The ability to do work. Work - cause a change or move an object. Many types- all can be changed...

59
The ability to do work. Work - cause a change or move an object. Many types- all can be changed into the other. W = F x d Energy

Transcript of The ability to do work. Work - cause a change or move an object. Many types- all can be changed...

Page 1: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

The ability to do work.Work - cause a change or move an object.

Many types- all can be changed into the other.

W = F x d

Energy

Page 2: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Potential- stored energy◦Position, condition or composition

Kinetic Energy- energy something has because its moving

Heat- the energy that moves because of a temperature difference.

Chemical energy- energy released or absorbed in a chemical change.

Electrical energy - energy of moving charges

Types of energy

Page 3: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Radiant Energy- energy that can travel through empty space (light, UV, infrared, radio) Nuclear Energy – Energy from changing the nucleus of atoms

Types of Energy con’t

Page 4: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Energy can be neither created or destroyed in ordinary changes (not nuclear), it can only change form.

Discovered by Julius Robert Mayer in 1842 Now called: The First Law of Thermodynamics

Conservation of Energy

Law of Conservation of Mass - Energy

The total amount of mass and energy in the universe is constant.

Page 5: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Some theories are based on supporting postulates.

A postulate is a statement which is agreed on by consensus among scientists.

The following are important postulates of the kinetic molecular theory:

The Kinetic Molecular Theory is useful in describing thermal energy, heat, and temperature.

Page 6: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

All matter consists of atoms. Atoms may join together to form molecules. Solids usually maintain both their shape and

their volume. Liquids maintain their volume, but not their

shape. Gases do not maintain shape or volume. They

will expand to fill a container of any size. Molecular motion is random. Molecular motion is greatest in gases, less in

liquids, and least in solids. Collisions between atoms and molecules

transfers energy between them. Molecules in motion possess kinetic energy. Molecules in gases do not exert large forces on

one another, unless they are colliding.

Page 7: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Thermal energy is the average of the potential and kinetic energies possessed by atoms and molecules experiencing random motion.

Heat is transferred by convection, conduction, or radiation. (review the definitions of these words)

Heat is the thermal energy transferred from one object to another due to differences in temperature. Heat flow from high to low temperature.

Page 8: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

There is no direct method used to measure heat. Indirect methods must be used.

Temperature is a measure of the average kinetic energy of the molecules of a substance. There is a direct relationship between temperature and avg. kinetic energy!

Temperature can be measured with a thermometer.

Page 9: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

One way a thermometer can be calibrated is by the amount of thermal expansion and contraction that occurs within a given type of substance.

Thermometers are limited by the physical properties of the substance from which they are made. (i.e., An alcohol thermometer is of little use above the boiling point of alcohol, and a mercury thermometer will not be of any use below the freezing point of mercury.)

Page 10: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Both scales are based on the freezing conditions of water, a very common and available liquid.

Since water freezes and boils at temperatures that are rather easy to generate (even before modern refrigeration), it is the most likely substance on which to base a temperature scale.

What's the difference between the Fahrenheit and Celsius temperature scales?

Page 11: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

100ºC212ºF

100ºC = 212ºF0ºC = 32ºF

0ºC 32ºF

Page 12: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

100ºC 212ºF0ºC 32ºF

100ºC = 212ºF0ºC = 32ºF

100ºC = 180ºF

How much it changes

Page 13: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

100ºC 212ºF0ºC 32ºF

100ºC = 212ºF0ºC = 32ºF

100ºC = 180ºF1ºC =

(180/100)ºF1ºC = 9/5ºF

How much it changes

Page 14: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Scientists use a third scale, called the "absolute" or Kelvin scale.

This scale was invented by William Thomson, Lord Kelvin, a British scientist who made important discoveries about heat in the 1800's.

Scientists have determined that the coldest it can get (theoretically) is minus 273.15 degrees Celsius.

This temperature has never actually been reached, though scientists have come close. The value, minus 273.15 degrees Celsius, is called "absolute zero".

At this temperature scientists believe that molecular motion would stop. You can't get any colder than that.

The Kelvin scale uses this number as zero. To get other temperatures in the Kelvin scale, you add 273 degrees to the Celsius temperature.

Page 15: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

The important idea is that temperature is really ameasure of something, the average motion (kinetic energy, KE) of the molecules.

KE = ½ mv2

Does 0°C really mean 0 KE? nope... it simply means thefreezing point of water, a convenient standard.

We have to cool things down to –273.15°C before we reach 0 KE. This is called 0 Kelvin (0 K, note: NO ° symbol.)

For phenomena that are proportional to the KE of theparticles (pressure of a gas, etc.) you must usetemperatures in K.

Page 16: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

K = °C + 273

°C = K – 273

°F = 9/5 °C + 32

°C = 5/9 (°F – 32)

Temperature Conversion

Note: In Kelvin notation, the degree sign is omitted: 283K

Page 17: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

*A mental shortcut for a rough estimate:• Double the temperature given in Celsius• Add 30 to the result to find the approximate

temperature in Fahrenheit.

Celsius to Fahrenheit:

Page 18: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Fahrenheit to Celsius:

*A mental shortcut for a rough estimate:• Subtract 30 from the temperature given in

Fahrenheit• Take half of the result to find the

approximate temperature in Celsius.

Page 19: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Energy is measured in many ways. BTUOne of the basic measuring blocks is called a BTU. This stands for British thermal unit and was invented by the English.

Btu is the amount of heat energy it takes to raise the temperature of one pound of water by one degree Fahrenheit, at sea level. One Btu equals about one blue-tip kitchen match. One thousand BTUs roughly equals: One average candy bar or

4/5 of a peanut butter and jelly sandwich. It takes about 2,000 BTUs to make a pot of coffee.

How Do We Measure Energy?

Page 20: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

A calorie is a unit of measurement for energy. Calorie is a French word derived from the Latin word: calor (heat).

Modern definitions for calorie fall into two classes:The small calorie or gram calorie approximates the

energy needed to increase the temperature of 1gram of water by 1  °C. This is about 4.184 joules.

The large calorie or kilogram calorie approximates the energy needed to increase the temperature of 1 kg of water by 1 °C. This is about 4.184 kJ, and exactly 1000 small calories.

1 cal = 4.184 J

Calorie

Page 21: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Energy also can be measured in joules. (Joules sounds exactly like the word jewels, as in diamonds and emeralds.)

A thousand joules is equal to a British thermal unit.

1,000 joules = 1 Btu So, it would take 2 million joules to make a pot of coffee.

Joule

Page 22: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

The term "joule" is named after an English scientist James Prescott Joule who lived from 1818 to 1889.

He discovered that heat is a type of energy.

One joule is the amount of energy needed to lift something weighing one pound to a height of nine inches.

Around the world, scientists measure energy in j.

Page 23: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Like in the metric system, you can have kilojoules -- "kilo" means 1,000. 1,000 joules = 1 kilojoule = 1 Btu1 cal = 4.184 J

Page 24: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Phase Changes

Solid

Liquid

Gas

Melting Vaporization

Condensation

Freezing

Page 25: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Liquid

Sublimation

Melting Vaporization

Deposition

Condensation

Solid

Freezing

Gas

endothermic

exothermic

Page 26: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Fusion (Melting)

The temperature at which a liquid and a solid are in equilibrium

The melting point for ice is 0ºC

The melting point of a substance is the same as its freezing point

Fusion (melting) is an endothermic process

Page 27: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Vaporization (Endothermic) Vaporization is the changing of a liquid to a

gas below its boiling point. Vapor pressure is the collision of many gas

particles with the walls of a sealed container. A substance in its gaseous state has more

kinetic energy than in its liquid state so it must absorb energy (take energy away) from its environment (reducing its kinetic energy or temperature) to change from a liquid to a gas.

Page 28: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Boiling Point (Endothermic)

The boiling point of a liquid is the temperature at which it boils at a certain pressure.

At the boiling point the vapor pressure exerted upward by the vapor particles equals the downward pressure of the atmosphere ("pressure up = pressure down").

The normal boiling point of a liquid is the temperate at which it boils under one atmosphere of pressure.

The “normal” boiling point of water is 100 degrees C.

Page 29: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Boiling Point and Pressure Changes Since the boiling point of a liquid is directly related to

external pressure, the boiling point of a liquid will change with external pressure.

If the air pressure is low, such as at a high altitude, it would require less vapor pressure and the boiling temperature would be less than the normal boiling point. For this reason food needs to be boiled for longer at higher altitude to become fully cooked.

Conversely, if food is put in a pressure cooker, the high pressure allows water to get much hotter than 100 ºC and food will cook much quicker.

Page 30: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Evaporation (Endothermic)

Even at room temperature liquids can be converted into gases.

A small percentage of molecules are moving with relatively high kinetic energy.

If these fast moving molecules possess enough KE to overcome attractive forces within a liquid, they can escape through the surface into the gaseous state.

The loss of the higher energy molecules due to evaporation leads to a lowering of the average kinetic energy of the remaining molecules, this results in a decrease in the temperature of the liquid.

You feel cool after being in hot water because the evaporation of water from the body has drawn heat away. Also when we sweat! ( Cooling process)

Page 31: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Condensation (Exothermic)

The phase change when a gas is converted into a liquid. When a gas condenses into its liquid state the particles

lose energy which is absorbed by the environment causing it to gain energy.

This is, in part, the cause of storms such as hurricanes. when warm, moist air rises over the southern Atlantic ocean the water vapor it carries condenses and releases heat energy.

This heat energy draws up more warm, moist air and its water vapor condenses creating a positive feedback system which creates the hurricane.

Hurricanes generally die soon after moving over land because the moisture supply which generated the heat by condensation is cut off.

Page 32: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Freezing (Exothermic)

The value of a substances freezing point and melting points are the same (the change of state is the same, only in different direction. )

Water normally freezes at 0 degrees C.

Page 33: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Sublimation

Sublimation is the process by which a solid substance changes directly into a gaseous substance without going through the liquid phase.

The most common example of sublimation is dry ice.

Dry ice is solid (frozen) carbon dioxide which sublimes into gaseous carbon dioxide.

The opposite of sublimation is deposition.

Page 34: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Page 35: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Slope = Specific Heat

gas

liquid

Solid

Page 36: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Both Solid and liquid

Page 37: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Both liquid and gas

Page 38: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Heat of Vaporizati

on

Page 39: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Heat of Fusion

Page 40: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Plateau = phase equilibrium

Page 41: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Energy and Phase Changes

Page 42: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Heat is transferred to different materials at different rates.

The specific heat capacity (C) determines the rate at which heat will be absorbed.

Even though mass is present in the formula it is an intensive property like density and is unique for each substance.

The specific heat capacity for water is 4.18J/gThe quantity of heat absorbed (Q) can be calculated by: Q=mCTm=mass T=change in temperature

Page 43: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Heat Capacity

• Heat capacity is an extensive property, meaning it depends on the mass of the object.

• Ex: 1000g of water can hold more heat than 10 g of water.

Page 44: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Q means heat energy lost or gained. Law of Conservation of Mass-Energy m= mass of substance; Cp= specific heat capacity; DT =

change in temperature

Qlost = Qgained

Three equations: Q= mass x Cp x DT

Q= Hf x mass

Q= Hv x mass

Calculating Energy

Page 45: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Page 46: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Heat of fusion energy required to change one gram of a substance from solid to liquid. (endothermic rxn)

Heat of solidification energy released when one gram of a substance changes from liquid to solid. (exothermic rxn)

For water 80 cal/g or 334 J/g

Energy and Phase Change

Page 47: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Heat of vaporization energy required to change one gram of a substance from liquid to gas. (endothermic rxn)

Heat of condensation energy released when one gram of a substance changes from gas to liquid. (exothermic rxn)

For water 540 cal/g or 2260 J/g

Energy and Phase Change

Page 48: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Three equations: Q= mass x Cp x DT

(used at slopes) Q= Hf x mass (used at s/l equilibria)

Q= Hv x mass (used at l/g equilibria)

Page 49: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Page 50: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Regents QuestionAs ice melts at standard pressure, its temperature remains at

0°C until it has completely melted. Its potential energy

(1) decreases

(2) increases

(3) remains the same

Page 51: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Regents QuestionA sample of water is heated from a liquid at 40°C to a gas at

110°C. The graph of the heating curve is shown in your answer booklet.

On the heating curve diagram provided in your answer booklet, label each of the following regions:

Liquid, only Gas, only Phase change

Liquid Only

Gas OnlyPhase change

Page 52: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

52

Regents Questionb For section QR of the graph, state what is happening to the

water molecules as heat is added.

c For section RS of the graph, state what is happening to the water molecules as heat is added.

They move faster, their temperature increases.

Their intermolecular bonds are breaking, their potential energy is increasing.

Page 53: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Regents Question

What is the melting point of this substance?

(1) 30°C (3) 90°C

(2) 55°C (4) 120°C

Page 54: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

The quantity of energy absorbed or released during a phase change can be calculated using the Heat of Fusion or Heat of Vaporization

Melting (fusion) or freezing (solidification)Q=mHf where Hf is the heat of fusion

(for water: 333.6 J/g)Boiling (vaporization) or condensingQ=mHv where Hv is the heat of vaporization

(for water: 2259 J/g)

Hf and Hv are given to Table B – m is the mass

Page 55: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Regents QuestionIn which equation does the term “heat” represent heat of

fusion?

(1) NaCl(s) + heat NaCl(l)

(2) NaOH(aq) + HCl(aq) NaCl(aq) + H2O(l)+ heat

(3) H2O(l)+ heat H2O(g)

(4) H2O(l)+ HCl(g) H3O+(aq) + Cl –(aq) + heat

Fusion refers to melting.

Page 56: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Regents Question

The solid and liquid phases of water can exist in a state of equilibrium at 1 atmosphere of pressure and a temperature of

(1) 0°C (3) 273°C

(2) 100°C (4) 373°C

Page 57: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

The total heat = the sum of all the heats you have to use Go in order

To calculate Q from ice gas

HeatIce

Below 0 °C

+

Melt Ice

At 0 °C

+

Heat Water

0 °C -100 °C

+

Boil Water

At100 °C

+

Heat Steam

Above100 °C

Page 58: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

QQ

Q

QQ

+

+

+

+

Page 59: The ability to do work.  Work - cause a change or move an object.  Many types- all can be changed into the other. W = F x d Energy.

Water

Waterand IceIce

Water and Steam

Steam

-20

0

20

40

60

80

100

120

0 40 120 220 760 800

Heating Curve for Water

Q=m x Cp x ∆TQ= Hf x m

Q=m x Cp x ∆T

Q=m x Cp x ∆TQ= Hv x m