Testing Remotely Sensed E vapotranspiration Estimates Using Airborne and Ground Measurements

10
Testing Remotely Sensed Evapotranspiration Estimates Using Airborne and Ground Measurements May 2004 Cressida Savige, Andrew French, Andrew Western, Jeffrey Walker, Mohammad Abuzar, Jorg Hacker and Jetse Kalma

description

Testing Remotely Sensed E vapotranspiration Estimates Using Airborne and Ground Measurements. May 2004 Cressida Savige, Andrew French, Andrew Western, Jeff rey Walker , Mohammad Abuzar , Jorg Hacker and Jetse Kalma. Satellite. Aircraft. L E. L E. Satellite Image. MODEL. Land Surface. - PowerPoint PPT Presentation

Transcript of Testing Remotely Sensed E vapotranspiration Estimates Using Airborne and Ground Measurements

Page 1: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Testing Remotely Sensed Evapotranspiration Estimates Using Airborne and Ground

Measurements

May 2004

Cressida Savige, Andrew French, Andrew Western, Jeffrey Walker, Mohammad Abuzar, Jorg Hacker and

Jetse Kalma

Page 2: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Land Surface

Satellite

Satellite Image

Aircraft

LELE

MODEL

Page 3: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Surface Energy Balance Rn = H + LE + G

RnC

LEC

HS

RnS

LES

HC

G

2-SOURCE

G

H

Rn

LE

1-SOURCE

Page 4: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Irrigation Region

0 50Km

25

Page 5: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Airborne Flux Measurements

SENSIBLE HEAT FLUX

0

100

200

300

400

500

600

332500 333500 334500 335500 336500 337500

Easting

En

erg

y F

lux

De

ns

ity

(W

m-2

)

x 10 flights

wi = 109 Wm-2

btw = 43 Wm-2

NR ~ 1

Page 6: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

LELATENT HEAT FLUX

0

50

100

150

200

250

300

332500 333500 334500 335500 336500 337500 338500

Easting

En

erg

y F

lux

De

ns

ity

(W

m-2

)

2-SOURCE = 183 Wm-2

SEBAL = 182 Wm-2

AIRBORNE = 136 Wm-2

H SENSIBLE HEAT FLUX

0

50

100

150

200

250

300

332500 333500 334500 335500 336500 337500 338500

Easting

En

erg

y F

lux

De

ns

ity

(W

m-2

)

SEBAL = 220 Wm-2

2-SOURCE = 217 Wm-2

AIRBORNE = 157 Wm-2

B = 1.2

AIRBORNE

B = 1.2

2-SOURCE

B = 1.2

SEBAL

LATENT HEAT FLUX (Wm-2)

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Observed

Mo

de

lled

2-SOURCE

SEBAL

SENSIBLE HEAT FLUX (Wm-2)

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Observed

Mo

de

lled

2-SOURCE

SEBAL

Page 7: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Regional Fluxes

0 5Km

2.5

0

50

100

150

200

250

300

H LE

En

erg

y F

lux

De

ns

ity

(W

m-2

)

2-SOURCE

2-SOURCE

SEBAL

SEBAL

AIRBORNE

AIRBORNE

B = 3.2

AIRBORNE

B = 2.8

2-SOURCE

B = 1.7

SEBAL

Page 8: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Model ComparisonDifference = 2-SOURCE - SEBAL

Sensible Heat Flux Difference Latent Heat Flux Difference

-160 1600 Wm-2

0 5Km

2.5 0 5Km

2.5

Page 9: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

Findings…

• Model estimates are

• Scale of surface heterogeneity is important…

• Model agreement…Pasture: good

Sparse cover: poor

Page 10: Testing Remotely Sensed  E vapotranspiration Estimates Using Airborne and Ground Measurements

This project was supported by:

• Australian Research Council

• University of Melbourne

• Hydrological Sciences Branch, NASA Goddard Space Flight Centre

& Nanneella LandCare Group