TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector...

155
TF5240 | TC3 CNC Kinematic Transformation 1.01 14.01.2020 Version Date

Transcript of TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector...

Page 1: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

TF5240 | TC3 CNCKinematic Transformation

1.0114.01.2020

VersionDate

Page 2: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....
Page 3: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Notes on the documentation

Kinematic TransformationTF5240 | TC3 CNC 3Version 1.01

Notes on the documentationThis description is only intended for the use of trained specialists in control and automation engineering whoare familiar with the applicable national standards.It is essential that the documentation and the following notes and explanations are followed when installingand commissioning the components. It is the duty of the technical personnel to use the documentation published at the respective time of eachinstallation and commissioning.

The responsible staff must ensure that the application or use of the products described satisfy all therequirements for safety, including all the relevant laws, regulations, guidelines and standards.

Disclaimer

The documentation has been prepared with care. The products described are, however, constantly underdevelopment.We reserve the right to revise and change the documentation at any time and without prior announcement.No claims for the modification of products that have already been supplied may be made on the basis of thedata, diagrams and descriptions in this documentation.

Trademarks

Beckhoff®, TwinCAT®, EtherCAT®, EtherCAT G®, EtherCAT G10®, EtherCAT P®, Safety over EtherCAT®,TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff AutomationGmbH.Other designations used in this publication may be trademarks whose use by third parties for their ownpurposes could violate the rights of the owners.

Patent Pending

The EtherCAT technology is patent protected, in particular by the following applications and patents:EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702with corresponding applications or registrations in various other countries.

EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,Germany

Copyright

© Beckhoff Automation GmbH & Co. KG, Germany.The reproduction, distribution and utilisation of this document as well as the communication of its contents toothers without express authorisation are prohibited.Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of apatent, utility model or design.

Page 4: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

General and safety instructions

Kinematic TransformationTF5240 | TC3 CNC4 Version 1.01

General and safety instructionsIcons used and their meanings

This documentation uses the following icons next to the safety instruction and the associated text. Pleaseread the (safety) instructions carefully and comply with them at all times.

Icons in explanatory textØ Indicates an action.

ð Indicates an action statement.

DANGERAcute danger to life!If you fail to comply with the safety instruction next to this icon, there is immediate danger to human life andhealth.

CAUTIONPersonal injury and damage to machines!If you fail to comply with the safety instruction next to this icon, it may result in personal injury or damage tomachines.

NOTICERestriction or errorThis icon describes restrictions or warns of errors.

Tips and other notesThis icon indicates information to assist in general understanding or to provide additional informa-tion.

General exampleExample that clarifies the text.

NC programming exampleProgramming example (complete NC program or program sequence) of the described function or NC com-mand.

Specific version informationOptional or restricted function. The availability of this function depends on the configuration and thescope of the version.

Page 5: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Table of contents

Kinematic TransformationTF5240 | TC3 CNC 5Version 1.01

Table of contentsNotes on the documentation ....................................................................................................................... 3

General and safety instructions.................................................................................................................. 4

1 Introduction................................................................................................................................................... 101.1 Rotary axes and direction of rotation.................................................................................................... 121.2 Linear axes and motion direction.......................................................................................................... 12

2 Kinematic transformations .......................................................................................................................... 132.1 KIN_TYP_1 – 5-axis kinematics/single-column bed machine .............................................................. 132.2 KIN_TYP_2 – 5-axis kinematics with rotary/swivel head...................................................................... 172.3 KIN_TYP_3 – four-axis kinematics with double spindle head - top spindle.......................................... 192.4 KIN_TYP_5 – 4-axis kinematics with crosshead for 4 tools ................................................................. 212.5 KIN_TYP_6 – 4-axis kinematics with underfloor milling tool ................................................................ 252.6 KIN_TYP_7 – 5-axis kinematics with man. auxiliary axis (drilling) ....................................................... 272.7 KIN_TYP_8 – 5-axis kinematics with man. auxiliary axis (sawing) ...................................................... 312.8 KIN_TYP_9 – 5-axis kinematics (boring and milling unit)..................................................................... 342.9 KIN_TYP_10 – 5-axis kinematics (sawing) .......................................................................................... 372.10 KIN_TYP_11 – 5-axis kinematics with oblique tool head ..................................................................... 392.11 KIN_TYP_12 – Tripod kinematics ........................................................................................................ 422.12 KIN_TYP_16 – 5-axis kinematics ......................................................................................................... 462.13 KIN_TYP_17 – five-axis kinematics with 2 manual auxiliary axes ....................................................... 492.14 KIN_TYP_18 – five-axis kinematics with 2 manual auxiliary axes (sawing) ......................................... 512.15 KIN_TYP_19 – Tripod kinematics ........................................................................................................ 532.16 KIN_TYP_21 – Lambda kinematics...................................................................................................... 562.17 KIN_TYP_22 – 5-axis kinematics with X/Y workpiece table................................................................. 602.18 KIN_TYP_23 – 5-axis kinematics with X/Y/B workpiece table ............................................................. 622.19 KIN_TYP_25 – 5-axis kinematics with plasma/laser head ................................................................... 642.20 KIN_TYP_28 – 5-axis kinematics ......................................................................................................... 672.21 KIN_TYP_30 – 4-axis kinematics ......................................................................................................... 702.22 KIN_TYP_33 – 5-axis kinematics with oblique tool head ..................................................................... 722.23 KIN_TYP_34 – 4-axis kinematics with X/C workpiece table................................................................. 752.24 KIN_TYP_36 – SCARA kinematics ...................................................................................................... 772.25 KIN_TYP_52 – 5-axis kinematics with A/B workpiece table................................................................. 822.26 KIN_TYP_57 – 5-axis kinematics with B/C workpiece table................................................................. 842.27 KIN_TYP_58 – Five-axis kinematics with A/C workpiece table............................................................ 882.28 Cardanic kinematics ............................................................................................................................. 92

2.28.1 KIN_TYP_59 – Cardanic kinematics with C/A head .............................................................  922.28.2 KIN_TYP_60 – Cardanic kinematics with C/B head .............................................................  100

2.29 KIN_TYP_61 – 5-axis kinematics with Y/A workpiece table................................................................. 1042.30 KIN_TYP_63 – 5-axis kinematics with X/Y/B workpiece table ............................................................. 1092.31 KIN_TYP_64 – 6-axis kinematics with C/A/C workpiece table ............................................................. 1142.32 KIN_TYP_70 – 5-axis kinematics ......................................................................................................... 1172.33 KIN_TYP_76 – 5-axis kinematics with MTCP oblique tool head .......................................................... 1202.34 KIN_TYP_80 – 5-axis kinematics with A/B workpiece table................................................................. 1242.35 KIN_TYP_81 – 5-axis kinematics with B/A workpiece table................................................................. 129

Page 6: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Table of contents

Kinematic TransformationTF5240 | TC3 CNC6 Version 1.01

2.36 KIN_TYP_82 – 6-axis kinematics with C workpiece table .................................................................... 1342.37 KIN_TYP_85 – Lever arm kinematics .................................................................................................. 138

3 Further kinematic transformations ............................................................................................................. 1403.1 KIN_TYP_24 – Hexapod kinematics .................................................................................................... 1403.2 KIN_TYP_37 – Flexpicker kinematics .................................................................................................. 1413.3 KIN_TYP_45 – 6-axis articulated robot kinematics .............................................................................. 144

4 Classification of transformations................................................................................................................ 1484.1 Transformation type.............................................................................................................................. 1484.2 Kinematic type ...................................................................................................................................... 1504.3 Application ............................................................................................................................................ 152

5 Definition of terms........................................................................................................................................ 154

6 Support and Service..................................................................................................................................... 155

Page 7: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

List of figures

Kinematic TransformationTF5240 | TC3 CNC 7Version 1.01

List of figuresFig. 1 Coordinate systems and motion directions.................................................................................. 12Fig. 2 Kinematics of the single-column bed machine ............................................................................ 14Fig. 3 Offsets in tool head...................................................................................................................... 15Fig. 4 Offsets on workpiece holder ........................................................................................................ 16Fig. 5 Kinematics of the 5-axis milling machine with rotary/swivel head ............................................... 17Fig. 6 Sizes L, TX, HD1, HD2 and HD3 of the rotary/swivel head......................................................... 18Fig. 7 Front view .................................................................................................................................... 18Fig. 8 Kinematic structure of the 4-axis milling machine with double spindle head ............................... 19Fig. 9 Side view and front view of the double spindle head................................................................... 20Fig. 10 4-axis kinematics with crosshead for 4 tools ............................................................................... 21Fig. 11 Tool crosshead ............................................................................................................................ 22Fig. 12 Tool crosshead with zero positions of the tools 1 to 4 ................................................................ 23Fig. 13 4-axis kinematics with underfloor milling tool............................................................................... 25Fig. 14 Tool head for underfloor milling (zero position where HD4 = 0) .................................................. 26Fig. 15 5-axis kinematics (boring and milling tool with manual auxiliary axis A)...................................... 28Fig. 16 5-axis boring and milling tool (zero position where HD3=0, HD4=0, CM=0) ............................... 29Fig. 17 5-axis kinematics (sawing tool with manual auxiliary axis A)....................................................... 31Fig. 18 5-axis sawing tool (zero position where HD5 = 0, HD4 = +90,CM=0) ......................................... 32Fig. 19 5-axis kinematics (boring and milling unit)................................................................................... 34Fig. 20 5-axis boring and milling tool (zero position where HD3 = 0, AM=0, HD4=0, CM=0).................. 35Fig. 21 5-axis kinematics (sawing tool).................................................................................................... 37Fig. 22 5-axis sawing tool (zero position where HD5 =0, CM=0, HD4 =0, AM =90)................................ 38Fig. 23 Axis configuration of the 5-axis machine with oblique angle head .............................................. 39Fig. 24 Angles and lengths at the oblique angle head............................................................................. 40Fig. 25 Tripod kinematics......................................................................................................................... 42Fig. 26 Vector representation of strut kinematics .................................................................................... 43Fig. 27 Offset dimensions of strut kinematics .......................................................................................... 44Fig. 28 Axis configuration of 5-axis machine ........................................................................................... 46Fig. 29 Parameters of rotary/swivel head ................................................................................................ 47Fig. 30 5-axis kinematics (boring and milling tool with manual auxiliary axes C and A).......................... 49Fig. 31 Boring and milling tool (zero position where HD3 = 0, HD4 = 0) ................................................. 50Fig. 32 5-axis kinematics (sawing tool with manual auxiliary axes C and A)........................................... 51Fig. 33 Sawing tool (zero position where HD5 = 0, HD4 = +90).............................................................. 52Fig. 34 Tripod kinematics......................................................................................................................... 53Fig. 35 Kinematic offsets ......................................................................................................................... 54Fig. 36 Lambda kinematics...................................................................................................................... 56Fig. 37 Lambda kinematics, variant 1 ...................................................................................................... 57Fig. 38 Lambda kinematics, variant 2 ...................................................................................................... 58Fig. 39 Axis configuration of 5-axis machine ........................................................................................... 60Fig. 40 Kinematic offsets ......................................................................................................................... 61Fig. 41 Axis configuration of 5-axis machine ........................................................................................... 62Fig. 42 Kinematic offsets ......................................................................................................................... 63Fig. 43 5-axis kinematics (plasma/laser head) ........................................................................................ 64Fig. 44 5-axis plasma/laser head (zero position where HD3 = 0, AM=0, HD4=0, CM=0) ....................... 65

Page 8: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

List of figures

Kinematic TransformationTF5240 | TC3 CNC8 Version 1.01

Fig. 45 When the head is in oblique position, the torch tip is at a constant height above the workpiece,i.e. where A!= 0 is the effective length L2 > L1............................................................................ 66

Fig. 46 5-axis kinematics ......................................................................................................................... 67Fig. 47 Tool head (zero position where HD3 = 0, A=0, HD4=0, C=0) ..................................................... 68Fig. 48 4-axis kinematics (boring and milling unit)................................................................................... 70Fig. 49 Offsets of 4-axis kinematics......................................................................................................... 71Fig. 50 5-axis oblique tool head............................................................................................................... 72Fig. 51 Oblique tool head axis in zero position, HD7=0........................................................................... 73Fig. 52 Oblique tool head with 180 degree head offset in zero position, HD7=1 .................................... 74Fig. 53 4-axis C axis kinematics ............................................................................................................. 75Fig. 54 Origin offsets in rotary C axis workpiece holder .......................................................................... 76Fig. 55 SCARA kinematics ...................................................................................................................... 78Fig. 56 SCARA kinematics in zero position (C1=0, C2=0, C3=0)............................................................ 79Fig. 57 Right-handed C2 >=0 or < 180 degrees ...................................................................................... 80Fig. 58 Left-handed C2 <=0 or > 180 degrees ........................................................................................ 81Fig. 59 Kinematics of 5-axis milling machine........................................................................................... 82Fig. 60 Definition of offset parameters..................................................................................................... 83Fig. 61 Definition of offset parameters in front view................................................................................. 83Fig. 62 Kinematics of 5-axis machine with BC workpiece table............................................................... 84Fig. 63 Offsets in Y/Z view....................................................................................................................... 85Fig. 64 Offsets in X/Z view....................................................................................................................... 86Fig. 65 Kinematics of 5-axis machine with AC workpiece table............................................................... 88Fig. 66 Offsets in X/Z view....................................................................................................................... 89Fig. 67 Offsets in Y/Z view....................................................................................................................... 90Fig. 68 Cardanic kinematic with CA head................................................................................................ 92Fig. 69 Offsets of cardanic CA 5-axis head ............................................................................................. 93Fig. 70 Cardanic head with ideal head geometry (intersection of C-A axis is located in tool axis).......... 95Fig. 71 Cardanic head with offset C axis (C axis not located in tool axis) ............................................... 96Fig. 72 Cardanic head with saw tool and TCP at saw tooth .................................................................... 98Fig. 73 Angle representations – saw tool and TCP ................................................................................. 99Fig. 74 Cardanic kinematic with CB head ............................................................................................... 100Fig. 75 Offsets of cardanic CB 5-axis head ............................................................................................. 101Fig. 76 Cardanic head with ideal head geometry (intersection of C and B axis located in tool axis)....... 103Fig. 77 Axis configuration of 5-axis machine ........................................................................................... 104Fig. 78 Offsets of tool head...................................................................................................................... 105Fig. 79 Offsets of workpiece holder ......................................................................................................... 106Fig. 80 Ideal and real z zero position....................................................................................................... 107Fig. 81 Axis configuration of 5-axis machine ........................................................................................... 109Fig. 82 Offsets of tool head...................................................................................................................... 110Fig. 83 Offsets of workpiece holder ......................................................................................................... 111Fig. 84 Ideal and real Z zero position ...................................................................................................... 112Fig. 85 Kinematic structure of 6-axis machine with CAC workpiece table............................................... 114Fig. 86 Offset parameters of CAC workpiece table ................................................................................. 115Fig. 87 Axis configuration of 5-axis machine ........................................................................................... 117Fig. 88 Tool head parameters.................................................................................................................. 118Fig. 89 Angular offset of rotary/swivel head............................................................................................. 119

Page 9: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

List of figures

Kinematic TransformationTF5240 | TC3 CNC 9Version 1.01

Fig. 90 Axis configuration of 5-axis machine ........................................................................................... 121Fig. 91 Tool head parameters.................................................................................................................. 122Fig. 92 Angle offset of bevel head with regard to mounting..................................................................... 123Fig. 93 Axis configuration of 5-axis machine ........................................................................................... 124Fig. 94 Offsets of tool head...................................................................................................................... 125Fig. 95 Offsets of workpiece holder ......................................................................................................... 126Fig. 96 Ideal and real Z zero position ...................................................................................................... 127Fig. 97 Axis configuration of 5-axis machine ........................................................................................... 129Fig. 98 Offsets of tool head...................................................................................................................... 130Fig. 99 Offsets of workpiece holder ......................................................................................................... 131Fig. 100 Ideal and real Z zero position ...................................................................................................... 132Fig. 101 Axis configuration of 6-axis machine ........................................................................................... 134Fig. 102 Tool head parameters.................................................................................................................. 135Fig. 103 Offsets on workpiece holder ........................................................................................................ 136Fig. 104 Position of the coordinate system................................................................................................ 138Fig. 105 Axis configuration for left-handed beam ...................................................................................... 139Fig. 106 Axis configuration for right-handed beam.................................................................................... 139Fig. 107 6-axis parallel kinematics machine .............................................................................................. 140Fig. 108 Overhead Flexpicker kinematics.................................................................................................. 141Fig. 109 Offset dimensions of Flexpicker kinematics................................................................................. 142Fig. 110 6-axis articulated robot ................................................................................................................ 144Fig. 111 HD offset data in side view .......................................................................................................... 145Fig. 112 Zero position for HD145 and HD15 ............................................................................................. 146Fig. 113 Articulated robot, top view ........................................................................................................... 146

Page 10: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Introduction

Kinematic TransformationTF5240 | TC3 CNC10 Version 1.01

1 IntroductionLinks to other documents

For the sake of clarity, links to other documents and parameters are abbreviated, e.g. [PROG] for theProgramming Manual or P-AXIS-00001 for an axis parameter.

For technical reasons, these links only function in the Online Help (HMTL5, CHM) but not in pdf files sincepdfs do not support cross-linking.

Transformation types

The transformations listed below are 3, 4, 5 and 6-axis kinematic transformations. They are only required onmachines with

• non-Cartesian axis arrangement or• with rotary axes

to adjust orientation if programming takes place in the WCS (Workpiece Coordinate System). In general, thiscase results in non-linear equations that reflect the correlation between workpiece coordinates and machinecoordinates.

Workpiece axes are axes that are located on the workpiece side in the kinematic chain. Tool axes are axeswhich are on the tool side.

A distinction is made between the following transformation types• RTCP Transformation (Rotation Tool Centre Point): In this case, spatial positions are programmed in

the WCS. The tool direction is set by programming the rotary machine axes (e.g. B and C areindependent of the machine). Auxiliary functions permit automatic tool orientation to rotated coordinatesystems in space.

Example of NC program line: N10 X100 Y20 Z30 B0 C0• Complete transformation: In this case, spatial curves and the tool machining orientation are

programmed by position and orientation (point-vector sequences) and are always independent of themachine type with 6 coordinates (*).

Example of NC program line: N10 X100 Y20 Z30 A0 B0 C1

(*) Depending on the degrees of freedom of a kinematic feature, only the position may be programmed by 3coordinates (e. g. Tripod).

Kinematics ID

The ID required to use a specific kinematic feature results from the specified kinematic type as follows:

KIN_TYP_1        1

KIN_TYP_2        2

etc.

The HDi offsets of a kinematic feature correspond to the kinematic offsets in the channel parameters(kinematik[ID].wz_kopf_versatz[i-1] Version 2.6.0. or kinematik[ID].param[i-1] as of Version 2.6.3).Alternatively, these offsets can be entered in the corresponding value of the tool parameters (P-TOOL-00009).

The unit of the offset parameters is 0.1μm.

Page 11: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Introduction

Kinematic TransformationTF5240 | TC3 CNC 11Version 1.01

NOTICEWhen kinematic transformation is active, axis-specific tool offsets in ax_versatz[<ax_index>] (P-TOOL-00006) are only taken into consideration if axes are not influenced by the transformation function.Depending on the transformation type, they typically refer to all axes with index > 2 when RTCP is used.The axis-specific tool offsets of the first 3 axes (index 0, 1, 2) are not considered when transformation isactive. If tool offsets should also be effective for these axes when transformation is active, enter the valuesin the kinematic offsets of the tool (P-TOOL-00009) mentioned above.

The necessary kinematic-specific axis configuration setting must be entered in the channel parameters.

It is essential to use the correct axis index sequence for the selected transformation.

Page 12: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Introduction

Kinematic TransformationTF5240 | TC3 CNC12 Version 1.01

1.1 Rotary axes and direction of rotationThe figure below shows the positive directions of rotation of rotary axes. The base is a right-handedCartesian coordinate system.

Rotation is referred to as positive if it is counter-clockwise when viewed in the direction of the arrowhead ofthe coordinate system axes. If the rotary axis rotates around the X axis, it is referred to as the "A axis"; whenrotated around the Y axis, it is referred to as the "B axis" and so on. If not separately stated, these directionsof rotation are used in kinematic transformations involving rotary axes.

+BM

+CM

+AM

ZM

YM

XM

Fig. 1: Coordinate systems and motion directions

1.2 Linear axes and motion directionThe motion directions of linear axes must be adjusted so that the relative motion between tool and workpieceis the same as in 2.5 D mode. This means therefore, when linear axes move the workpiece, the motiondirection is opposite to the axis directions of the workpiece coordinate system.

Page 13: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 13Version 1.01

2 Kinematic transformations

2.1 KIN_TYP_1 – 5-axis kinematics/single-column bedmachine

Kinematic structure

The kinematic structure of this machine consists of 2 translatory axes and 1 rotary axis in the workpiece aswell as 1 translatory axis and 1 rotary axis in the tool.

Axis configuration in NC channelAxis identifier X,Y, Z, B, C

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes Z, B X, Y, C

Page 14: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC14 Version 1.01

+X

-X

+Z

-Z

+Y

-Y

YwZw

Xw

+C -C

-B

+B

Fig. 2: Kinematics of the single-column bed machine

Page 15: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 15Version 1.01

HD4

HD6

B

-

+

HD3

HD2

HD1

HD2

TL HD5

B+-

Zw

Yw

Zw

Xw

Fig. 3: Offsets in tool head

Page 16: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC16 Version 1.01

Yw

Xw

Zw

Xw

HD9

C+-

HD7

HD8

Fig. 4: Offsets on workpiece holder

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset tool holding device to rotation point B axisHD2 1 Z offset rotation point B-axis to reference point tool slideHD3 2 X offset reference point tool slide to rotation point B axisHD4 3 Y offset reference point tool slide to rotation point B axisHD5 4 X offset rotation point B axis to tool holding deviceHD6 5 Y offset rotation point B axis to tool holding deviceHD7 6 X offset machine origin MNP to rotary axis CHD8 7 Y offset machine origin MNP to rotary axis CHD9 8 Z offset machine origin MNP to rotary axis CHD10 9 Rotary offset rotary axis BHD11 10 Rotary offset rotary axis CHD13 12 Rotation direction B axis (*), 0: negative, 1 positiveHD14 13 Rotation direction C axis, 0 positive, 1 negative

(*) The rotation direction of the B axis is mathematically negative.

Page 17: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 17Version 1.01

2.2 KIN_TYP_2 – 5-axis kinematics with rotary/swivel headKinematic structure

The kinematic structure of this machine consists of 3 translatory axes and 2 rotary axes in the tool (rotary/swivel head).

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, A, B -

YwZw

Xw

-Y

+Y

-X

+X

+Z

-Z

+A

-A

-B

+B

Fig. 5: Kinematics of the 5-axis milling machine with rotary/swivel head

The geometry constants HD1, HD2 and HD3 are required to describe the rotary/swivel head of the machinein the figure above. The figure below shows their application. The rotary/swivel head is shown in top view.

Page 18: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC18 Version 1.01

HD1

TL

HD3

Z

X

Fig. 6: Sizes L, TX, HD1, HD2 and HD3 of the rotary/swivel head

HD2

Z

Y

Fig. 7: Front view

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Offset tool holding device to rotation point B axisHD2 1 Y offset from B axis to A axisHD3 2 X offset from B axis to A axis

Page 19: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 19Version 1.01

2.3 KIN_TYP_3 – four-axis kinematics with double spindlehead - top spindle

Kinematic structure

The kinematic structure of the machine consists of 3 translatory axes and 1 rotary axis in the tool (doublespindle head).

KIN_TYP_3 selects the top spindle; KIN_TYP_4 selects the bottom spindle.

Axis configuration in the NC channelAxis identifier X, Y, Z, B

Axis index 0, 1, 2, 3,Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, B -

-X

+X

-Y

+Y

+Z

-Z +B

-B

YwZw

Xw

Fig. 8: Kinematic structure of the 4-axis milling machine with double spindle head

Page 20: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC20 Version 1.01

L

HD1

TX

HD3

BM

BM

HD2

Fig. 9: Side view and front view of the double spindle head

The top figure shows the structure of the milling head for the zero position of the B axis. It features 2 spindles(referred to in this document as top and bottom spindle, irrespective of the current position of the B axis) sothat 2 tools can be clamped rotated by 180° relative to each other.

A command in the NC program allows selection of the two spindles or which of the 2 tools is currently active.

If the top spindle is active, the programmed value for the B axis must be changed as follows:

bM=bM+180°

Thus, changing spindles means rotating the B axis through an angle of 180° and translatory shifts of all 3linear axes. This is due to the geometry constants when RTCP is active.

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Offset tool holding device to rotation point B axisHD2 1 Y offset tool headHD3 2 X offset from tool holding device to B axis

Page 21: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 21Version 1.01

2.4 KIN_TYP_5 – 4-axis kinematics with crosshead for 4tools

Kinematic structure

The kinematic structure consists of 3 translatory axes and 1 rotary axis in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, C

Axis index 0, 1, 2, 3,Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C -

-Y

+Y

+X

-X

+Z

-Z

YwZw

Xw

-C+C

Fig. 10: 4-axis kinematics with crosshead for 4 tools

Page 22: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC22 Version 1.01

X

Y

Z

Y

HD4

CM

2

3 1

HD7

L HD1

HD8

HD3

HD2

4

CM

1

2

3

Fig. 11: Tool crosshead

The tool that is currently active is specified by assigning tool offset HD5 to the C axis. HD5 is calculatedpositively from the zero position of the C axis (Y axis) in the direction of the tool position.

If the 4 tools are arranged at right angles to each other as shown in the figure above, changing spindlesresults in a rotation of the C axis through 90° or 180° and translatory shifts of the X axis and Y axis. This isdue to the geometry constants when RTCP is active.

Page 23: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 23Version 1.01

1

2

3

4

HD5=-90L

HD1

CM

HD2

1

23

4

HD5=180

L

HD1CM

HD3

1

2

3

4

HD5=90

CM

HD3L

HD1

L

HD1

HD5=0

HD2

CM

1

2

3

4

Fig. 12: Tool crosshead with zero positions of the tools 1 to 4

A data record containing head parameters must be kept for each head tool. The related tool headdata record is used to select one of the tools 1 to 4.

To measure the head offsets of the individual tools, the related tool is rotated and brought to zero position oftool 1 (positive Y direction).

Besides the uniform head parameters HD1, HD4, HD5, head parameter HD2 is used for tools 1 and 2 andhead parameter HD3 for tools 3 and 4.

Page 24: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC24 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Offset tool holding device to reference pointHD2 1 Offset reference point rotation centre point C axis tool 1 and 2HD3 2 Offset reference point rotation centre point C axis tool 3 and 4HD4 3 Z axis offset tool holding deviceHD5 4 Rotary angular offset C axis zero positionHD7 6 Static tool offset in XHD8 7 Static tool offset in Y

Page 25: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 25Version 1.01

2.5 KIN_TYP_6 – 4-axis kinematics with underfloor millingtool

Kinematic structure

The kinematic structure consists of 3 translatory axes and 1 rotary axis in the tool. A special feature of thiskinematic structure is that the tool points in the positive Z direction.

Axis configuration in the NC channelAxis identifier X, Y, Z, C

Axis index 0, 1, 2, 3,Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C -

+X

-X

-Y

+Y

+Z

-Z

+C -C

YwZw

Xw

Fig. 13: 4-axis kinematics with underfloor milling tool

Page 26: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC26 Version 1.01

Y

X

TX=LHD2

HD9

HD7

CM

CM

HD4

HD8

MZP

HD3

HD10

Y

Z

Fig. 14: Tool head for underfloor milling (zero position where HD4 = 0)

The axes are arranged as for a right-handed system. The zero position of the C axis is in the positivedirection of the Y axis.

Offset data of kinematics

HD offset param[i] DescriptionHD2 1 Z axis offset tool holding deviceHD3 2 Y axis offset rotary axis C axis to tool rotary axisHD4 3 Rotary angular offset C axis zero positionHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

Page 27: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 27Version 1.01

2.6 KIN_TYP_7 – 5-axis kinematics with man. auxiliary axis(drilling)

Kinematic structure

The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool. A manuallyadjustable rotary 5th axis continues to be available. This fifth axis cannot be addressed from the NCprogram.

Axis configuration in the NC channelAxis identifier X, Y, Z, C

Axis index 0, 1, 2, 3,Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, A, C -

Auxiliary axes A -

Page 28: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC28 Version 1.01

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A

-A

Fig. 15: 5-axis kinematics (boring and milling tool with manual auxiliary axis A)

Page 29: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 29Version 1.01

Y

X

AMHD3

HD1

L

HD2

HD6

CM

CM

HD4

HD7

HD8HD5

Z

YFig. 16: 5-axis boring and milling tool (zero position where HD3=0, HD4=0, CM=0)

The axes are arranged as for a right-handed system. The zero position of the A axis is in the negativedirection of the Z axis.

The automatic orientation setting of the 5-axis tool head with manually adjustable A axis depends on theposition of the A axis. If the physical machine axis position and the value in the HD parameter of the A axisdo not match, no correct automatic alignment is possible.

Page 30: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC30 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point of A axis (swivel axis)HD2 1 Z axis offset rotation point A axis to tool head reference pointHD3 2 Fixed angle setting of rotary A axis (swivel axis)HD4 3 Angular offset tool to C axis zero positionHD5 4 Y axis offset rotation point A axis to rotation point C axis (offset)HD6 5 X axis offset tool head reference point to rotation point C axis (offset)HD7 6 Static tool offset in XHD8 7 Static tool offset in Y

Page 31: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 31Version 1.01

2.7 KIN_TYP_8 – 5-axis kinematics with man. auxiliary axis(sawing)

Kinematic structure

The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool. A manuallyadjustable rotary 5th axis continues to be available. This axis cannot be addressed from the NC program.

Axis configuration in the NC channelAxis identifier X, Y, Z, C

Axis index 0, 1, 2, 3,Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, A, C -

Auxiliary axes A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A

-A

Fig. 17: 5-axis kinematics (sawing tool with manual auxiliary axis A)

Page 32: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC32 Version 1.01

HD3

side view

AM

HD4

HD2

TX=L

TCP

CM

CM

HD10

HD9

HD7HD8

HD5

MZP

Top view

Y

X

Z

Y

Fig. 18: 5-axis sawing tool (zero position where HD5 = 0, HD4 = +90,CM=0)

The automatic orientation setting of the 5-axis tool head with manually adjustable A axis depends on theposition of the A axis.

If the physical machine axis position and the value in the HD parameter of the A axis do not match, nocorrect automatic alignment is possible.

Page 33: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 33Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

axis)HD3 2 Z axis offset from rotation point A axis to tool reference pointHD4 3 Fixed angle setting of rotary A axis (swivel axis)HD5 4 Rotary angular offset C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

Page 34: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC34 Version 1.01

2.8 KIN_TYP_9 – 5-axis kinematics (boring and millingunit)

Kinematic structure

The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C, A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A

- A

Fig. 19: 5-axis kinematics (boring and milling unit)

Page 35: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 35Version 1.01

Y

X

TCP

HD6

A-Axis

MK K M

HD5

HD2

HD8

HD1

L

C-Axis

HD9

HD7

MHD8

K

Yprog

Z

Y

Z

XXprog

Zprog

Fig. 20: 5-axis boring and milling tool (zero position where HD3 = 0, AM=0, HD4=0, CM=0)

Page 36: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC36 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset from tool holding device to rotation point A axis (swivel

axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset milling tool axis to rotation point A axis

Page 37: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 37Version 1.01

2.9 KIN_TYP_10 – 5-axis kinematics (sawing)Kinematic structure

The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C, A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A

-A

Fig. 21: 5-axis kinematics (sawing tool)

Page 38: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC38 Version 1.01

HD3

side view

AM

HD4

HD2

TX=L

TCP

CM

CM

HD10

HD9

HD7HD8

HD5

MZP

Top view

Y

X

Z

Y

Fig. 22: 5-axis sawing tool (zero position where HD5 =0, CM=0, HD4 =0, AM =90)

Offset data of kinematics

HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

axis)HD3 2 Z axis offset from rotation point A axis (swivel axis) to tool reference

pointHD4 3 Rotary angular offset A axisHD5 4 Rotary angular offset C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

Page 39: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 39Version 1.01

2.10 KIN_TYP_11 – 5-axis kinematics with oblique tool headKinematic structure

The kinematic structure consists of 3 translatory Cartesian axes and 2 rotary axes. As a special feature themachine has an oblique B axis.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, B Z, A

+Z

-Z

YwZw

Xw

-A

-X

+X

-Y

+Y+B

-B

+A

Fig. 23: Axis configuration of the 5-axis machine with oblique angle head

Page 40: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC40 Version 1.01

Z

Y

HDZ=HD2

HD1

L

DI

a= HD3

b

Fig. 24: Angles and lengths at the oblique angle head

The design of the oblique B axis is the most striking feature of the kinematic structure. If the tool length isselected such that the TCP (tool centre point) lies exactly on the extension of the B axis (tool offset HDZ), nocompensation motions are required in the translatory axes when the tool orientation via the B axis changes(compensation motions due to changes in A axis orientation are always present). If the selected tool length isnot ideal (i.e. if the TCP is not exactly on the extension of the B axis), there are minor additionalcompensation motions on the linear axes depending on the deviation from the ideal length.

Due to the particular design of the B axis, there can be no singular points in the backward transformation ofthe orientation axes. On the other hand, not all tool orientations can be selected (see below).

The zero positions of machine axes XM, YM, ZM are selected such that the fictitious extensions of AM andBM intersect. The zero position of BM is selected such that the tool is in a vertical position and,consequently, parallel to Z0 if bM=0 (The figure “Axis configuration of the 5-axis machine with oblique anglehead” shows the zero position of BM). Expediently, the zero position of AM should be selected such that theY0, Z0 workpiece axes run parallel to the directions of the machine axes.

HDZ represents the ideal tool length as geometry parameter of the machine kinematics; HD1 represents thefirst tool head parameter; L is the actual tool length (milling cutter length).

Please note that l is a signed value and may also be negative.

Page 41: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 41Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to tool head reference pointHD2 1 Ideal tool lengthHD3 2 Angle between B axis and Z axis (oblique angle)

Page 42: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC42 Version 1.01

2.11 KIN_TYP_12 – Tripod kinematicsKinematic structure

The strut kinematic structure (referred to as “tripod”) consists of 3 translatory axes in a non-Cartesianarrangement. Strut pairs parallel to each other carry the tool holder platform. Tool orientation is constant.

Axis configuration in the NC channelAxis identifier X, Y, Z (Z1, Z2, Z3)

Axis index 0, 1, 2Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z -

YwZw

Xw

+Z2

-Z2

+Z1

-Z1

+Z3

-Z3

Fig. 25: Tripod kinematics

Page 43: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 43Version 1.01

B2

B3

B1

R1

R3

R2

e2

e3

e1 R1

B1

P

B2

I2

I3

I1

r1

r1

r2

r3

Z

X

Y

X´Y´

Fig. 26: Vector representation of strut kinematics

Page 44: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC44 Version 1.01

Yw

Xw

R=HD5

W_Z1Z3=HD9

W_Z2Z3=HD10

W_Z1Z2=360°-W_Z1Z3W_Z2Z3

Z1

Z2

Z3

Machine axis carrier tool holder platform

(Stewardplatform)

r=HD6

Z1 Z3 Z2

HD4

SL=HD7

0

TXHD1

L

Fig. 27: Offset dimensions of strut kinematics

The parameter HD8 is used to toggle between an ideal (1) and non-ideal (0) tripod. An ideal tripod has anangle of 120° between all columns. A non-ideal tripod must be defined by the angles HD9 and HD10. The third angle between columns is calculated as follows:

W_Z1Z2 = 360° - HD9 – HD10 = 360° - W_Z2Z3 – W_Z1Z3

Page 45: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 45Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Tool offset ZHD2 1 Tool offset YHD3 2 Tool offset XHD4 3 Z axis offset machine originHD5 4 Radius to connecting line joint centre points drive columns (large

circle)HD6 5 Radius to connecting line joint centre points Stewart platform joints

(small circle)HD7 6 Strut length to each joint centre pointHD8 7 Switch to switch over to non-ideal tripod

0 : ideal tripod1 : non-ideal tripod and enable HD9 / HD 10

HD9 8 Angle column / joint 3 to column / joint 1 in 1x10-4°HD10 9 Angle column / joint 3 to column / joint 2 in 1x10-4°

Page 46: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC46 Version 1.01

2.12 KIN_TYP_16 – 5-axis kinematicsKinematic structure

The kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, B, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, B, A -

-X

+X

-Y

+Y

+Z

-Z

YwZw

Xw

-B

+B

+A

-A

Fig. 28: Axis configuration of 5-axis machine

Page 47: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 47Version 1.01

Z

Y

X

Y

+

TX

AM

HD4

HD6

HD1

HD3

+

BM

+

BM

Side view

Top view

+ AM

HD5 HD2

Fig. 29: Parameters of rotary/swivel head

Page 48: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC48 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offsetHD3 2 Y offsetHD4 3 Z offsetHD5 4 X offsetHD6 5 Y axis offset to toolHD7 6 Rotary offset A axisHD8 7 Rotary offset B axisHD9 8 Sign for direction of rotation A axisHD10 9 Sign for direction of rotation B axis

Page 49: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 49Version 1.01

2.13 KIN_TYP_17 – five-axis kinematics with 2 manualauxiliary axes

Kinematic structure

The kinematic structure consists of 3 translatory NC axes. In addition, 2 manually adjustable rotary axes areavailable. These axes cannot be addressed from the NC program.

Axis configuration in the NC channelAxis identifier X, Y, Z

Axis index 0, 1, 2Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z -

Auxiliary axes C, A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A

-A

Fig. 30: 5-axis kinematics (boring and milling tool with manual auxiliary axes C and A)

Page 50: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC50 Version 1.01

Y

X

AMHD3

HD1

L

HD2

HD6

CM

CM

HD4

HD7

HD8HD5

Z

YFig. 31: Boring and milling tool (zero position where HD3 = 0, HD4 = 0)

The axes are arranged as for a right-handed system. The zero position of the A axis is in the negativedirection of the Z axis. No automatic orientation setting is possible for the 2-axis tool head with manuallyadjustable C and A axes.

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point of A axis (swivel axis)HD2 1 Z axis offset rotation point A axis to tool head reference pointHD3 2 Fixed angle setting of rotary A axis (swivel axis)HD4 3 Fixed angle setting of rotary C axisHD5 4 Y axis offset rotation point A axis to rotation point C axis (offset)HD6 5 X axis offset tool head reference point to rotation point C axis (offset)HD7 6 Static tool offset in XHD8 7 Static tool offset in Y

Page 51: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 51Version 1.01

2.14 KIN_TYP_18 – five-axis kinematics with 2 manualauxiliary axes (sawing)

Kinematic structure

The kinematic structure consists of 3 translatory NC axes. In addition, 2 manually adjustable rotary axes areavailable. These axes cannot be addressed from the NC program.

Axis configuration in the NC channelAxis identifier X, Y, Z

Axis index 0, 1, 2Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z -

Auxiliary axes C, A -

-Y

+Y

+X

-X

+Z

-Z

YwZw

Xw

+C -C

-A

+A

Fig. 32: 5-axis kinematics (sawing tool with manual auxiliary axes C and A)

Page 52: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC52 Version 1.01

HD3

side view

AM

HD4

HD2

TX=L

TCP

CM

CM

HD10

HD9

HD7HD8

HD5

MZP

Top view

Y

X

Z

Y

Fig. 33: Sawing tool (zero position where HD5 = 0, HD4 = +90)

Offset data of kinematics

HD offset param[i] DescriptionHD2 1 Y axis offset from tool holding device to rotation point A axis (swivel

axis)HD3 2 Z axis offset from rotation point A axis to tool reference pointHD4 3 Fixed angle setting of rotary A axis (swivel axis)HD5 4 Fixed angle setting of rotary C axisHD7 6 Static tool offset in XHD8 7 Static tool offset in YHD9 8 X axis offset rotation point A axis to rotation point C axisHD10 9 Y axis offset rotation point A axis to rotation point C axis

Page 53: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 53Version 1.01

2.15 KIN_TYP_19 – Tripod kinematicsKinematic structure

The strut kinematics consists of 3 translatory axes in a non-Cartesian arrangement and 2 Cartesian axes. 3struts with ball joints support the workpiece platform. This may affect the Z height and orientation of theworkpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, U, V, W ( X, Y, Z1, Z2, Z3, W)

Axis index 0, 1, 2, 3, 4, 5Kinematic structure

Tool axes Workpiece axesNC axes X, Y Z1, Z2, Z3

+Z1

-Z1

Xw

ZwYw

+Z2

-Z2

+Z3

-Z3

-Y

+Y

+X

-X

Fig. 34: Tripod kinematics

Page 54: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC54 Version 1.01

Yw

Xw

R=HD4

Z3 Z1

Z2

Machine axes carrier

Workpiece holderplatform

120°

r=HD3

Yw

Xw

Z3 Z2 Z1

HD2

0

Zw

Xw

HD5

HD1

Fig. 35: Kinematic offsets

Page 55: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 55Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Tool offset in ZHD2 1 Strut length to joint centre pointHD3 2 Radius to connecting line joint centre points Stewart platform joints

(small circle)HD4 3 Radius to connecting line joint centre points drive columns (large

circle)HD5 4 Distance between workpiece holder platform and joint centre points

on the Stewart platform

Page 56: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC56 Version 1.01

2.16 KIN_TYP_21 – Lambda kinematicsKinematic structure

The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, C (X1, X2, Z, C)

Axis index 0, 1, 2, 3Kinematic structure

Tool axes Workpiece axesNC axes X,Y, Z, C -

YwZw

Xw

+C -C

-X1+X1

-X2+X2

+Z

-Z

Fig. 36: Lambda kinematics

The XY plane kinematics are known as a variant of shear kinematics. The struts (lengths l2, l1) that areconnected to each other at point D and are also rotatable are located on 2 linear slides XM1 and XM2 atrotary joints C and B.

Strut CA (length I3) is attached to strut CD via the fixed angle ß. The C axis is located at the top of this strut.The actual tool holding strut (length l4) starts at the rotation point of the C axis and ends in the TCP.

Related to the Cartesian axes the C axis is not mechanically guided, i.e. it must be compensated dependingon the joint position.

Page 57: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 57Version 1.01

CM

Am1_off

XM1

d1 d2

TCPXP, YP

I4

g_s

D

B

XM2

C

I2 I1

I3

b

f

YW YM

XWXM

Fig. 37: Lambda kinematics, variant 1

Page 58: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC58 Version 1.01

CM

A

m1_offXM1

d1 d2

TCPXP, YP

I4

g_s

D

BXM2

C

I2 I1

I3

b

f

YW YM

XWXM

Fig. 38: Lambda kinematics, variant 2

Page 59: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 59Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset to tool holding pointHD2 1 l1: Strut length 1HD3 2 l2: Strut length 2HD4 3 l3: Strut length 3HD5 4 g_s : Offset joint points C to BHD6 5 ß= fixed angle between strut CD and strut CAHD7 6 m1_off: Y position of drive 1 referred to Y origin WCSHD8 7 phi_min: Minimum value for angle j (0°)HD9 8 phi_max: Maximum value for angle j (90°)HD10 9 X-OffsetHD11 10 L4= gripper offsetHD12 11 Kinematic variant

Page 60: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC60 Version 1.01

2.17 KIN_TYP_22 – 5-axis kinematics with X/Y workpiecetable

Kinematic structure

The kinematic structure consists of 2 translatory NC axes in the workpiece, 2 rotary NC axes and 1translatory axis in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes Z, A, B X, Y

-X

+X

+Y

-Y

+Z

-Z

YwZw

Xw

+A

-A+B

-B

Fig. 39: Axis configuration of 5-axis machine

Page 61: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 61Version 1.01

Zw

Yw

Zw

Xw

B+-

HD1

WZL

A -+

Fig. 40: Kinematic offsets

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A / B axisHD4 3 Motion direction rotary axis AHD5 4 Motion direction rotary axis B

Page 62: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC62 Version 1.01

2.18 KIN_TYP_23 – 5-axis kinematics with X/Y/B workpiecetable

Kinematic structure

The kinematic structure consists of 2 translatory NC axes in the workpiece, 1 translatory axis in the tool and1 rotary NC axis in both the workpiece and the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes Z, A X, Y, B

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

-A

+A

+B

-B

Fig. 41: Axis configuration of 5-axis machine

Page 63: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 63Version 1.01

Zw

Xw

HD2B +

-

HD1

TL

A -+

Fig. 42: Kinematic offsets

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A axisHD2 1 Distance rotation point B axis to workpiece platformHD4 3 Motion direction rotary axis AHD5 4 Motion direction rotary axis B

Page 64: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC64 Version 1.01

2.19 KIN_TYP_25 – 5-axis kinematics with plasma/laserhead

Kinematic structure

The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. As a specialfeature, the effective tool length with these kinematics changes depending on the A angle.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C, A -

-X

+X -Y

+Y

+Z

-Z

YwZw

Xw

+A

-A

+C -C

Fig. 43: 5-axis kinematics (plasma/laser head)

Page 65: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 65Version 1.01

Y

X

TCP

HD6

A-Axis

MK K M

HD5

HD2

HD8

HD1

L

C-Axis

HD9

HD7

MHD8

K

Yprog

Z

Y

Z

XXprog

Zprog

Fig. 44: 5-axis plasma/laser head (zero position where HD3 = 0, AM=0, HD4=0, CM=0)

Page 66: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC66 Version 1.01

L1

L2TCP

Fig. 45: When the head is in oblique position, the torch tip is at a constant height above the workpiece, i.e.where A!= 0 is the effective length L2 > L1.

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset from torch tip to rotation point A axis (swivel axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset torch axis to rotation point A axis

Page 67: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 67Version 1.01

2.20 KIN_TYP_28 – 5-axis kinematicsKinematic structure

The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. The physicalangle position of the head C, A is adjusted by 2 gear-linked axes.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A ( X, Y, Z, C1, C2)

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C(C1), A(C2) -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

-A

+A

Fig. 46: 5-axis kinematics

Page 68: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC68 Version 1.01

Y

X

TCP

HD6

A-Axis

MK K M

HD5

HD2

HD8

HD1

L

C-Axis

HD9

HD7

MHD8

K

Yprog

Z

Y

Z

XXprog

Zprog

Fig. 47: Tool head (zero position where HD3 = 0, A=0, HD4=0, C=0)

Page 69: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 69Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset from tool holding device to rotation point A axis (swivel

axis)HD2 1 Z axis offset rotary axis A to tool head reference pointHD3 2 Rotary angular offset A axis (default 0)HD4 3 Rotary angular offset C axis (default 0)HD5 4 Y axis offset rotation point C axisHD6 5 X axis offset rotation point C axisHD7 6 Static head offset in X (default 0)HD8 7 Static head offset in Y (default 0)HD9 8 Y axis offset milling tool axis to rotation point A axisHD10 9 n.a.HD11 10 Origin offset CA gear linkHD12 11 Gear link factor numeratorHD13 12 Gear link factor denominatorHD14 13 Sign rotary axis CHD15 14 Sign rotary axis AHD16 15 A factor numeratorHD17 16 A factor denominator

The gear link between C and A is absolute and is executed as shown in the following equations:

CM = CW

AM = AW*ka + NP0 + kca*CW

where

: C -> A gear link factor

: A resolution factor

NP0 = HD11 : Origin offset gear link

The head rotary axes must be adjusted either as linear axes or as rotary axes with a sufficiently largemodulo range. The SLS monitor in the channel acts on the drive positions depending on the limits in set inthe MDS.

Page 70: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC70 Version 1.01

2.21 KIN_TYP_30 – 4-axis kinematicsKinematic structure

The kinematic structure consists of 3 translatory NC axes and 1 rotary NC axis in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, A

Axis index 0, 1, 2, 3Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+A

-A

Fig. 48: 4-axis kinematics (boring and milling unit)

Page 71: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 71Version 1.01

HD6

HD2

A

-

+

HD7

HD8

HD1

A

TL HD3

+-

Zw

Xw

Zw

Yw

Fig. 49: Offsets of 4-axis kinematics

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z axis offset tool holding device to rotation point A axisHD2 1 X axis offset tool holding device to rotation point A axisHD3 2 Y axis offset tool holding device to rotation point A axisHD4 3 Rotation direction sign A axis: 1 (default), -1HD5 4 Rotary offset A axisHD6 5 X offset rotation point A axis to reference point tool slideHD7 6 Y offset rotation point A axis to reference point tool slideHD8 7 Z offset rotation point A axis to reference point tool slide

Page 72: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC72 Version 1.01

2.22 KIN_TYP_33 – 5-axis kinematics with oblique tool headKinematic structure

The kinematic structure consists of 3 translatory NC axes and 2 rotary NC axes in the tool. As a specialfeature this kinematic structure requires no compensation motions of translatory axes due to the mechanicalconstruction when the rotary axes rotate.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, C, A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A- A

Fig. 50: 5-axis oblique tool head

Page 73: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 73Version 1.01

C

a=HD3

A

Z

X

Fig. 51: Oblique tool head axis in zero position, HD7=0

Page 74: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC74 Version 1.01

A

a=HD3

C

Z

X

Fig. 52: Oblique tool head with 180 degree head offset in zero position, HD7=1

Offset data of kinematic structure

HD offset param[i] DescriptionHD3 2 Head angleHD4 3 Static X offsetHD5 4 Static Y offsetHD6 5 Static Z offsetHD7 6 Orientation C axis head; required if head has a 180° offset in zero

position

Page 75: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 75Version 1.01

2.23 KIN_TYP_34 – 4-axis kinematics with X/C workpiecetable

Kinematic structure

The kinematic structure consists of 2 translatory NC axes in the tool, 1 translatory and 1 rotary NC axis in theworkpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, C

Axis index 0, 1, 2, 3Kinematic structure

Tool axes Workpiece axesNC axes Y, Z X, C

+X

-X-Y

+Y

+Z

-Z

YwZw

Xw+C -C

Fig. 53: 4-axis C axis kinematics

Page 76: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC76 Version 1.01

C+

HD2

HD3

Yw

Xw

YM

XM

Zw

ZM

Fig. 54: Origin offsets in rotary C axis workpiece holder

Offset data of kinematics

HD offset param[i] DescriptionHD2 1 MCS offset XHD3 2 MCS offset Y

Page 77: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 77Version 1.01

2.24 KIN_TYP_36 – SCARA kinematicsKinematic structure

The robot kinematics consist of 3 rotary and 1 translatory NC axes in the tool. Tool length compensationtakes place in the Z axis. All rotary axes are C axes.

Axis configuration in the NC channelAxis identifier X, Y, Z, C (C1, C2, Z, C3)

Axis index 0, 1, 2, 3Kinematic structure

Tool axes Workpiece axesNC axes X,Y, Z, C -

Page 78: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC78 Version 1.01

YwZw

Xw

+Z

-Z

+C3

+C1

+C2

Fig. 55: SCARA kinematics

Page 79: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 79Version 1.01

YW

XWZW

HD3HD2

C1 C2 C3

Fig. 56: SCARA kinematics in zero position (C1=0, C2=0, C3=0)

SCARA works as a left-handed or right-handed robot depending on the angular position of robot joint 2 (C2).The machine axis position before selecting the transformation therefore decides whether SCARA ispositioned as a left-handed or right-handed robot. A change can be made from left-handed to right-handedrobot when the kinematic transformation is inactive.

Page 80: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC80 Version 1.01

Right-handed, left-handed

HD5

HD4

HD2

HD3

+C3

+C2

+C1HD6

YW

XWZW

Fig. 57: Right-handed C2 >=0 or < 180 degrees

Page 81: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 81Version 1.01

HD5

HD4

HD2

HD3

+C3+C2

+C1HD6

YW

XWZW

Fig. 58: Left-handed C2 <=0 or > 180 degrees

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Tool length offset in z directionHD2 1 Length offset from joint 1 to joint 2HD3 2 Length offset joint 2 to rotary axis C3HD4 3 x offset origin C1 axisHD5 4 y offset origin C1 axisHD6 5 Rotary offset C1 axis

Page 82: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC82 Version 1.01

2.25 KIN_TYP_52 – 5-axis kinematics with A/B workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory axes and 2 rotary axis in the workpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y Z, A, B

+Z

-Z

ZwYw

Xw

-A

+A

+B -B

+X

-X

+Y

-Y

Fig. 59: Kinematics of 5-axis milling machine

Page 83: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 83Version 1.01

HD0

Y

Z

Fig. 60: Definition of offset parameters

HD1

HD2

Y

X

Fig. 61: Definition of offset parameters in front view

The figure above shows the kinematics for the machine axis positions Z = 0, Y = 0 and A = 0.

Offset data of kinematics

HD offset param[i] DescriptionHD0 0 Offset rotary axis A to tool holding device.HD1 1 Y offset toolHD2 2 Y offset of workpiece coordinate system origin to rotary axis A axisHD3 3 Sign for direction of rotation A axisHD4 4 Sign for direction of rotation B axis

Page 84: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC84 Version 1.01

2.26 KIN_TYP_57 – 5-axis kinematics with B/C workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory axes in the tool and 2 rotary axes in the workpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, B, C

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z B, C

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

-B

+B

+C -C

Fig. 62: Kinematics of 5-axis machine with BC workpiece table

Page 85: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 85Version 1.01

HD3

SRP

HD1

HD6

HD9

B

MZP

C

HD8

Z

Y

Fig. 63: Offsets in Y/Z view

Page 86: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC86 Version 1.01

MZP

SRP

HD2

HD7

HD4

C

B

Z

X

Fig. 64: Offsets in X/Z view

The machine origin can be shifted by the parameters HD7 to HD9. Differing zero positions of the rotary axesB and C can be set by the parameters HD10, HD11 so that the internal kinematic model matches the realmachine kinematics. In the same way, differing rotation directions of the B and C axes can be set by theparameters HD12, HD13. In general, the signs of command and actual parameters must also be modifiedaccordingly in the axis parameters.

The origin of the WCS on the turning table can be defined by the parameters HD14 to HD16.

Page 87: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 87Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z tool offset holding device to reference point tool slide SBPHD2 1 X axis offset holding device to reference point tool slide SBPHD3 2 Y axis offset holding device to reference point tool slide SBPHD4 3 X axis offset rotary axis B to rotary axis C, origin WCSHD5 4 Y axis offset rotary axis B to rotary axis C, origin WCSHD6 5 Z axis offset rotary axis B to rotary axis C, origin WCSHD7 6 X offset machine origin MNP to rotary axis BHD8 7 Y offset machine origin MNP to rotary axis CHD9 8 Z offset machine origin MNP to rotary axis BHD10 9 Rotary offset B axisHD11 10 Rotary offset C axisHD12 11 Rotation direction flag B axisHD13 12 Rotation direction flag C axisHD14 13 X offset origin WCSHD15 14 Y offset origin WCSHD16 15 Z offset origin WCS

Page 88: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC88 Version 1.01

2.27 KIN_TYP_58 – Five-axis kinematics with A/C workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory axes in the tool and 2 rotary axes in the workpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, C

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z A, C

-X

+X

-Y

+Y

+Z

-Z

YwZw

Xw

+C -C

+A

-A

Fig. 65: Kinematics of 5-axis machine with AC workpiece table

Page 89: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 89Version 1.01

HD3

SRP

HD1

HD6

HD9

B

MZP

C

HD8

Z

X

Fig. 66: Offsets in X/Z view

Page 90: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC90 Version 1.01

MZP

SRP

HD2

HD7

HD4

C

A

Z

Y

Fig. 67: Offsets in Y/Z view

Typically the machine origin is located in the rotary axis A. As required, it can be shifted using parametersHD7 to HD9. Differing zero positions of the rotary axes A and C can be set by the parameters HD10 andHD11 so that the internal kinematic model matches the real machine kinematics. In the same way differingrotation directions of the A and C axes can be set by the parameters HD12, HD13. In general, the signs ofcommand and actual parameters must also be modified accordingly in the axis parameters.

The origin of the WCS on the turning table can be shifted by the parameters HD14 to HD16.

Page 91: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 91Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z tool offset holding device to reference point tool slide SBPHD2 1 X axis offset holding device to reference point tool slide SBPHD3 2 Y axis offset holding device to reference point tool slide SBPHD4 3 X axis offset rotary axis A to rotary axis C, origin WCSHD5 4 Y axis offset from rotary axis A to rotary axis C, origin WCSHD6 5 Z axis offset from rotary axis A to rotary axis C, origin WCSHD7 6 X offset from machine origin MNP to rotary axis AHD8 7 Y offset from machine origin MNP to rotary axis AHD9 8 Z offset from machine origin MNP to rotary axis AHD10 9 Rotary offset A axisHD11 10 Rotary offset C axisHD12 11 Rotation direction flag A axisHD13 12 Rotation direction flag C axisHD14 13 X offset origin WCSHD15 14 Y offset origin WCSHD16 15 Z offset origin WCS

Page 92: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC92 Version 1.01

2.28 Cardanic kinematics

2.28.1 KIN_TYP_59 – Cardanic kinematics with C/A headThe kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. The A axis is rotated aboutthe Y axis by an angle!= 90 degrees; typically the angle is between 30 and 60 degrees.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z,C,A -

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+C -C

+A-A

Fig. 68: Cardanic kinematic with CA head

Page 93: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 93Version 1.01

Y

X

HD8 HD2

C

b=HD7

A

HD4

L

HD1

HD6

HD10

HD12

HD9HD5HD3

HD13

ARP

C

TCP

CP

HD11

HD15

V1

V2

V3

HD14

M

Z

X

Fig. 69: Offsets of cardanic CA 5-axis head

Page 94: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC94 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offset to tool holding deviceHD3 2 Y offset to tool holding deviceHD4 3 X offset compensation point (SP) to A axisHD5 4 Y offset compensation point (SP) to A axisHD6 5 Z offset compensation point (SP) to A axisHD7 6 Angle between A axis and Z axisHD8 7 X offset A axis to C axisHD9 8 Y offset A axis to C axisHD10 9 Z offset A axis to C axisHD11 10 X offset C axis to machine point MHD12 11 Y offset C axis to machine point MHD13 12 Z offset C axis to machine point MHD14 13 Rotary internal offset C axis (*)HD15 14 Rotary internal offset A axis (*)HD16 15 Rotary offset C axis (*)HD17 16 Rotary offset A axis (*)

HD21 20 Control flag:  0: Transformation of rotary axes C and A, default.1: The rotary axes C and A are machine angles.

In general the reference point referred to as ARP wanders to reference point SP, i.e. the vector V3 is 0 andthe point SP is located in the tool axis which has the same rotary axis as the C axis. In this case only theparameters L, HD1, HD7 and HD10 are required. The kinematics can transform an A spatial angle ofmaximum 2*HD7.

(*) The rotary offsets HD14 and HD15 only act on the internal kinematic model, i.e. these offsets are nottransferred to the rotary axes. By contrast, the offsets HD16 and HD17 act like a zero offset when kinematictransformation is active. They also lead to a re-positioning of the cardanic head with rotary offset when anangular position is programmed.

Page 95: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 95Version 1.01

Y

X

C

C

b=HD7

A

HD10

HD1

LZ

X TCPFig. 70: Cardanic head with ideal head geometry (intersection of C-A axis is located in tool axis)

Page 96: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC96 Version 1.01

Y

X

C

C

b=HD7

A

HD10

HD1

LZ

X TCP

HD2

Fig. 71: Cardanic head with offset C axis (C axis not located in tool axis)

Page 97: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 97Version 1.01

2.28.1.1 Saw blade with TCP function

When parameter HD20 is activated, kinematic transformation can be used to calculate TCP offsetsdependent on the target angle A of the cardanic head. This is required to program the correct cutting depthof the saw blade when A != 0. The TCP is then located at the lowest point of the saw blade.

Set the target angle A in parameter HD19.

After target angle A != 0 is approached, the TCP is located at the bottom of the point at minimum distance tothe workpiece surface as shown in the figure (when A is in zero position, the TCP is located on the right ofthe saw blade in X direction)

HD offset param[i] DescriptionHD19 18 Target angle A of head for saw machiningHD20 19 Control flag:   

0: Default, cardanic transformation for milling2: Cardanic transformation with TCP on saw blade

When the kinematic is activated, the required tool offsets are calculateddepending on the saw blade radius and target angle A. In the targetangle position A != 0, the TCP is located at the lowest point on the sawblade (generally at minimum distance to the workpiece).

Page 98: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC98 Version 1.01

Y

X

C

b=HD7

A

HD10

HD1

C2

C

Z

X TCP

HD2Fig. 72: Cardanic head with saw tool and TCP at saw tooth

Page 99: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 99Version 1.01

Fig. 73: Angle representations – saw tool and TCP

Page 100: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC100 Version 1.01

2.28.2 KIN_TYP_60 – Cardanic kinematics with C/B headThe kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. The B axis is arrangedabout the X axis rotated by an angle!= 90 degrees; the angle is typically between 30 and 60 degrees.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z,C,B -

-X

+Z

-Z

YwZw

Xw

+X

+Y

-Y

+C -C

+B-B

Fig. 74: Cardanic kinematic with CB head

Page 101: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 101Version 1.01

X

Y

a=HD7

B

HD15

SP

C

BRP

HD14

HD11

HD8HD4HD2

HD3

HD9 HD12

M

M

CV1

HD13

HD6

HD1

L

HD10

HD5

V3

V2

Z

Y

TCP

Fig. 75: Offsets of cardanic CB 5-axis head

Page 102: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC102 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offset to tool holding deviceHD3 2 Y offset to tool holding deviceHD4 3 X offset compensation point (SP) to B axisHD5 4 Y offset compensation point (SP) to B axisHD6 5 Z offset compensation point (SP) to B axisHD7 6 Angle between B axis and Z axisHD8 7 X offset B axis to C axisHD9 8 Y offset B axis to C axisHD10 9 Z offset B axis to C axisHD11 10 X offset C axis to machine point MHD12 11 Y offset C axis to machine point MHD13 12 Z offset C axis to machine point MHD14 13 Rotary offset C axisHD15 14 Rotary offset B axis

HD21 20 Control flag:      0: Transformation of rotary axes                       C and B, default.                       1: The rotary axes C and B are                        machine angles.

In general the reference point referred to as BRP wanders to reference point SP, i.e. the vector V3 is 0 andthe point SP is located in the tool axis which has the same rotary axis as the C axis. In this case only theparameters L, HD1, HD7 and HD10 are required.

The kinematics can transform a B spatial angle of maximum 2*HD7.

(*) The rotary offsets HS14 and HD 15 only act on the internal kinematic model, i.e. these offsets do not leadto a re-positioning of the cardanic head as for a rotary zero offset and programming of an angle position.

Page 103: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 103Version 1.01

X

Y

C

C

a=HD7

B

HD10

HD1

LZ

Y TCPFig. 76: Cardanic head with ideal head geometry (intersection of C and B axis located in tool axis)

Page 104: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC104 Version 1.01

2.29 KIN_TYP_61 – 5-axis kinematics with Y/A workpiecetable

Kinematic structure

The kinematic structure consists of 1 translatory and 1 rotary NC axis in the workpiece and 2 translatory andone rotary NC axis in the tool.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Z, B Y, A

+X

-X

+Z

-Z

YwZw

Xw

+A

+B

-B

-A+Y

-Y

Fig. 77: Axis configuration of 5-axis machine

Page 105: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 105Version 1.01

HD5

HD3

B

+

-

HD4

HD6

HD1

TL HD2

B -

+

Zw

Yw

Zw

Xw

Fig. 78: Offsets of tool head

Page 106: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC106 Version 1.01

Zw

Yw

Zw

Xw

-A

+

+-

HD10HD11

HD12A

Fig. 79: Offsets of workpiece holder

Page 107: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 107Version 1.01

Zw

Xw

Zw

Xw

A-

+

0 MCS

HD9

B-

+

A-

+

0 MCS

B-

+ A-

+

Fig. 80: Ideal and real z zero position

In the ideal zero position of the kinematic structure, the rotary axis A in the workpiece and the rotary axis B inthe tool intersect at one point. The machine axis positions of the tool slide are then 0 in this position.Normally these axis positions cannot be approached with a real machine structure. The offsets at tool slideposition 0 to this position can be set with parameters HD7, HD8, HD9.

Page 108: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC108 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset tool rotation point B axis to tool holder pointHD2 1 X offset tool rotation point B axis to tool holder pointHD3 2 Y offset tool rotation point B axis to tool holder pointHD4 3 X offset rotation point B axis to reference point tool slideHD5 4 Y offset rotation point B axis to reference point tool slideHD6 5 Z offset rotation point B-axis to reference point tool slideHD7 6 X offset to machine originHD8 7 Y offset to machine originHD9 8 Z offset to machine originHD10 9 X offset A rotary axis to origin WCSHD11 10 Y offset A rotary axis to origin WCSHD12 11 Z offset A rotary axis to origin WCSHD13 12 Rotary offset A axisHD14 13 Rotary offset B axisHD15 14 Rotation direction flag A axisHD16 15 Rotation direction flag B axis

Page 109: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 109Version 1.01

2.30 KIN_TYP_63 – 5-axis kinematics with X/Y/B workpiecetable

Kinematic structure

The kinematic structure consists of 1 translatory and 1 rotary NC axis in the workpiece and 2 translatory andone rotary NC axis in the tool. The transformation supports additional offset parameters for a non-symmetricconstruction and substitutes the existing kinematic structure KIN_TYP_23.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes Z, A X,Y, B

-Y

+Y

-X

+X

+Z

-Z

YwZw

Xw

+A

-A

+B

-B

Fig. 81: Axis configuration of 5-axis machine

Page 110: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC110 Version 1.01

HD4

HD2

A

-

+

HD5

HD6

HD1

A

TL HD3

+-

Zw

Xw

Zw

Yw

Fig. 82: Offsets of tool head

Page 111: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 111Version 1.01

Zw

Xw

Zw

Yw

-

+

+

HD11HD10

HD12B

- B

Fig. 83: Offsets of workpiece holder

Page 112: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC112 Version 1.01

Zw

Yw

Zw

Yw

A-

+

0 MCS

HD9

B-

+

A+-

0 MCS

A+- B

-

+

Fig. 84: Ideal and real Z zero position

In the ideal zero position of kinematic structure, the rotary axis B in the workpiece and the rotary axis A in thetool intersect at one point. The machine axis positions of the tool slide are then 0 in this position. Normallythese axis positions cannot be approached with a real machine structure. The offsets at tool slide position 0to this position can be set with parameters HD7, HD8, HD9.

Page 113: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 113Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset tool rotation point A axis to tool holder deviceHD2 1 X offset tool rotation point A axis to tool holder deviceHD3 2 Y offset tool rotation point A axis to tool holder deviceHD4 3 X offset rotation point A axis to reference point tool slideHD5 4 Y offset rotation point A axis to reference point tool slideHD6 5 Z offset rotation point A axis to reference point tool slideHD7 6 X offset to machine originHD8 7 Y offset to machine originHD9 8 Z offset to machine originHD10 9 X offset B rotary axis to origin WCSHD11 10 Y offset B rotary axis to origin WCSHD12 11 Z offset B rotary axis to origin WCSHD13 12 Rotary offset A axisHD14 13 Rotary offset B axisHD15 14 Rotation direction flag A axisHD16 15 Rotation direction flag B axis

Page 114: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC114 Version 1.01

2.31 KIN_TYP_64 – 6-axis kinematics with C/A/C workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory axes in the tool and 3 rotary axes in the workpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, C1, A, C2

Axis index 0, 1, 2, 3, 4, 5Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z C1, A, C2

-X

+X

-Y

+Y

+Z

-Z

YwZw

Xw

+A

-A

+C2 -C2

+C1 -C1

Fig. 85: Kinematic structure of 6-axis machine with CAC workpiece table.

Page 115: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 115Version 1.01

Zw

Xw

ZWCS

XWCS

C1

C2

HD12

HD10

HD4

HD7

A

HD13 HD15

HD9

HD6

Fig. 86: Offset parameters of CAC workpiece table

Typically, the machine origin is located in the rotary axis C1. If required, it can be shifted using parametersHD10 to HD12. Differing origin positions of rotary axes C1 and A or A and C2 can be set using parametersHD4 to HD9 so that the internal kinematic model matches the real machine kinematics. In the same way,differing directions of rotation of the axes C1, A and C2 can be set using the parameters HD16 to HD18. Ingeneral, the signs of command and actual parameters must also be modified accordingly in the axisparameters.

Page 116: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC116 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z tool offset holding device to reference point tool slide SBPHD2 1 X axis offset holding device to reference point tool slide SBPHD3 2 Y axis offset holding device to reference point tool slide SBPHD4 3 X axis offset rotary axis C1 to rotary axis A, origin WCSHD5 4 Y axis offset rotary axis C1 to rotary axis A, origin WCSHD6 5 Z axis offset rotary axis C1 to rotary axis A, origin WCSHD7 6 X axis offset rotary axis A to rotary axis C2, origin WCSHD8 7 Y axis offset rotary axis A to rotary axis C2, origin WCSHD9 8 Z axis offset rotary axis A to rotary axis C2, origin WCSHD10 9 X offset machine origin MNP to rotary axis C1HD11 10 Y offset machine origin MNP to rotary axis C1HD12 11 Z offset machine origin MNP to rotary axis C1HD13 12 X offset origin CSHD14 13 Y offset origin CSHD15 14 Z offset origin CSHD16 15 Rotary offset C1 axisHD17 16 Rotary offset A axisHD18 17 Rotary offset C2 axisHD19 18 Rotation direction flag C1 axisHD20 19 Rotation direction flag A axisHD21 20 Rotation direction flag C2 axis

Page 117: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 117Version 1.01

2.32 KIN_TYP_70 – 5-axis kinematicsKinematic structure

The kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. With these kinematics, toolhead rotation about Z can be set in the case of non-axis-parallel orientation of the BA rotary head. A virtualaxis CV can be used to affect tool orientation.

Axis configuration in the NC channelAxis identifier X, Y, Z, B, A, CV

Axis index 0, 1, 2, 3, 4, 5Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, B, A, CV -

-X

+X

-Y

+Y

+Z

-Z

YwZw

Xw

-B

+B

+A

-A

Fig. 87: Axis configuration of 5-axis machine

Page 118: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC118 Version 1.01

HD6

A-

+

HD3

HD13

HD4

HD5

HD2

HD1

HD14

TL

B+

- A

+

-

Zw

Xw

Zw

Yw

Fig. 88: Tool head parameters

Offset data of kinematics:

HD offset param[i] DescriptionHD1 0 Z offset to tool holding deviceHD2 1 X offsetHD3 2 Y offsetHD4 3 Z offsetHD5 4 X offsetHD6 5 Y axis offset to toolHD7 6 Rotary offset A axisHD8 7 Rotary offset B axisHD9 8 Sign for direction of rotation A axisHD10 9 Sign for direction of rotation B axisHD14 13 Rotary offset about Z (head position)

Page 119: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 119Version 1.01

HD14

B

ATop view

Y

X

Fig. 89: Angular offset of rotary/swivel head

The CV axis is not a physical real axis existing in the kinematic structure. The CV axis executes a rotation ofthe tool direction vector about Z, i.e. the angles A and B are calculated depending on CV. One applicationcan be the perpendicular alignment of one component of the XY tool direction to the programmed contour.This axis must therefore be configured as a simulation axis and can then be addressed in the NC programas usual.

The permitted angle range of the A and B axes is in the range of +- 90 degrees.

Page 120: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC120 Version 1.01

2.33 KIN_TYP_76 – 5-axis kinematics with MTCP obliquetool head

Kinematic structure

The kinematic structure consists of 3 translatory and 3 rotary NC axes in the tool. The A and B axes arearranged about the Y axis at an angle!= 90 degrees. Due to the design structure the TCP is mechanicallycompensated (MTCP). As required, a tool length can also be set but this leads to compensation motions inthe Cartesian axes.

Axis configuration in the NC channelAxis identifier X, Y, Z, C, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z,A,B -

Page 121: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 121Version 1.01

-X

+X -Y

+Y

+Z

-Z

YwZw

Xw

-A

+A

+B

-B

Fig. 90: Axis configuration of 5-axis machine

Page 122: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC122 Version 1.01

Zw

Xw

Yw

Xw

HD9

HD10

HD1+TL

b=HD7

MTCP

TCP

HD8

B

+-

-

+A

Fig. 91: Tool head parameters

Offset data of kinematics:

HD offset param[i] DescriptionHD1 0 Z offset to tool holding device- - -HD6 5 Angle offset between Cartesian MCS and cutting head CSHD7 6 Angle between A axis and Z axisHD8 7 X offset MTCP to machine originHD9 8 Y offset MTCP to machine originHD10 9 Z offset MTCP to machine origin

Tool orientation is programmed using rotation angles C and A with a rotation sequence in the listedsequence. With HD6 = 65 degrees the maximum angle position is in range of +-60 degrees.

Page 123: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 123Version 1.01

Yw

Xw

HD6=0°TCP

HD6=180°TCP

HD6=-90°

TCP

HD6=90°

TCP

Fig. 92: Angle offset of bevel head with regard to mounting

The orientation of the bevel head with regard to the Cartesian machine coordinate system can be set withparameter HD6.

Page 124: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC124 Version 1.01

2.34 KIN_TYP_80 – 5-axis kinematics with A/B workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory NC axes in the tool and two rotary NC axes in theworkpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z A, B

-X

+X+Y

-Y

+Z

-Z

YwZw

Xw

+A

-A

-B

+B

Fig. 93: Axis configuration of 5-axis machine

Page 125: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 125Version 1.01

HD3HD2

HD1

TL

Zw

Yw

Zw

Xw

Fig. 94: Offsets of tool head

Page 126: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC126 Version 1.01

Zw

Xw

Zw

Yw

HD8 HD5 HD11

HD12

-+

A+-B

HD7

HD9

HD6

HD4 HD10

-

+

A -

+B

Fig. 95: Offsets of workpiece holder

Page 127: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 127Version 1.01

Zw

Xw

Zw

XwHD120 MCS

B+-

A-

+

0 MCS

B+-

A-

+

Fig. 96: Ideal and real Z zero position

When the kinematic structure is in ideal zero position, the rotary axis A in the workpiece and the referencepoint on the tool slide (here tool holding device) intersect at one point. The machine axis positions of the toolslide are then 0 in this position. In general these axis positions cannot be approached with a machine. Theoffsets to this position at tool slide position 0 can be set with parameters HD10, HD11, HD12.

Page 128: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC128 Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset reference point Tool slide to tool holding deviceHD2 1 X offset reference point Tool slide to tool holding deviceHD3 2 Y offset reference point Tool slide to tool holding deviceHD4 3 X axis offset rotary axis A to rotary axis BHD5 4 Y axis offset rotary axis A to rotary axis BHD6 5 Z axis offset rotary axis A to rotary axis BHD7 6 X axis offset rotary axis B to origin WCSHD8 7 Y axis offset rotary axis B to origin WCSHD9 8 Z axis offset rotary axis B to origin WCSHD10 9 X offset to machine origin MNPHD11 10 Y offset to machine origin MNPHD12 11 Z offset to machine origin MNPHD13 12 Rotary offset A axisHD14 13 Rotary offset B axisHD15 14 Rotation direction flag A axisHD16 15 Rotation direction flag B axis

Page 129: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 129Version 1.01

2.35 KIN_TYP_81 – 5-axis kinematics with B/A workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory NC axes in the tool and two rotary NC axes in theworkpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, B, A

Axis index 0, 1, 2, 3, 4Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z B, A

-Y

+Y+X

-X

+Z

-Z

YwZw

Xw

+A

-A

-B

+B

Fig. 97: Axis configuration of 5-axis machine

Page 130: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC130 Version 1.01

HD2HD3

HD1

TL

Zw

Xw

Zw

Yw

Fig. 98: Offsets of tool head

Page 131: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 131Version 1.01

Zw

Yw

Zw

Xw

HD7 HD4 HD10

HD12

-+

B-+A

HD8

HD9

HD6

HD5 HD11

-

+

B +

-A

Fig. 99: Offsets of workpiece holder

Page 132: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC132 Version 1.01

Zw

Yw

Zw

YwHD120 MCS

B-

+A-+

0 MCS

A-+

B-

+

Fig. 100: Ideal and real Z zero position

In the ideal zero position of the kinematic structure, the rotary axis B in the workpiece and the reference pointon the tool slide (here tool holding device) intersect at one point. The machine axis positions of the tool slideare then 0 in this position. In general these axis positions cannot be approached with a machine. The offsetsto this position at tool slide position 0 can be set with parameters HD10, HD11, HD12.

Page 133: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 133Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset reference point Tool slide to tool holding deviceHD2 1 X offset reference point Tool slide to tool holding deviceHD3 2 Y offset reference point Tool slide to tool holding deviceHD4 3 X axis offset rotary axis B to rotary axis AHD5 4 Y axis offset rotary axis B to rotary axis AHD6 5 Z axis offset rotary axis B to rotary axis AHD7 6 X axis offset rotary axis A to origin WCSHD8 7 Y axis offset rotary axis A to origin WCSHD9 8 Z axis offset rotary axis A to origin WCSHD10 9 X offset to machine origin MNPHD11 10 Y offset to machine origin MNPHD12 11 Z offset to machine origin MNPHD13 12 Rotary offset B axisHD14 13 Rotary offset A axisHD15 14 Rotation direction flag B axisHD16 15 Rotation direction flag A axis

Page 134: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC134 Version 1.01

2.36 KIN_TYP_82 – 6-axis kinematics with C workpiecetable

Kinematic structure

The kinematic structure consists of 3 translatory axes in the tool, 2 rotary NC axes in the tool and 1 rotaryaxis in the workpiece.

Axis configuration in the NC channelAxis identifier X, Y, Z, B, C, A

Axis index 0, 1, 2, 3, 4, 5Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, B, A C

-X

+X

-Y

+Y

+Z

-Z

YwZw

Xw

-C+C

+A

-A+B

-B

Fig. 101: Axis configuration of 6-axis machine

Page 135: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 135Version 1.01

A

+

-

HD1

HD9

HD6

TL

HD7

HD2 HD4

B +-

HD8 HD5

HD3

A +-

Zw

Yw

Zw

Xw

Fig. 102: Tool head parameters

Page 136: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC136 Version 1.01

Yw

Xw

Zw

Xw

HD15

HD12

C+

-

HD13 HD10

HD14

HD11

Fig. 103: Offsets on workpiece holder

Page 137: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 137Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset tool to rotation point A axisHD2 1 X offset tool to rotation point A axisHD3 2 Y offset tool to rotation point A axisHD4 3 X offset rotation point A axis to B axisHD5 4 Y offset rotation point A axis to B axisHD6 5 Z offset rotation point A axis to B axisHD7 6 X offset B axis to reference point tool slideHD8 7 Y offset B axis to reference point tool slideHD9 8 Z offset B axis to reference point tool slideHD10 9 X offset C rotary axis to origin WCSHD11 10 Y offset C rotary axis to origin WCSHD12 11 Z offset C rotary axis to origin WCSHD13 12 X offset to machine originHD14 13 Y offset to machine originHD15 14 Z offset to machine originHD16 15 Rotary offset B axisHD17 16 Rotary offset C axisHD18 17 Rotation direction flag B axisHD19 18 Rotation direction flag C axis

Page 138: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC138 Version 1.01

2.37 KIN_TYP_85 – Lever arm kinematicsKinematic structure

The kinematic structure consists of 1 translatory axis and 1 rotary NC axis. The transformation can beselected for any X axis position (ACS). In this case a corresponding machine X position (MCS) isdetermined.

Depending on the angle position when the transformation is selected, the programmed contour is moved inthe left-handed or right-handed pattern. When the transformation is active, the selection side is retained, i.e.there is no swapping between right-handed/left-handed beam. To swap the selection side, the transformationmust be switched off.

In the motion range of the transformation used, the rotary axis may not have a modulo transition.

Axis configuration in the NC channelAxis identifier X, Z

Axis index 0, 1Kinematic structure

Tool axes Workpiece axesNC axes X, C -

HD1: Z0HD2: LHD3: C0

L

C0

Zmax

Zmin

Z0

ZW

XW

Fig. 104: Position of the coordinate system

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Z offset of rotation centre pointHD2 1 Arm length of lever arm in [0.1 um]HD3 2 Angle offset of C axis to the horizontal

Page 139: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 139Version 1.01

Fig. 105: Axis configuration for left-handed beam

Fig. 106: Axis configuration for right-handed beam

Page 140: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC140 Version 1.01

3 Further kinematic transformations

3.1 KIN_TYP_24 – Hexapod kinematicsKinematic structure

Parallel kinematics with 3 platform columns and 6 machine axes

YwZw

Xw

Fig. 107: 6-axis parallel kinematics machine

Page 141: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 141Version 1.01

3.2 KIN_TYP_37 – Flexpicker kinematicsThe strut kinematics referred to as Flexpicker consists of 3 rotary axes arranged at an offset of 120 degreesguiding 2 parallel struts via connecting levers. In turn, these struts guide the tool platform. Tool orientation isconstant.

Axis configuration in the NC channelAxis identifier X, Y, Z (J1, J2, J3)

Axis index 0, 1, 2Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z -

Fig. 108: Overhead Flexpicker kinematics

Page 142: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC142 Version 1.01

Yw

Xw

R=HD5

tool holderplatform(Stewardplatform)

++

+J1

J3

J2

120°

machine axis carrier

joint fix points

connecting linejoint's center points

r=HD4

+

J1

Zw

Xw

J3 J2

+ +

HD9

rotary axes J1, J2, J3 in zero position

HD6

HD7

Zw

Xw

J1

J3 J2

HD1

TL

Fig. 109: Offset dimensions of Flexpicker kinematics

Offset data of kinematics:

Page 143: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 143Version 1.01

HD offset param[i] MeaningHD1 0 Tool offset ZHD2 1 n.a.HD3 2 n.a.HD4 3 Radius of connecting line of bottom joint fixed pointsHD5 4 Radius of connecting line of top joint fixed pointsHD6 5 Bottom strut/arm lengthHD7 6 Top strut/arm length (connecting lever)HD8 7 Angular offset zero position J1 (ideal zero position of top arm

horizontal)HD9 8 Angular offset zero position J2 (ideal zero position of top arm

horizontal)HD10 9 Angular offset zero position J3 (ideal zero position of top arm

horizontal)HD11 10 Limit of minimum joint angle J1 to J3HD12 11 Limit of maximum joint angle J1 to J3HD13 12 Z zero offset Cart. workpiece coordinate system

The Cartesian coordinate system lies in the origin of the motor mount. The parameter HD11 can shift thesystem origin so that it is located below the motor mount and the tool holder platform.

By default, the strut connecting levers must be horizontal in the drive zero position. If this is not the case, theangle zero position can be corrected for the internal kinematic model by the parameters HD8, HD9 andHD10. When all rotary axes move in positive rotation, the TCP moves in negative Z direction.

Example: Connecting lever in horizontal position, drive position: 900000 [1E-4 degrees]

HD8, HD9, HD10: 900000 [1E-4 degrees]

This kinematic transformation was developed in cooperation with Esslingen Tech-nical College .

Page 144: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC144 Version 1.01

3.3 KIN_TYP_45 – 6-axis articulated robot kinematicsKinematic structure

Articulated robot with 6 machine axes. All articulated axes of the robot except for the manual axes A1 and A2are linear axes. The axes A1 and A2 are modulo axes with ranges of 0 to 180, 0 to -180 degrees. The jointaxis C1 can also be configured as a modulo axis if no trailing cable must be considered.

Axis configuration in the NC channelAxis identifier X, Y, Z, A, B, C (C1, B1, B2, A1, B3, A2)

Axis index 0, 1, 2, 3, 4, 5Kinematic structure

Tool axes Workpiece axesNC axes X, Y, Z, A, B, C -

Xw

ZwYw

+C1 -C1

+B1

-B1

+B2

-B2

+A1

-A1

+A2

-A2

+B3

-B3

Fig. 110: 6-axis articulated robot

Page 145: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 145Version 1.01

G2

G3

HD11

HD7

HD8

G5 G6

HD9

HD12

HD10

Z

X

Fig. 111: HD offset data in side view

Page 146: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC146 Version 1.01

G2 G3

G5 G6

Z

X

Fig. 112: Zero position for HD145 and HD15

HD32

G4

G1

Y

X

Fig. 113: Articulated robot, top view

Page 147: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Further kinematic transformations

Kinematic TransformationTF5240 | TC3 CNC 147Version 1.01

Offset data of kinematics

HD offset param[i] DescriptionHD1 0 Tool Z offset in flange coordinate systemHD2 1 Tool X offset in flange coordinate systemHD3 2 Tool Y offset in flange coordinate systemHD4 3 Tool rotation about the X’’ axisHD5 4 Tool rotation about the Y’ axisHD6 5 Tool rotation about the Z axisHD7 6 Z offset from origin of Cartesian spatial coordinate system to rotation

point of joint axis 2HD8 7 Z offset from rotary axis joint 2 to rotary axis joint 3HD9 8 X offset from rotary axis joint 3 to rotary axis joint 5HD10 9 X offset from manual axis joint 5 to flange surface on joint 6HD11 10 X offset from origin of Cartesian spatial coordinate system to rotation

point of joint axis 2HD12 11 Z offset from rotary axis joint 3 to rotary axis joint 5HD14 13 Rotary offset for zero position of robot joint axis 2HD15 14 Rotary offset for zero position of robot joint axis 3HD21 20 Rotation direction of joint axis 1: 0 (positive), 1 (negative)HD22 21 Rotation direction of joint axis 2: 0 (positive), 1 (negative)HD23 22 Rotation direction of joint axis 3: 0 (positive), 1 (negative)HD24 23 Rotation direction of joint axis 4: 0 (positive), 1 (negative)HD25 24 Rotation direction of joint axis 5: 0 (positive), 1 (negative)HD26 25 Rotation direction of joint axis 6: 0 (positive), 1 (negative)HD31 30 Flange coordinate system: 0 (KUKA), 1 (old ISG convention)HD32 31 Y offset between rotary axis 4 and rotary axis 1

For more information on kinematic offset data, see [CMS-A2].

Page 148: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC148 Version 1.01

4 Classification of transformationsDepending on their characteristics the transformations in the first two chapters can be classified in thefollowing way:

4.1 Transformation typeTrans-forma-tion ID

Type Number ofaxes

Number ofworkpieceaxes

Peculiarities

1 RTCP 52 RTCP 53 RTCP 44 RTCP 45 RTCP 46 RTCP 47 RTCP 58 RTCP 59 RTCP 5

10 RTCP 511 RTCP 512 Complete 3 3-axis parallel kinematics with constant orientation16 RTCP 517 RTCP 5 3 machine axes, 2 auxiliary axes18 RTCP 5 3 machine axes, 2 auxiliary axes19 Complete 5 3-column parallel kinematics, 5 machine axes21 Complete 4 LAMBDA shear kinematics with compensation of

rot. C axis, constant orientation, 4 machine axes22 RTCP 5 2 2 axes in workpiece, 3 machine axes23 RTCP 524 Complete 6 3-column parallel kinematics, 6 machine axes25 RTCP 528 RTCP 530 RTCP 4

Page 149: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC 149Version 1.01

33 RTCP 534 RTCP 436 RTCP 4 SCARA37 Complete 3 Flexpicker45 Complete 6 6-axis articulated robot52 RTCP 557 RTCP 5 Rotary/swivel table58 RTCP 5 Rotary/swivel table59 RTCP 5 Cardanic head60 RTCP 5 Cardanic head61 RTCP 563 RTCP 564 RTCP 670 RTCP 576 Complete 5 Mechanical TCP80 RTCP 581 RTCP 582 RTCP 685 RTCP 2

200 Complete 6 Bending robot202 Complete 4 CYL 2ROT transformation203 Complete 3 FACE 2ROT transformation205 Complete 3 Eccentric disc

Page 150: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC150 Version 1.01

4.2 Kinematic typeTransformation

IDWith

rotary tableRobot kinematics Parallel kinemat-

icsShear kinematics With manual axis

1 1234567 18 19

1011 112 11617 118 119 121 12223 124 12528303334 136 137 145 1

Page 151: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC 151Version 1.01

52 157 158 1596061 163 164 1707680 181 182 185 1

200 1202 1203 1205 1

Page 152: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC152 Version 1.01

4.3 ApplicationTransforma-

tion ID5-axis ma-

chiningMilling Drilling Sawing Plasma cut-

tingLaser cutting

1 1 1 12 1 1 13 1 14 1 15 1 16 1 17 1 18 19 1 1 1

10 111 1 112 1 116 1 1 117 1 118 119 1 121 122 1 1 1 123 1 1 124 1 1 125 1 1 1 1 128 1 1 130 1 133 1 134 1 136 1 137 1 1

Page 153: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Classification of transformations

Kinematic TransformationTF5240 | TC3 CNC 153Version 1.01

45 1 1 152 1 1 157 1 1 158 1 1 159 1 1 160 1 1 161 1 1 163 1 1 164 1 1 170 1 1 176 180 1 1 181 1 1 182 1 1 185

200202203205

Page 154: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Definition of terms

Kinematic TransformationTF5240 | TC3 CNC154 Version 1.01

5 Definition of termsGeneral:

ID Identifier; gen. identifierRT Backward transformationTCP Tool centre point; centre point of milling cutterVT Forward transformationMCS Machine coordinate systemTCS workpiece coordinate system

Other abbreviations:

HD Head distance

Page 155: TF5240 | TC3 CNC - Beckhoff Automation...Fig. 25Tripod kinematics.....42 Fig. 26Vector representation of strut kinematics43 ..... Fig. 28Axis configuration of 5-axis machine46.....

Support and Service

Kinematic TransformationTF5240 | TC3 CNC 155Version 1.01

6 Support and ServiceBeckhoff and their partners around the world offer comprehensive support and service, making available fastand competent assistance with all questions related to Beckhoff products and system solutions.

Beckhoff Support

Support offers you comprehensive technical assistance, helping you not only with the application ofindividual Beckhoff products, but also with other, wide-ranging services:

• Support• design, programming and commissioning of complex automation systems• and extensive training program for Beckhoff system components

Hotline: +49(0)5246/963-157Fax: +49(0)5246/963-9157E-mail: [email protected]

Beckhoff Service

The Beckhoff Service Center supports you in all matters of after-sales service:

• on-site service• repair service• spare parts service• hotline service

Hotline: +49(0)5246/963-460Fax: +49(0)5246/963-479E-mail: [email protected]

Further Support and Service addresses can be found on our website at http://www.beckhoff.de.

Beckhoff headquarters

Beckhoff Automation GmbH & Co. KG

Hülshorstweg 2033415 VerlGermany

Phone: +49(0)5246/963-0Fax: +49(0)5246/963-198E-mail: [email protected]

The addresses of Beckhoff’s branch offices and representatives round the world can be found on the internetpages:http://www.beckhoff.de

You will also find further documentation for Beckhoff components there.