t 2 0 m i n u n de r a n ex p e ct e d p e a k /a v e ra g e fl o w r a t io o fto the CS A SP . 1 1 .5 . With th is r es t r ic tion , the chosen des ign param eter s a ,r , R, and M(S, t) , the des ign of the exper imen ta l CS AS Punits was obta ined by a t r ia l and e r ror procedure . All the

    EXPERIMENTAL INVESTIGATION condi t io ns could be met on ly when X~p was less than abou t2000 mg VSS 1-1 a re la t ive ly low va lue . By dou bl ing a toI t h a s b e e n s h o wn th a t th e r e a r e fiv e ma jo r p a r a me te r s 0 .2 , a n d k e e p in g th e min im u m a c tu a l h y d r a u l i c r e t e n t io nwh ic h in f lue n c e th e re s p o n s e o f th e CS AS P , i .e . d m 'ly C O D t ime in th e c o n ta c t r e a c to r a t 2 0 min u n d e r th e p e a k /a v e r -load . M(S~), s ludge age, R, , tem pera ture T, s ludge recyc le age f low ra t io of 1 :1.5 . X ~ can be increased tora te , r , and the f ra~ ioa a l d la ir ibe t io n of s ludge m ass 3800 mg VSS 1- : , g iv ing a mo re prac t ica l design . How ever ,be tween the con tac t and s tab i l iza t ion reac tor s in te rms of , f rom a model ver i f ica t ion poin t of v iew, the la t te r des igna . F o r th i s in v e s t ig a t io n i t wa s ~ th a t th e t e mp e r a - wo u ld n o t h a v e p r o v id e d a s s e v e r e a t e s t o n th e p r e d ic tiv etu r e, r a n d a w o u ld b e k e p t c e z f, a a t , wh i l e th e :O~ lg e a g e c a p a o ty o f th e mo d e l a s th e fo r me r .a n d d a i ly C O D lo a d p a t t e r n w o u ld b e v a r i ed . Th e r e a so n Th e c h o s e n d e s ig n p a r a me te r s o f th e e x p e r ime n ta l u n i t sf o r ma in ta in in g r a n d a c o n s ta n t wa s th a t Gu je r & J e n k in s a r e g iv e n in Ta b le 1 a n d a d ia g r a mma t ic l a y o u t o f th e u n it s(1975a) repor te d tha t these two para m ete r -h av e less e f fec t is shown in Fig . 2on the e f fic iency of ca rbon aceous mater ia l r em oval by the The exp er imenta l inves t iga t ion was d iv ide d in to twop ro oe M t h a n t h e' O th er t iw e e. ~ ~ v t [ i l i ~ ~ - p h a se s : ( a) a p h a se d u r i ng w h i c h t h e t w o e x p er i m e n ta lt io n i s a l s o c o n s i s te n t w i th t h e b i - m ~ l ~ m t ~ ~ e t u n i t s we r e o p e r a te d u n d e r c o n s ta n t f lo w a n d lo a d c o n -al., 1980) , Alth ough r and 0c ha ve a mark ed ~ 9~a the d i t ions , and (b) a phase dur ing which one of the uni ts wasc o n ta c t r e a c to r h y d r a u l ic r e t e n t io n t ime , th e i~ ' t t e u la t e o p e r a te d u n d e r c y c l ic f lo w a n d lo a d c o n d i tio n s .

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    5/11

    Th e a c t iv a te d s lu d g e p r o c e s s - - P a r t 2 1 74 1Ta b le 1 . P r o c e s s d e sig n p a r a me te r s f o r th e La b o r a to r y C S A S P u n i t s

    P a r a m e t e r S l u dg e a g eNa me S y mb o l Un i t s 6 d a y s 1 0 d a y s1 . Sewage type Unse t t led Un se t t led2 . I ~ f lu en t C O D S ti mg CO D 1 -1 5 0 0 5 0 03. in f luen t T K N Nil mg N 1-1 ~ 50 ~ 504 . Ave rage inf luent f low Q I d- ~ 36 245. Tem pera tu re T C 20 206. S ludge age R, d 6 107 . Wa s te f low ra t io w - - 0 .092 0 .0838. Frac t iona l d is t r ib i t ion a - - 0 .10 0 .10of s ludge in process9 . Recycle ra t io r - - 2.0 2.010. Vo lum es 1.Pro ces s Vp 1. 14.3 14.3Co nta ct reac tor Vc 1. 2.0 2.0Stab ilizat ion reac tor V, 1. 12.3 12.311. Averag e hydrau l ic Rh hr e te n t io n t ime sC o n t a c t:

    Ac tua l Rt, h 0.44 0.67No m ina l R~c h 1 .32 1 .98Stabi l iza t ion :Ac tual R~,, h 4.07 6.27No mi na l R~, , h 4 .07 6 .2712. Leng th of tes t - - d 23 25p e r io d

    (a) Co ns tan t f low and load condi t ion s were es tab l ished d iv id ing the da i ly inf luent f eed volu me of 361 . be tweenb y f e e d in g th e r e q u i r e d v o lu m e o f s e wa g e f e e d p e r d a y a t a two p u m p s - - o n e o p e r a t in g a t a r a t e o f 1 81 d - : o v e rc o n s ta n t r a t e o v e r th e d a y . Th e av e r a g e v a lu e s o f th e d a i ly th e f u ll 2 4 h p e r io d a n d th e o th e r a t 3 6 1 d - 1 f o r ame a s u r e me n t s o f th e p r o c e s s v a r i a b les in th e c o n ta c t a n d p e r io d o f 1 2 h o n ly .s tab i l iza t ion reac tor s and in the e f f luent of the 6 and 10 Mea surem ents of the process var iab les in the con-day s ludge uni ts a re g iven in Tab le 2 , the length of the tes t tac t and s tab i l iza t ion reac tor s and in the e f fluent werep e r io d h a v in g b e e n a b o u t 2 5 d a ys . ma d e a t r e g u la r in t e r v al s o v e r a 2 4 h p e r io d - - a ty p ic a l(b) In the cyfic loadin g tes ts the 6 day s ludge age uni t se t o f da ta is shown in Fig . 3 .was opera t ed under two d if fe ren t in f luent cyc l ic f low pa t- ( fi ) The s i ne wa ve i oadin 0 p a t t ern wa s a c h ie v e d b yte rns : ( i) a square wave pa t te rn , and (i i) a s ine wav e pa t- mean s of a spec ia l ly des igned pum p tha t prod uced ante rn . I n b o th c a s e s th e d a i ly in f lu en t C O D ma s s wa s th e a p p r o x ima te s in e wa v e flo w wi th a n a mp l i tu d e o fsame and equa l to tha t fed dur ing the cons tan t f low test , abou t 0 .5 t ime s the average f low. A typica l se t o f da tai .e . 1 8 , 0 0 0 m g C OD d - t . o b s e r v e d o v e r a 2 4 h c y c le u n d e r s in e wa v e in f lu e n t( i) Th e square wave loadino pa t t ern wa s o b ta in e d b y f lo w c o n d i t io n s i s s h o wn in F ig . 4 .

    i i "CONTACT|ACTO~I S E T T L I r ~E F F L U E N T

    R I ~ C ~ CEFig . 2 . Dia gram ma tic representa t ion of the labora t ory sca le cont ac t s tab i l iza t ion process.

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    6/11

    1742 W.V. ALEXANDER,G. A. EKAMA and G. v. R. MARAISTable 2 . Averages of process var iab le measurem ents observed in labo ra tory scale contac ts tab i l iza t ion uni ts . The cor responding predic t ions of the genera l model a re a lso g iven

    Co n s ta n t f lo w a n d lo a d c o n d i t io n sSludge ageP r o c e s s v a r i a b le 6 Da y s l0 Da y sP o s i t io n S y mb o l M e a s u r e d P r e d ic te d M e a s u r e d P r e d ic te dC O D m g C O D l -Inf luent S t i* 512 512 496 496Co nta ct Stc 62 60 52 57Effluen t St* 90 81 61 75Stab ilizatio n Sts 54 45 42 43T K N m g N 1 - lInfluent Nti* 56 56 47 47C on tac t Ntc 11 15 10.5 12Effluent Nte* 15 15 12 12Stab ilizatio n Nts 1.7 3 4.8 3Ni t r a t e mg N 1 - lInflu ent Nn~ 0.0 0.0 0.0 0.0Con tac t N,c 27 27 22 23Effluent N ,, 27 27 23 23Stab ilizatio n N,s 36 37 29 31M L V S S m g V S S 1 -1C on tac t X, 1301 1489 1478 1389Stab ilizatio n X , 1772 2099 2073 1989Pro ces s X,p 1706 2016 1990 1903O x y g e n D e m a n d ( m g O 1~ z h - l )Con tac t O ~ 31 29 24 23C arb on ~ Stab ilizatio n O~ 22 23 16 16I Proc ess Oep 23 24 17 17

    Co ntac t On, 30 24 18 19Nitr if . ~ Stab iliza tion O,~ 10 11 5 5[ . Proc ess O.p 13 13 7 8( Co nta ct Ot~ 61 54 42 42

    To tal ~ Stab ilizatio n Ot~ 32 34 21 22{ , Process O , , 36 37 24 25Mass ba lances CO D+ 96% 100% 97% 100%N:~ 94% 100% 96% 100%

    * Refer s to unf i l te red samples .t " Ba s e d o n a CO D /V S S r a t io o f 1 .4 8.:~ Based o n T KN /V SS ra t io ( f , ) o f 0.10 .

    M O D E L V E RIF IC A TIO N d i c t e d T K N a n d n i t r a t e c o n c e n t r a t i o n s . F r o m a c o m -p a r is o n o f m a n y e x p e r i m ~ t a t a n d p r e di c te d r e-T h e g e n e r a l k i n e t i c s o f t h e a c t i v a t e d s l u d g e p r o c e s s s p o n s e s , i t b e c a m e e v i d e n t t h a t t h e v a l u e o f / q , ,z 0

    i n c l u d i n g n i t ri f i c at i o n d e s c r i b e d b y D o l d e t a l . ( 19 80 ) o f t en c h a n g e s fo r e a c h b a t c h o f s e w a g e p r o b a b l y d u ew e r e i n c o r p o r a t e d i n t o a g e n e r a l m o d e l f or t h e C S A S P t o c h a n g e s i n t h e c o n t e n t o f in h i b i t o r y s u b s t a nc e s . I n( in t h e f o r m o f a c o m p u t e r p r o g r a m ) . W h e n t h i s t h i s i n v e s t i g a t i o n ; i t w a s f o u n d t h a t t h e b e s t o v e r a l lm o d e l , a s w e l l a s i t s a s s o c i a te d k i n e ti c c o n s t a n ts , w a s c o r r e s p o n d e n c e b e t w e e n e x p e r i m e n t a l a n d p r e d i c te da p p l i e d t o s i m u l a t e t h e b e h a v i o u r o b s e r v e d i n t h e e x - T K N a n d n i t r a t e c o n c e n t r a t i o n s w a s o b t a i n e d w h e np e r i m e n t a l C S A S P u n i t s d e s c r i b e d a b o v e , t h e f o l l o w - P~=2o = 0 . 5 5 d - ~ . A l l t h e C S A S P s i m u l a ti o n s a r ei n g o b s e r v a t i o n s w e r e m a d e : I m s e d o n t h i s v a lu e .

    W i t h r e g a r d t o K , , 2 o , D o l d e t a l . f o u n d t h a t aC h a r u 3 e s i n k i n e t i c c o n s t a n t s v a l u e o f 8. 0 n ag C O D m g V S S d - 1 g a v e t h e b e s t c o r r e -T h e p re d i c t i o n s o f t h e r e s p o n s e o f t h e c o n t a c t r ea c - s p o n d e n c e b e t w e e n e x p e r i m e n t a l a n d p r e d i c t e d o x y -

    t o t i s v e r y s e n s it i v e t o t h e v a lu e s o f t h e m a x i m u m g e n c o n s u m p t i o n r a t e s fo r s i n gl e a n d s e r i es C M A Ss p e c i ti c g r o w t h r a t e o f t h e n i t r i f i e rs ( /~ m 2o ) a n d t h e p r o c e s se s . W h e n t h i s v a l u e fo r K m ~2 o w a s u t i l i z e d t om a x i m u m u t i l iz a t i on r a t e o f s o l u b le c a r b o n a c e o u s s i m u l a t e t h e b e h a v i o u r o f t h e C S A S P u n d e r c y c l ics u b s t r a t e (K m ~ zo ). l o a d i n g c o n d i t i o n s i t w a s f o u n d t h a t t h e p r c gi i ct e dW i t h r e g a r d t o P ~ m2 0, D o l d e t a l . f o u n d a n a v e r a c j e o x y g e n c o n s u m p t i o n r a t e i n t h e c o n t a c t r c a ~ t o r (O tc )v a l u e o f 0 .6 5 d - ~ f o r d a t a. T h e v a l u e o f / z w z o a s so c i - s h o w e d a m a r k e d c y c l ic v a r i a t i o n o v e r t h e d a y - - aa t e d w i t h e a c h b a tc h o f s e w a g e c a n b e d e t e r m i n e d b y r e su l t in c o n fl i c t w i t h t h e e x p e r i m e n t a l o b s ~ v a t i o n s .o b t a i n i n g t h e b e s t f it b e t w e e n e x p e r i m e n t a l a n d p r e- A l s o , t h e v a r i a t i o n i n t h e p r e d i c t e d s o lu b l e C O D c o n -

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    7/11

    The activated sludge proc ess--P art 2 1743C~SON OF DATA SOUAREWAVELOAD %~RhWTON (X)III!ARISON OF DATA SQUARE~.LOAD VARATON~ A N N ~ C O 0 5 0 0 M G -C O D /L S L UDG E UAR~E .8 DAYS TE ST NUMBER 06 SLLE )GE AG E 5.SDAYSI N F L U IE N T r K N 4 6 0 M G N / L T E M = E R A T U E 1 95 = C T E M PE R A T U R E 1 9 5 C8 II ~_~_ ~ PH.zzo ~EA~O o START STOP PH=720 STARTw L ~ I FF~ .O r=cu r = = B O F E E D F E E D F E E D ~ .

    --l-i8 ~ ~ ~ 8 "" " ' 8 ~. F

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    8/11

    1744 W .V . ALEXANDER,G. A. EKAMAand G. v. R. MARAISCOMIRM~ OF~'ll S~.~ ~DVAF~AT(H~ COVF~RSONOFDATASNEWAVELOADVARATO~M ~ N T COD 5 0 3 MQ-C OO /L S I ~ A Q E 5.9I~W S T E ST NUMBERC5 SLU[X~ AGE5,9DAYSMEAN INFLUENTTKN 380 MG-N/LTEMPERATLI tE20.0 "C TEMPERATURE20.0ocl~ l~ PH--720 o o PH= 72 0o ~ ~ w MiNF .~)W~

    i s,,,..., o o

    ~II .IP:-l~ Q -,',,i . . . . . ,, . . . - . , , , . . I I 8o o o I .o o i o o k . o o llt .o o ~ o o 2 ~ ,. o o 2 .. o o o o o 4 ~ o ~ = ~ o 1 6 . o o l o ~ ~ i ~ o oTIME 'HO URS' TIME

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    9/11

    The activated sludge pro cess --P art 2 1745measu red dur ing t h i s pe r iod a re l i ke ly t o be a conse - da i l y cyc l e , t he recyc l e ratio va r i ed ove r t he cyc l equence o f t he va r i a t i on i n behav iour usua l ly a ssoc i - r e su l ti ng i n f l uc tua t ing M LV SS concen t ra t i ons in thea t ed wi th b io log i ca l sys t ems, con tac t s t ab i l iza t i on reac to r s . Fo r example , unde r t he

    The ove r -p red i c t i on o f t he T K N concen t ra t i on i n squa re wave loa d in g cond i t i ons (F ig . 3 ), t he recyc l ethe con tac t r eac to r , Ntc, appe a rs t o i nd i ca t e t ha t more ra t i o was 4 :1 (2 x 36 /18) dur ing t he l ow f low pe r iodni t r i f ica t ion to ok place in the expe rime nta l uni t than and 1.33:1 (2 x 36/54) durin g the peak f low period.t he mod e l p red i ct s . How ever , t h i s i s no t r e f lec t ed i n The pe r iod o f h igh recyc l e r a t i o (4 :1 ) caused thet h e m e a s u r e d a n d p r e d ic t e d n i t ra t e c o n c e n tr a t io n s . C S A S P t o a p p r o a c h t h e C M A S P i n b e h a v i o u r s o t h a tThe rea son fo r t h i s d i sc repancy is t ha t t he n i t rogen the d if fe rence be tween the s ludge concen t ra t i ons i nf rac t ion o f t he was t e s ludge , f, , i n t he expe r imenta l t he con tac t and s t ab i l iza t i on reac to r s was sma l l . Inun i t w as s l i gh tly h ighe r , i .e . 0 .1 2m gN m gV S S - l , con t ra s t , t he l ow recyc l e r a t i o pe r iod causes a p ro -than the va lue i ncorpo ra t ed i n t he gene ra l mode l , i .e . nounce 'd dev i a t i on f rom the CM AS P so t ha t the d i f-0 .10 mg N mg VSS-~. Th i s r e su l ts i n a g rea t e r mass o f ' f erence be tween the s ludge concen t ra t i on i n t he con-n i t rogen b e ing remov ed f rom the expe r imenta l un i t t a c t and s t ab i l iza t i on reac to r s i s l a rge .v i a t he was t e s ludge than p red i c ted by the mode l . 3 . Oxygen consumption rate . In t he con tac t r eac to r ,Th i s d if fe rence i s r e f lec t ed i n t he e ff l uen t T K N con- t he expe r imenta l t o t a l oxygen consum pt ion ra t e , Otccen t ra ti ons . Fur the rmo re , by a ssuming an fn va lue o f r ema ins v i r t ua l ly cons t an t t h roug hou t t he cyc l e .0 .12 mg N mg VS S- ~ fo r t he expe r imenta l un it , an im- Co mp ared to t he CM AS P, such a h igh degree o f a t-p roved n i t rogen ba l ance wi l l be ob t a ined (Tab le 2 ). t enua t ion in t he oxygen dem and i s unexpec t ed unde rThe expe r im enta l n i t r if i ca ti on oxygen dem and m ay cyc li c i n f luen t load ing cond i ti ons~ How ever , cons ide r -be ca l cu l a t ed f rom the expe r imen ta l da t a by cons ide r - i ng squa re w ave load ing cond i t i ons (F ig . 3 ) th i s be -ing a n i t r a t e ma ss ba l ance ove r t he con tac t o r s t ab il l z - hav iou r can be exp la ined a s fo l l ows: Up on com-a t ion reac to rs . The ca rbonaceo us va lue i s g iven by the menc emen t o f t he peak f l ow pe r iod , t he ava i l ab i l it y o fd i f fe rence be tween the t o t a l and n i t r if i ca ti on va lues . A ca rbon aceous and am mo niaca l subs t ra t e s i nc reases i ncom par i son be tw een the expe r imen ta l and p red i c t ed t he con tac t r eac to r , r e su l t ing i n a g rea t e r ac t i v it y o fva lues i s g iven in Tab le 2 . The con tac t n i t ri f i ca t i on t he he t e ro t roph ic and n i t r ify ing o rgan i sms. How ever ,oxygen deman d (One) ca l cu l a ted f rom the n i t r a t e conco mi t an t wi th t he h ighe r s ludge ac t i v it y , themeas urem ent s (N~c) , i s ex t reme ly sens it i ve t o changes s ludge co ncen t ra t i on (X~,X~) i s reduced. Th e n etin t he va lues o f t he se me asu rem ent s - -a 1 mg N 1- ~ re su l t i s a re l a t ive ly cons t an t t o t a l oxygen consum p-difference in N,c resul ts in a 1 0 . 7 m g O 1- ~ h - ~ di ffer- t ion ra te .ence in O~c . In con t ra s t , t he n i t r if i ca ti on oxygen Div id ing the expe r imenta l t o t a l oxygen consu mp-dem and in t he st ab i l iza t i on reac to r (O, , ) i s r e l a ti ve ly t i on ra t e me asured in t he con tac t r ea c to r (Or) in toinsens it i ve t o changes i n t he i npu t and ou tpu t n i t r a t e t he ca rbon aceou s (Oc) and n i t r if i ca t ion (O~ ) corn-concen t ra t i ons . Tak ing in to ac coun t t he se fac to rs , i t i s ' ponen t s by deduc t ing One f rom Or l ed t o wide ly f luc -c lear tha t there i s a go od corre spo nde nce between the tuat ing resul ts----O~c is ext rem ely sensi t ive to smal lmod e l p red i c t i ons and expe r imen ta l obse rva t ions , va r i a t i ons i n t he measu red n i t r a t e concen t ra t i on .

    Consequen t ly , on ly t he p red i c t ed and expe r imenta lCycl ic f low and load condi t ions (Figs 3 an d 4) Ot~ re sponses cou ld be re l i ab ly compared .In gene ra l the cor re spondenc e be tween the p re - The mod e l sa t is fac to ri l y p red i c t s t he obse rved a t -

    d i c t ed and expe r imen ta l r e sponses unde r bo th squa re t enua t ed Ot~ re sponse . How ever , unde r squa re waveand s ine wave load ing cond i t i ons i s ve ry good . A load ing cond i t i ons (F ig . 3 ), t he mod e l i ncor rec t l y p re -de t a i led d i scuss ion o f t he comp ar i son o f each p rocess d i c ts an i nc rease in Ot~ imme dia t e ly a f t e r ce ssa t i on o fva r i ab l e i s g iven be low, t he peak f l ow pe r iod . In t he t heore t i cal mod e l t h i s

    1. COD concentration. As in t he cons t an t f l ow and . i nc rease i s caused by the i nc rease i n s ludge concen-load t e st s , a d i f fe rence be tween the f i lt e red C O D con- t r a t i on (X~, X~ ) a t a t ime when the c a rbon aceouscen t ra t i on in t he con tac t r eac to r and the unf i l te red and am mo niaca l subs t ra t e s concen t ra t i ons a re s t il lva lue in t he e f f l uen t i s appa ren t . I t appe a rs t ha t t he h igh f rom the peak f l ow pe r iod . Cons ide r ing t he d if fl -empi r i ca l pa r t i a l enm eshm ent modi f i ca t i on i n t he cu l ti e s a ssoc i a t ed wi th accura t e ly measur ing oxygenCSA SP mode l a l l ows accura t e p red i c t i ons o f t he e f fi u - consu mpt ion ra t e s i n t he con tac t r eac to r (Ekam a &ent CO D concen t ra t i on (bo th fi l te red and unf i lt e red) Mara i s , 1979) , t he d i sc repancy be tween the p red ic t edeven und er di fferent cycl ic loadin g condi t ions, and expe rimen ta l Or respon ses i s as l ike ly to be a

    2 . M L V S S concen t ra tion . The cor re spond ence consequence o f a de f ic i ency in t he t heore t i ca l mod e lbe tween the p red i c t ed and expe r imenta l ML VS S con- a s expe r imenta l e r ro r .cen t ra t i ons i s exce ll en t i n bo th cyc li c t e st s . An in t e r - In bo th cyc l ic t e st s , t he t o t a l oxygen consum pt ionesting_L obs erva t ion i s the signi f icant "w ashin g out " ra te in the stabi l iza t ion reacto r (Oa) is s l ight ly over-e f fec t o f t he M LV SS f rom the con tac t r eac to r dur ing p red i c ted . Div id ing the expe r imen ta l O s re sponsethe peak f l ow pe r iod . I t was s t a ted abo ve tha t a s t he i n to t he ca rbo naceo us (Oo. ) and n i t r if i ca ti on (On, )recyc le r a ti o i nc reased in t he C SAS P, t he p rocess com pon en t s is poss ib l e because On . is r e l a ti ve ly i n -app roac hed the CM AS P. As t he recyc le f l ow was kep t sens it ive t o sma l l v a r i a t i ons i n t he n i t r a t e conce rt -a t twice t he ave rage i n f luen t fl ow th roug hout t he t r a t i on (N. . ). Cons ide r ing t he squa re wave te s t , a

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    10/11

    1746 W.V. ALEXANDERG. A. EKAMAand G. v. R. MARAIS

    START E N D5 4 I / d 18 I / dP E A K F L O W P E A K : L O W4 0 l I I I I l t I I

    ,~ 35 ~ , ~ T h e o r e t ic a l \_ / e ~ e . . . . , E x p e r i m e r t ~ l

    : \ %z ! / _ / " O_

    z )o5 ~ ~ o .o

    I I I I I ~ / e l . I t IO 2 4 6 8 I 0 12 14 1 6 I 0 2 0 22 24

    T I M E ( h )Fig. 5. Com parison of the experimental and predic ted carbonaceou s nit r if ica t ion and tota l oxygenconsumption ra tes in the s tabi l iza t ion reactor of the CSASP under square w ave loading condi t ions a t20C.c o m p a r i s o n o f t h e p r e d i c t e d a n d e x p e r i m e n t a l O r ,, s t r a t e u t i l i z a t i o n r a t e s ; a n d ( 2) a c h a n g e i n t h eO , , a n d O c , r e s p o n s e s i s g i v e n i n F ig ~ 5 a n d s h o w s a e n m e s h m e n t m e c h a n i s m b y a c c e p t i n g t h a t a f r a c t i o ns a t i s f a c t o r y c o r r e l a t i o n , o f t h e p a r t i c u l a t e C O D w h i c h d o e s no t b e c o m e

    4. T K N and nitrate concentrations. I n g e n e r a l , t h e a d s o r b e d o n t o t h e a c t i v e m a s s , d o e s not becomet h e o r e t i c a l m o d e l s a t i s f a c t o r i l y p r e d i c t s t h e e x p e r i - e n m e s h e d i n t h e s l u d g e f l o e s a n d e s c a p e s w i t h t h em e n t a l T K N a n d n i t r a t e c o n c e n t r a t i o n s in t h e c o n - e ff lu en t.t a c t a n d s t a b i l i z a t i o n r e a c t o r s u n d e r b o t h c y c l i c W i t h t h e s e c h a n g e s i t w a s f o u n d t h a t t h e m o d e l i ss q u a r e a n d s i n e w a v e l o a d i n g c o n d i t i o n s . I n t h e s u f fi c i en t l y g e n e r a l t o g i v e a g o o d d e s c r i p t i o n o f t h ef o r m e r t e s t ( F i g . 3 ), t h e o v e r - p r e d i c t i o n o f t h e n i t r a t e b e h a v i o u r o f t h e C S A S P u n d e r c o n s t a n t a n d c y c l icc o n c e n t r a t i o n i n t h e c o n t a c t ( N , c ) a n d s t a b i l i z a t i o n c o n d i t i o n s o f l o a d i n g .r e a c t o r (N ,~ ) i s m o s t l i k e ly a t t r i b u t a b l e to a s l i g h t l y T h e i n v e s t i g a t io n i n t o t h e c y c l i c b e h a v i o u r o f t h eh i g h e r n i t r o g e n f r a c t io n i n th e sl u d g e ( f ,) o f t h e e x - C S A S P i n d i c a t e d t h a t t h e p e a k f lo w p e r i o d s r e d u c ep e r i m e n t a l u n i t t h a n a s s u m e d t h e o r e t i c a l l y . I n t h e l a t - t h e c a r b o n a c e o u s m a t e r i a l r e m o v a l a n d n i t r i f i c a ti o nt e r t e s t ( F ig . 4 ). a n i m p r o v e d p r e d i c t i o n o f t h e T K N e f fi c ie n c ie s o f t h e p r o c e s s i n tw o w a y s , i .e . b y r e d u c i n ga n d n i t r a t e c o n c e n t r a t i o n s i n c o n t a c t r e a c t o r ( N t c , ( i) t h e a c t u a l h y d r a u l i c r e t e n t i o n a s w e l l a s { i i) t h eN ~ c) w o u l d b e o b t a i n e d w i t h a s l i g h t l y h i g h e r ~ m 2 0 S l u d ge c o n c e n t r a t i o n i n t h e c o n t a c t r e a c t o r . T h i s b e -t h a n a s s u m e d ( 0.5 5 d - ~) f o r t h i s p a r t i c u l a r b a t c h o f h a v i o u r o f t h e p r o c e s s r e s u l t s i n t h e e f f lu e n t C O D a n ds e w a ge . T K N c o n c e n t r a t i o n s b e i n g v e r y s e n s i ti v e t o c y c l i c

    l o a d i n g c o n d i t i o n s . M o r e s t a b l e e f f l u e n t q u a l i t i e su n d e r c y c l ic l o a d i n g c o n d i t i o n s m a y b e p r o d u c e d b yC O N ( 1 U $ 1 O N S i n c r ea s i n g t h e d e s ig n p a r a m e t e r s a n d r a n d r e d u c i n g

    T h i s p a p e r p r o v i d e s a m e a n s w h ~ b y , i ~ i t i a l s ti - X ~ . H o w e v e r , s u ch c h a n g e s r e d u c e t h e s p e ci f ic a d v a n -m a t e s c a n b e m a d t ag e a t h a t t h e C S A S P h a s o v e r t h e C M A S P , a n d p r o -c o n c e n t r a t i o n s i n d a c e c o n f i g u r a t io n s c o a f o n n i n g m o r e t o t h e b e h a v -to rs o f a C S A S P f ro m t h e s ix i n ~ t : ~ p a r - i o ar a l c h ar a c te r i s t i c s o f t h e ~ S P .a m e t e r s a ss u m ed to g ov er n th e i a ch a ~ o u r ' d t ~ p ro - A m a jo r ~ l t y in a ~ , ~ g c ar b on -c es s. i.e . s lu d g e a g e , R , , r e cy c le r a ti o , r , ~ a t d i s- a c e ou s m a t e r i a l r e m o v a l a n d n it r if i ca t io n m o d e l s f o rt r i b u t i o n o f t h e s l u d g e m a s s - b o t w c e n t h e t w o r e a c t o r s t h e C S A S P , f o r x a~d e f i n e d b y ~, d a i l y C O D m a s s l o a d , M ~ ) a n d t h e J e n k i n s ( 19 7 5a , b ) , t (a v e r a g e p r o c e s s s l u d g e c o n c e n t r a t i o n , X ~ . T h e s ix t h t h e v a l u e s o f t h ed e s ig n p a r a m e t e r , i.e , t e m p e r a t u r e , w a s n o t co n s i d e r e d m o d e l s u n d e r t h e e n v i r o n n m a t a l c m a l i t i o t t s i n t h ei n t h i s p a p e r , f i e ld . T h e s e d i f fi c u lt i es a r e a l s o m c o t m ~ ~ . 4 h eT w o c h a n g e s t o t h e g e n e r a l a c t i v a t e d ~ a d p k ix m tic a p p l i c a t i o n o f t h e c o m p u t e r m ,m o d e l p r o p o se d b y D o l d et aL ( 19 8 0) w ~ e ~ a l t l t o u g h t h e kinetic constants o fi .e . ( 1) a c h a n g e i n t h e v a l u e o f o n e o f t h e k i n e t i c m a t e r i a l r e m o v a l m c c h a n i m a sc o n s t a n t s i n th e e x p r e s s m n s o f t h e c a r b o n a c e o u s s u b - u n c h a n g e d f o r d i f f e re n t d o m e s t i c s e w a g e s , t h e p r o c e s s

  • 7/29/2019 The Activated Sludge Process Part 2. Contact Stabilization Process

    11/11

    The act ivated s ludge pro ces s--P art 2 1747r e s p o n s e d o e s d e p e n d o n t h e i n f l u e n t s e w a g e c h a r a c - v a r i a b le s a n d s u b s e q u e n t a n a l y si s o f th e d y n a m i c b e-t e ri s fi c s, s u c h a s t h e u n b i o d e g r a d a b l e s o l u b l e a n d p a r - h a v i o u r o f t h e p r o c e s s b y c o m p u t e r m o d e l s s e e m s at i c u la t e C O D f r a c ti o n s ( f , a n d f up r e sp e c ti v e ly ) . A l s o , s a t is f a c to r y c o m p r o m i s e a n d i n d e e d a p p e a r s t o b e at h e m a x i m u m s p ec i fi c g r o w t h r a t e o f th e n i t r if i e rs a t l o g i c al a p p r o a c h t o de s ig n .2 0 C ( / ~ m , o ) h a s b e e n f o u n d t o v a r y c o n s i d e r a b l yb e t w e e n d i f f e r e n t s e w a g e s . I t a p p e a r s t h a t t h e o n l y A c k n o w l e d g e m e n t s - - T h i s research was carr ied out underway o f ov e rco m ing thes e d i f f i cu l t ie s i s to de t e rm ine con t rac t wi th the Wate r Res ea rch Commiss ion o f Sou ththes e con s tan t s in l ab or a to ry s ca le inve s t iga t io ns u t i - Afri ca . T he au thors wis h to thank the Commiss ion fo rl i z ing the wa s tew a te r to be t rea ted , pe rmiss ion to pub li sh th i s pape r .

    A f u r t h e r d i f f i c u l ty i n a p p l y i n g t h e e x i s t i n g m o d e l so f t h e C S A S P t o f u l l s c a l e d e s i g n i s a n e s t i m a t i o n o f R EF ER EN CE Sthe in f luence o f cyc l i c loa d in g cond i t ion s on the p ro - Dold P . L ., E kama G. A . & Mara i s G . V . R . (1980) T heces s beha v iou r . Onc e the s ew age cha rac te r i s t i c s have ac t iva ted s ludge p rocess Pa r t I . A genera l mode l fo r thebeen e s t ab l i s he d , the gene ra l ac t iv a ted s ludge theo ry ac t iva ted s ludge p rocess . Pro . 10 th In t . Conf.a s a p p l i e d t o t h e C S A S P a l l o w s t h e p r e d i c t i o n o f t h e 1 . A . W . P . R . , o r o n to . In Prog. War. Technol . Vol. 12,d y n a m i c b e h a v i o u r o f t h e p r o c e s s u n d e r c y cl i c l o a d - 1 98 0.Ekam a G. A. & Ma rais G. V. R. (1979) Let ter to the Edi-i n g c o n d i t i o n s. T h i s m o d e l i s v e r y c u m b e r s o m e a n d to r. W a t e r S .A . 5, 57-60.can o n ly be u t i l i z ed in the fo rm of a com pu te r p ro - Guje r W. & J enk ins D . (1975a ) T he con tac t s t ab il i za tiongram . ac t ivated s ludge process---oxygen ut i l iza t ion, s ludge pro-duction and efficiency. W a t e r R e s . 9, 553-560.Des ig n eng in ee rs p re fe r s imp le des ign cha r t s an d Guje r W. and J enk ins D . (1975b) A n i t r if i ca tion mode l fo rmo de l s . E x i s t ing mo de l s and the in i t i a l de s ign p ro - the con tac t s t ab i li za t ion ac t iva ted s ludge p rocess . W a t e rc e d u r e p r e s e n t e d i n t h i s p a p e r s a t i s f y t h i s p r e f e r e n c e . Res . 9, 561-566.H o w e v e r , d y n a m i c s o l u t i o n s o f t h e p r o c e s s b e h a v i o u r M a r a i s G . V . R . & E k a m a G . A . ( 19 7 6) T h e a c t iv a t edcan no t be ob ta in ed by s im pl i s t i c mo de l s , com pu te r s ludge p rocess . Pa r t 1 - -S teady s t a te behav iour . W a t e rS .A. 2, 163-200.mo de l s have to b e em ploy ed , i f s uch s o lu t ion s a re Ohron D. M. & Jenk ins D . (1972) T he mechan is m andrequ i red . T h e us e o f a s impl i s t i c m od e l fo r the p r e - design o f the con tac t s t ab i li za t ion ac t iva ted s ludge p ro -l i m i n a r y d e t e r m i n a t i o n o f t h e i n d e p e n d e n t p r o c e s s c es s. Adv. Wat . Po l lu t . Res . 6, 353-362.