Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b...

41
Tests of the Electroweak Theory History/introduction Weak charged current QED Weak neutral current Precision tests Rare processes CP violation and B decays Neutrino mass FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 113

Transcript of Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b...

Page 1: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Tests of the Electroweak Theory

• History/introduction

• Weak charged current

• QED

• Weak neutral current

• Precision tests

• Rare processes

• CP violation and B decays

• Neutrino mass

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 113

Page 2: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

References (mainly weak neutral current/Z-pole)

• E.D. Commins and P.H. Bucksbaum, Weak Interactions of Leptonsand Quarks, (Cambridge Univ. Press, Cambridge, 1983)

• P. Renton, Electroweak Interactions, (Cambridge Univ. Press,Cambridge, 1990)

• P. Langacker, M.-X. Luo and A. K. Mann, High precisionelectroweak experiments, Rev. Mod. Phys. 64, 87 (1992)

• Precision Tests of the Standard Electroweak Model, ed. P. Langacker(World Scientific, Singapore, 1995)

• S. Eidelman et al. [Particle Data Group],Phys. Lett. B 592, 1 (2004) (Electroweak review, J. Erler and PL)

• LEP Electroweak Working Group: http://www.cern.ch/LEPEWWG/

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 114

Page 3: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

The Z Lineshape

Basic Observables: e+e−→ff (f = e, µ, τ, s, b, c, hadrons) (s =E2

CM)

σf(s) ∼ σf

sΓ2Z

(s − M2Z)2 + s2Γ2

Z

M2Z

(plus initial state rad. corrections)

MZ and ΓZ: from peak position and width

Peak Cross Section:

σf =12π

M2Z

Γ(e+e−)Γ(ff)

Γ2Z

(Z model independent; γ and γ − Z int. removed, (usually) assuming S.M.)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 115

Page 4: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Ecm [GeV]

σha

d [nb]

σ from fitQED corrected

measurements (error barsincreased by factor 10)

ALEPHDELPHIL3OPAL

σ0

ΓZ

MZ

10

20

30

40

86 88 90 92 94

Ecm [GeV]

AFB

(µ)

AFB from fit

QED correctedaverage measurements

ALEPHDELPHIL3OPAL

MZ

AFB0

-0.4

-0.2

0

0.2

0.4

88 90 92 94

Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muonforward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-massenergy. The full line represents the results of model-independent fits to the measurements, asoutlined in Section 1.5. Correcting for QED photonic e!ects yields the dashed curves, whichdefine the Z parameters described in the text.

33

(LEPEWWG, hep-ex/0509008)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 116

Page 5: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Conventional (weakly correlated) observables: MZ, ΓZ, σhad, R`, Rb, Rc

σhad ≡12π

M2Z

Γ(e+e−)Γ(Z→ hadrons)

Γ2Z

Rqi≡

Γ(qiqi)

Γ(had), qi = (b, c)

R`i≡

Γ(had)

Γ(`i¯i)

, `i = (e, µ, τ )

(lepton universality test: Re = Rµ = Rτ→ R`)

• Derived

Γ(inv) = ΓZ − Γ(had) −∑

i

Γ(`i¯i) ≡ NνΓ(νν)

(counts anything invisible in detector)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 117

Page 6: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Z-Pole Asymmetries

• Effective axial and vector couplings of Z to fermion f

gAf =√

ρft3f

gV f =√

ρf

[t3f − 2s2

fqf

]where s2

f the effective weak angle,

s2f = κfs2

W (on − shell)

= κf s2Z ∼ s2

Z + 0.00029 (f = e) (MS ),

ρf , κf , and κf are electroweak corrections, qf = electric charge,t3f = weak isospin

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 118

Page 7: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• A0 = Born asymmetry (after removing γ, off-pole, box (small), Pe−)

forward − backward : A0fF B =

3

4AeAf

(A0eF B = A0µ

F B = A0τF B ≡ A0`

F B→ universality)

τ polarization : P 0τ = −

Aτ + Ae2z

1+z2

1 + AτAe2z

1+z2

(z = cos θ, θ = scattering angle)

e− polarization (SLD) : A0LR = Ae

mixed (SLD) : A0F BLR =

σfLF − σf

LB − σfRF + σf

RB

σfLF + σf

LB + σfRF + σf

RB

=3

4Af

Af ≡2gV f gAf

g2V f + g2

Af

gV ` ∼ −12 + 2s2

` (small)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 119

Page 8: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Asymmetries depend onAf ≡ 2gV f gAf

g2V f

+g2Af

→ little sensitivity

to mt, MH

• mt, MH enter in comparisonwith MZ and other lineshape

• ALR ∝ gV ` ∼ −12 + 2s2

` moresensitive to s2

` than A0`F B ∝ g2

V `

• A0bF B = 3

4AeAb much moresensitive to e vertex than bvertex assuming SM, but possiblediscrepancy

A0,lFB

MH

[G

eV]

Forward-Backward Pole Asymmetry

Mt = 172.7±2.9 GeV

linearly added to 0.02758±0.00035!"(5)!"had=

Experiment A0,lFB

ALEPH 0.0173 ± 0.0016

DELPHI 0.0187 ± 0.0019

L3 0.0192 ± 0.0024

OPAL 0.0145 ± 0.0017

#2 / dof = 3.9 / 3

LEP 0.0171 ± 0.0010

common error 0.0003

10

10 2

10 3

0.013 0.017 0.021

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 120

Page 9: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

AbF B, A`, and Ab

• AbF B = 0.0992(16) is 2.4σ below expectation of 0.1031(8)

– Favors large MH. New physics or fluctuation/systematics leadto smaller MH

– AbF B = 3

4AlAb; Ab agrees with SM, Al (SLC) is 2.0σ high

– New physics in AbF B would require compensation of L and R

couplings ( to preserve Rb)

– 5% effect, but ∼ 25% in κ → probably tree level affecting thirdfamily

– New physics possibilities include Z′ with non-universal couplings,or bR mixing with BR in doublet with charge −4/3

• Tension between leptonic (low MH) and hadronic (high MH)determinations of s2

`

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 121

Page 10: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

AFB

0,bb_

LEPWinter 2005

<AFB

0,bb_

> = 0.0992 ± 0.0016

OPAL inclusive 1991-2000

0.0994 ± 0.0034 ± 0.0018

L3 jet-ch 1994-95

0.0948 ± 0.0101 ± 0.0056

DELPHI inclusive 1992-2000

0.0978 ± 0.0030 ± 0.0015

ALEPH inclusive 1991-95

0.1010 ± 0.0025 ± 0.0012

OPAL leptons 1990-2000

0.0977 ± 0.0038 ± 0.0018

L3 leptons 1990-95

0.1001 ± 0.0060 ± 0.0035

DELPHI leptons 1991-95

0.1025 ± 0.0051 ± 0.0024

ALEPH leptons 1991-95

0.1003 ± 0.0038 ± 0.0017

Include Total Sys 0.0007With Common Sys 0.0004

mt = 178.0 ± 4.3 GeV

∆αhad = 0.02761 ± 0.00036

10 2

0.09 0.1 0.11

AFB

0,bb_

mH

[GeV

]

150 200mt [GeV]

0.8

0.9

1

0.14 0.145 0.15 0.155Al

A

b68.3 95.5 99.5 % CL

SM

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 122

Page 11: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

10 2

10 3

0.23 0.232 0.234

sin2!lepteff

mH

[GeV

]

"2/d.o.f.: 11.8 / 5

A0,lfb 0.23099 ± 0.00053

Al(P#) 0.23159 ± 0.00041

Al(SLD) 0.23098 ± 0.00026

A0,bfb 0.23221 ± 0.00029

A0,cfb 0.23220 ± 0.00081

Qhadfb 0.2324 ± 0.0012

Average 0.23153 ± 0.00016

$%had= 0.02758 ± 0.00035$%(5)

mt= 172.7 ± 2.9 GeV

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 123

Page 12: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

The Z Pole Observables: LEP and SLC (09/05)

Quantity Group(s) Value Standard Model pull

MZ [GeV] LEP 91.1876 ± 0.0021 91.1874 ± 0.0021 0.1ΓZ [GeV] LEP 2.4952 ± 0.0023 2.4968 ± 0.0011 −0.7Γ(had) [GeV] LEP 1.7444 ± 0.0020 1.7434 ± 0.0010 —Γ(inv) [MeV] LEP 499.0 ± 1.5 501.65 ± 0.11 —

Γ(`+`−) [MeV] LEP 83.984 ± 0.086 83.996 ± 0.021 —σhad [nb] LEP 41.541 ± 0.037 41.467 ± 0.009 2.0Re LEP 20.804 ± 0.050 20.756 ± 0.011 1.0Rµ LEP 20.785 ± 0.033 20.756 ± 0.011 0.9Rτ LEP 20.764 ± 0.045 20.801 ± 0.011 −0.8AF B(e) LEP 0.0145 ± 0.0025 0.01622 ± 0.00025 −0.7AF B(µ) LEP 0.0169 ± 0.0013 0.5AF B(τ ) LEP 0.0188 ± 0.0017 1.5

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 124

Page 13: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Quantity Group(s) Value Standard Model pull

Rb LEP/SLD 0.21629 ± 0.00066 0.21578 ± 0.00010 0.8Rc LEP/SLD 0.1721 ± 0.0030 0.17230 ± 0.00004 −0.1AF B(b) LEP 0.0992 ± 0.0016 0.1031 ± 0.0008 −2.4AF B(c) LEP 0.0707 ± 0.0035 0.0737 ± 0.0006 −0.8AF B(s) DELPHI/OPAL 0.0976 ± 0.0114 0.1032 ± 0.0008 −0.5Ab SLD 0.923 ± 0.020 0.9347 ± 0.0001 −0.6Ac SLD 0.670 ± 0.027 0.6678 ± 0.0005 0.1As SLD 0.895 ± 0.091 0.9356 ± 0.0001 −0.4ALR (hadrons) SLD 0.15138 ± 0.00216 0.1471 ± 0.0011 2.0ALR (leptons) SLD 0.1544 ± 0.0060 1.2Aµ SLD 0.142 ± 0.015 −0.3Aτ SLD 0.136 ± 0.015 −0.7Aτ (Pτ ) LEP 0.1439 ± 0.0043 −0.7Ae(Pτ ) LEP 0.1498 ± 0.0049 0.6s2

`(QF B) LEP 0.2324 ± 0.0012 0.23152 ± 0.00014 0.7s2

`(AF B(q)) CDF 0.2238 ± 0.0050 −1.5

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 125

Page 14: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• LEP 2

– e+e−→ ff

– MW , ΓW , B (also Tevatron)

– MH limits (hint?)

– WW production (triple gaugevertex)

– Quartic vertex

– SUSY/exotics searches

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 126

Page 15: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

10-1

1

10

100 150!s" [GeV]

#ha

dron

SM: !s"´/"s" > 0.10SM: !s"´/"s" > 0.85

Combined LEP

TOPAZ

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 127

Page 16: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• The triple gauge vertex for V =γ or Z:

iLV W Weff = gV W W

[gV

1 V µ(W −

µνW +ν − W +µνW −ν

)+κV W +

µ W −ν V µν +

λV

m2W

V µνW +ρν W −

ρµ

+igV5 εµνρσ

((∂ρW −µ)W +ν − W −µ(∂ρW +ν)

)V σ

+igV4 W +

µ W −ν (∂µV ν + ∂νV µ)

−κV

2W −

µ W +ν εµνρσVρσ −

λV

2m2W

W −ρµW +µ

νενραβVαβ

]

gγW W = e, gZW W = e cot θW ; Fµν = ∂µFν − ∂νFµ

• Also ZZZ, ZZγ, Zγγ, quartic

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 128

Page 17: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• CPT , CP , C, P , U(1)Q, custodial SU(2) reduce togZ

1 , κγ, κZ, λγ, λZ with κZ = gZ1 − tan θW (κγ − 1), λZ = λγ

– SM (tree): gZ1 = κγ = κZ = 1; λγ = λZ = 0

– W magnetic dipole moment: µW = e(1 + κγ + λγ)/2MW

– W electric quadrupole moment: qW = −e(κγ − λγ)/M2W

– Measure at LEP II, Tevatron, e.g., in angular distribution ine+e−→W +W − or e+e−→Weν

– Usually fix all but one to SM values

• PDG (gZ1 = 1 + ∆gZ

1 , κγ = 1 + ∆κγ)

∆gZ1 = −0.016+0.022

−0.019 ∆κγ = −0.027+0.044−0.045 λγ = −0.028+0.020

−0.021

(recent review: S. Mele, Phys. Rept. 403-404, 255 (2004))

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 129

Page 18: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

0

5

10

15

20

160 170 180 190 200 210

Ecm [GeV]

!W

W [p

b]

LEP Preliminary02/03/2001

no ZWW vertex (Gentle 2.1)only "e exchange (Gentle 2.1)

RacoonWW / YFSWW 1.14

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 130

Page 19: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Other: atomic parity (Boulder, Paris); νe; νN (NuTeV); polarizedMøller asymmetry (SLAC E158); MW , mt (Tevatron)

• Non-Z pole WNC experiments less precise but still extremelyimportant

– Z-pole is blind to new physics that doesn’t directly affect Z orits couplings to fermions (e.g., new box-diagrams, four-Fermi operators)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 131

Page 20: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Non-Z Pole Precision Observables (9/05)

Quantity Group(s) Value Standard Model pull

mt [GeV] Tevatron 172.7 ± 2.7 ± 0.6 172.7 ± 2.8 0.0MW [GeV] LEP 80.392 ± 0.039 80.376 ± 0.017 0.4MW [GeV] Tevatron /UA2 80.450 ± 0.058 1.3g2

L NuTeV 0.30005 ± 0.00137 0.30378 ± 0.00021 −2.7g2

R NuTeV 0.03076 ± 0.00110 0.03006 ± 0.00003 0.6Rν CCFR 0.5820 ± 0.0027 ± 0.0031 0.5833 ± 0.0004 −0.3Rν CDHS 0.3096 ± 0.0033 ± 0.0028 0.3092 ± 0.0002 0.1Rν CHARM 0.3021 ± 0.0031 ± 0.0026 −1.7Rν CDHS 0.384 ± 0.016 ± 0.007 0.3862 ± 0.0002 −0.1Rν CHARM 0.403 ± 0.014 ± 0.007 1.0Rν CDHS 1979 0.365 ± 0.015 ± 0.007 0.3816 ± 0.0002 −1.0

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 132

Page 21: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Quantity Group(s) Value Standard Model pull

AP V SLAC E158 −1.31 ± 0.17 −1.53 ± 0.02 1.3gνe

V CHARM II −0.035 ± 0.017 −0.0396 ± 0.0003 —gνe

V all −0.040 ± 0.015 0.0gνe

A CHARM II −0.503 ± 0.017 −0.5064 ± 0.0001 —gνe

A all −0.507 ± 0.014 0.0QW (Cs) Boulder/Paris −72.62 ± 0.46 −73.17 ± 0.03 1.2QW (Tl) Oxford/Seattle −116.6 ± 3.7 −116.78 ± 0.05 0.1

103 Γ(b→sγ)ΓSL

BaBar/Belle/CLEO 3.35+0.50−0.44 3.22 ± 0.09 0.3

ττ [fs] direct/Be/Bµ 290.89 ± 0.58 291.87 ± 1.76 −0.4109 (aµ − α

2π) BNL/CERN 4511.07 ± 0.82 4509.82 ± 0.10 1.5

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 133

Page 22: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Measurement Fit |Omeas!Ofit|/"meas

0 1 2 3

0 1 2 3

#$had(mZ)#$(5) 0.02758 ± 0.00035 0.02767mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874%Z [GeV]%Z [GeV] 2.4952 ± 0.0023 2.4959"had [nb]"0 41.540 ± 0.037 41.478RlRl 20.767 ± 0.025 20.742AfbA0,l 0.01714 ± 0.00095 0.01643Al(P&)Al(P&) 0.1465 ± 0.0032 0.1480RbRb 0.21629 ± 0.00066 0.21579RcRc 0.1721 ± 0.0030 0.1723AfbA0,b 0.0992 ± 0.0016 0.1038AfbA0,c 0.0707 ± 0.0035 0.0742AbAb 0.923 ± 0.020 0.935AcAc 0.670 ± 0.027 0.668Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480sin2'effsin2'lept(Qfb) 0.2324 ± 0.0012 0.2314mW [GeV]mW [GeV] 80.410 ± 0.032 80.377%W [GeV]%W [GeV] 2.123 ± 0.067 2.092mt [GeV]mt [GeV] 172.7 ± 2.9 173.3

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 134

Page 23: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Global Electroweak Fits

• much more information than individual experiments

• caveat: experimental/theoretical systematics, correlations

• PDG ’04 review + ’05 update (J. Erler and PL)

• Complete Z-pole and WNC (important beyond SM)

• MS radiative correction program (Erler)

– GAPP: Global Analysis of Particle Properties (J. Erler, hep-

ph/0005084)

– Fully MS (ZFITTER on-shell)

• Good agreement with LEPEWWG up to well-understood effects(WNC, HOT, ∆αhad) despite different renormalization schemes

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 135

Page 24: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Global Standard Model Fit Results

• PDG 2006 (9/05) (Erler, PL)

– χ2/df = 47.5/42

– Fully MS

– Good agreement withLEPEWWG up to knowneffects

MH = 89+38−28 GeV,

mt = 172.7 ± 2.8 GeV

αs = 0.1216 ± 0.0017

α(MZ)−1 = 127.904 ± 0.019

s2Z = 0.23122 ± 0.00015

s2` = 0.23152 ± 0.00014

s2W = 0.22306 ± 0.00033

∆α(5)had(MZ) = 0.02802 ± 0.00015

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 136

Page 25: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• mt = 172.7 ± 2.8 GeV

– 172.3+10.2−7.6 GeV from indirect (loops) only (direct: 172.7±2.9±0.6)

t(b)

t(b)

Z(!) Z

t

b

W W

H

H

H

G

mixed

– Typeset by FoilTEX – 1

– Fit actually uses MS mass mt(mt) (∼ 10 GeV lower) and convertsto pole mass at end

– Significant change from previous analysis due to lower mt fromRun II

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 137

Page 26: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• αs= 0.1216 ± 0.0017

– Higher than αs = 0.1187(20)(PDG: 2004), because of τlifetime

– Z-pole alone: αs = 0.1198(28)

– insensitive to oblique new physics

– very sensitive to non-universalnew physics (e.g., Zbb vertex)

G

– Typeset by FoilTEX – 1

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 138

Page 27: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Higgs mass MH= 89+38−28 GeV

– LEPEWWG: 91+45−32

– direct limit (LEP 2): MH>∼ 114.4 (95%) GeV

– SM: 115 (vac. stab.) <∼ MH<∼ 750 (triviality)

– MSSM: MH<∼ 130 GeV (150 in extensions)

– indirect: ln MH but significant

∗ affected by new physics (S < 0, T > 0)

∗ strong AF B(b) effect

∗ MH < 189 GeV at 95%, including direct

t(b)

t(b)

Z(!) Z

t

b

W W

H

H

H

H

G

mixed

– Typeset by FoilTEX – 1

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 139

Page 28: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

120 130 140 150 160 170 180 190mt [GeV]

1000

500

200

100

50

20

10

MH [G

eV]

excluded

all data (90% CL)

!", #had, Rl, Rq

asymmetrieslow-energyMWmt

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 140

Page 29: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

150 155 160 165 170 175 180 185 190mt [GeV]

80.25

80.30

80.35

80.40

80.45

80.50M

W [G

eV]

M H = 100 GeV

M H = 200 GeV

M H = 400 GeV

M H = 800 GeV

direct (1!)indirect (1!)all data (90% CL)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 141

Page 30: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

0

1

2

3

4

5

6

10030 300mH [GeV]

!"2

Excluded

!#had =!#(5)

0.02758±0.000350.02749±0.00012incl. low Q2 data

Theory uncertainty

80.3

80.4

80.5

150 175 200

mH [GeV]114 300 1000

mt [GeV]

mW

[G

eV]

68% CL

!"

LEP1 and SLDLEP2 and Tevatron (prel.)

old

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 142

Page 31: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

MH [GeV]

*preliminary

!Z!Z"had"0

RlR0

AfbA0,l

Al(P#)Al(P#)RbR0

RcR0

AfbA0,b

AfbA0,c

AbAbAcAcAl(SLD)Al(SLD)sin2$effsin2$lept(Qfb)mW*mW!W*!W

QW(Cs)QW(Cs)sin2$%%(e%e%)sin2$MSsin2$W(&N)sin2$W(&N)gL(&N)g2

gR(&N)g2

10 10 2 10 3

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 143

Page 32: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Beyond the standard model

• Oblique corrections: new particles which affect W ,Z, γ propagators but not the fermion vertices!

" "

t had

– Typeset by FoilTEX – 1

• ρ0 = 11−αT

: physics which affects WNC/WCC and MW /MZ

– Splittings between non-degenerate fermion or scalar doublets(like t, b)

ρ0 − 1 =3GF

8√

2π2

∑i

Ci

3∆m2

i (Ci = color factor)

∆m2 ≡ m21 + m2

2 −4m2

1m22

m21 − m2

2ln

m1

m2≥ (m1 − m2)2

– Higgs triplets with non-zero VEVs

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 144

Page 33: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• S affects Z propagator, relation between WNC and MZ

– Chiral (parity-violating) fermion doublets, even if degenerate(e.g., fourth family, mirror family, technifamilies)

S =C

∑i

(t3L(i) − t3R(i))2 →{ 2

3π(family)

1.62 (QCD-like techni-generation)

• U similarly affects W propagator, usually small

• S, T, U have coefficient of α

• Varying conventions. PDG: ρ0 ≡ 1, S = T = U = 0 in SM(SM rad corrections treated separately)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 145

Page 34: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• ρ0; S, T, U : Higgs triplets, nondegenerate fermions or scalars;chiral families (ETC)

S = −0.13 ± 0.10(−0.08)

T = −0.13 ± 0.11(+0.09)

U = 0.20 ± 0.12(+0.01)

for MH = 117 (300) GeV

– ρ0 ' 1 + αT = 1.0002+0.0007−0.0004 and 114.4 GeV < MH < 191

GeV (for S = U = 0) →∑

i Ci∆m2i/3 < (90 GeV)2 (95% cl)

– Can evade Higgs mass limit for S < 0, T > 0 (Higgs doublet/triplet

loops, Majorana fermions)

– Degenerate heavy family excluded at 99.999% cl

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 146

Page 35: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25

S

-1.25

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25T

all: MH = 117 GeVall: MH = 340 GeVall: MH = 1000 GeV

!Z, "had, Rl, Rq

asymmetriesMW# scatteringQWE 158

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 147

Page 36: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Supersymmetry

– decoupling limit (Mnew>∼

200 − 300 GeV): onlyprecision effect is light SM-like Higgs

– little improvement on SM fit

– Supersymmetry parametersconstrained

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 148

Page 37: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• A TeV scale Z′?

– Expected in many string theories, grand unification, dynamicalsymmetry breaking, little Higgs, large extra dimensions

– Natural solution to µ problem

– Implications

∗ Exotics

∗ FCNC (especially in string models)

∗ Non-standard Higgs masses, couplings (doublet-singlet mixing)

∗ Non-standard sparticle spectrum

∗ Neutrino mass, BBN, structure∗ Enhanced possibility of EW baryogenesis

– Typically MZ′ > 500 − 900 GeV (Tevatron, LEP 2, WNC),|θZ−Z′| < few × 10−3 (Z-pole)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 149

Page 38: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

−0.01 −0.005 0 0.005 0.010

500

1000

1500

2000

2500

sin θ

X

MZ [GeV]

05

CDF excluded

1oo

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 150

Page 39: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Other

– Exotic fermion mixings

– Large extra dimensions

– New four-fermi operator

– Leptoquark bosons

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 151

Page 40: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

• Gauge unification: GUTs, stringtheories

– α+ s2Z → αs = 0.130±0.010

(MSSM) (non-SUSY: 0.073(1))

– MG ∼ 3 × 1016 GeV

– Perturbative string: ∼ 5×1017

GeV (10% in ln MG). Exotics:O(1) corrections.

• Gauge unification: GUTs, stringtheories

– !+ s2Z ! !s = 0.130±0.010

(MSSM) (non-SUSY: 0.073(1))

– MG " 3 # 1016 GeV

– Perturbative string: " 5#1017

GeV (10% in ln MG). Exotics:O(1) corrections.

0

10

20

30

40

50

60

105

1010

1015

1 µ (GeV)

!i-1

(µ)

SMWorld Average!

1

!2

!3

!S(M

Z)=0.117±0.005

sin2"

MS__=0.2317±0.0004

0

10

20

30

40

50

60

105

1010

1015

1 µ (GeV)

!i-1

(µ)

MSSMWorld Average68%

CL

U.A.W.d.BH.F.

!1

!2

!3

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 40FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 152

Page 41: Tests of the Electroweak Theorypgl/talks/fnal_aclec_5.pdffo rw a rd -b a ck w a rd a sy m m etry (b o tto m ) b y th e fo u r ex p erim en ts, a s a fu n ctio n o f cen tre-o f-m a

Conclusions

• WNC, Z, W are primary predictions and test of electroweakunification

• SM correct and unique to first approx. (gauge principle, group,representations)

• SM correct at loop level (renorm gauge theory; mt, αs, MH)

• Watershed: TeV physics severely constrained (unification vscompositeness)

– unification (decoupling): expect 0.1%

– TeV compositeness: expect several % unless decoupling

• Precise gauge couplings (gauge unification)

FNAL (December 13, 2005) Paul Langacker (Penn/FNAL) 153