Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion...

22
Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n

Transcript of Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion...

Page 1: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Term 1 : Unit 3

Binomial Theorem

3.1 The Binomial Expansion of (1 + b) n

3.2 The Binomial Expansion of (a + b) n

Page 2: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

r

n

Objectives

3.1 The Binomial Expansion of (1 + b) n

In this lesson, you will use Pascal’s triangle or to find the

binomial coefficient of any term. You will use the Binomial Theorem to expand (1 + b)n for positive integer values of n and identify and find a particular term in the expansion (1+ b)n using the

result, .1r

r br

nT

Binomial Theorem

Page 3: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

2b

2a b

A square of side

( a + b ).

2 2 22a b a ab b

Binomial Theorem

a

a b

b

2a

ab

ab

a b

a b

Split the square in four.

Separate the component

parts.

Binomial expansion for n = 2.

Page 4: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

3a b

3b

A cube of side a + b

Binomial Theorem

2ab

2ab

2a b

2ab

2a b

2a b

3a

Split the cube up as

shown

A small cube with volume a3

A cuboid with volume

a2b

Another cuboid with volume a2b

And another

A cuboid with volume

ab2

And another

And another

Finally, a cube of

volume b3.

3

3 2 2 33 3

a b

a a b ab b

Page 5: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Add two adjacent terms to make the

term below.

Binomial Theorem

111

1 1211 3 3

1 14 4611 55 10 10

11 66 15 152011 35217 72135

1 170 56 28 88 28 5611 126 84 36 99 36 84 126

Pascal’s Triangle

Now, we will apply the

triangle to the binomial

expansion.

Page 6: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Using Pascal’s Triangle to expand (1 + b) 6

1 14 4611 55 10 10

11 66 15 152011 35217 72135

1 170 56 28 88 28 5611 126 84 36 99 36 84 126

b 2b 3b 4b 6b5b 0b

Write ascending powers of b from b0 to

b6.

Take the 6th row of Pascal’s Triangle.

Use these numbers as coefficients.

Form into a series.

Page 7: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Take the 5th row of Pascal’s Triangle.

Use these numbers as coefficients.

Write ascending powers of b from b0 to b5.

5Expand 1 b

Example 1

2 3 4 51 b b b b b 5 2 3 4 51 1 5 10 10 5b b b b b b

11 55 10 10

.

Page 8: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

5 2 3 4 5

5

Use the result 1 1 5 10 10 5

to find 1

b b b b b b

b

2 3 4 51 5 10 10 5b b b b b

551 1b b

2 3 4 51 5 10 10 5b b b b b

Take care of the minus signs here.

Notice how the signs alternate

between odd and even terms.

Page 9: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

5 2 3 4 5

5

Use the result 1 1 5 10 10 5

to find 1 2

b b b b b b

x

5 2 3 4 51 2 1 5 2 10 2 10 2 5 2 2x x x x x x

2 3 4 51 10 40 80 80 32x x x x

2 3 4 51 5 2 10 4 10 8 5 16 32x x x x x

Remember to include the coefficients inside the

parentheses.

Page 10: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

11 55 10 10

5

5

5

0

5

4

5

1

5

2

5

3

The fifth row of Pascal’s Triangle was

Using Binomial Coefficient notation, these numbers are

In the expansion of 1 the coefficient of is n r n

b br

n is the row and r is the position

(counting from 0).

Page 11: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

1 2 1

1 2 3 2 1

n n n n n r

r r r r

1 2 1 1, 1,

0 !

n n n n n n n r

n r r

5 5 4 3 10

3 3 2 1

8 8 7 6 5 4 56

5 5 4 3 2 1

The binomial coefficient can be found from this formula.

The number of terms in the numerator and denominator

is always the same.r! – r factorial

Page 12: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

0 1 2 31 0 1 2 3

n nn n n n nb b b b b b

n

2 31 1 21 1

2! 3!

n nn n n n nb nb b b b

The Binomial Theorem

Page 13: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Using this result

82Find the first four terms in the expansion of 1 x

8 2 32 2 2 28 8 81 1

1 2 3x x x x

2 4 68 7 8 7 61 8

2 1 3 2 1x x x

2 4 61 8 28 56x x x 8

Estimate the value of 1.01

88 21.01 1 0.1

2 4 61 8 0.1 28 0.1 56 0.1 1 0.08 0.002 8 0.000 056 1.082 856

Example 3

.

Page 14: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Using this result

122 5Find the terms in and in the expansion of 1

2

xx x

212

2 2

x

12

3 3 2 533 993 2 1 3 2

2 2 4

xx x x x

5 3 299 333 2

4 2x x x

212 11

2 1 4

x

233

2x

512

5 2

x

512 11 10 9 8

5 4 3 2 1 2

x 599

4x

12

5 3Find the coefficient of in the expansion of 3 2 12

xx x

5165

4x

Example 5

.

Page 15: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

79 2

Find the first four terms, in ascending powers of in the

expansions of 1 2 and 1 2 .

x

x x

9 2 39 8 9 8 71 2 1 9 2 2 2

2 1 3 2 1x x x x

2 31 18 144 672x x x

2 4 61 14 84 280x x x

7 2 32 2 2 27 6 7 6 51 2 1 7 2 2 2

2 1 3 2 1x x x x

Exercise 6.1, qn 3(d), (g)

Page 16: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

In this lesson, you will use the Binomial Theorem to expand (a + b) n for positive integer values of n. You will identify and find a particular term in

the expansion (a + b) n, using the result .1T .n r rr

na b

r

3.2 The Binomial Expansion of (a + b) n

Objectives

Page 17: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

2 3

1 1 2 3

nn n n n nb b b b

ana a a a

The Binomial Theorem

1 1n n

n nb ba b a a

a a

1 2 2 3 3 1 2 3

n n n n n nn n na b a a b a b a b b

Page 18: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Take the 6th row of

Pascal’s Triangle.

Use these numbers as coefficients.

Write ascending

powers of b from b0 to

b5.

5Expand .a b

b 5 5 4 3 2 2 3 4 55 10 10 5a b a a b a b a b ab b

11 55 10 10

3b 4b 5b2b3a 2a4a5a a

Write descending powers of a

from a5 to a0.

The combined total of powers is always

5.

Example

Page 19: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

6

2

Find, in descending powers of , the first four terms of

1.

x

xx

6 33

206 15x x

x

6 2 36 5 4 3

2 2 2 2

1 1 1 16 15 20x x x x x

x x x x

Don’t try to simplify yet – not until the

next stage.

Notice that the third term is

independent of x.

Example 6(b)

Page 20: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

Looking at the

combined powers of

x

12

15 2

1 1Find the term in in the expansion of 2 .x

x x

12

2

12 1The general term is 2 .

rr

xr x

15

1For the term in , 12 2 15r r

x 9r

318

1220 8x

x

15

1760

x

9

3

15 2

121 1The term in is 2

9x

x x

There is no need to find all the

terms.

Be careful with negative values.

Example 8(b)

Page 21: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

9Find the fourth term in the expansion of 3 2 .x

684 729 8x

9 6 393 2 3 2

3x x

There is no need to

find all the terms.

6The fourth term is 489888 .x

Exercise 6.2, qn 6(b)

Page 22: Term 1 : Unit 3 Binomial Theorem 3.1 The Binomial Expansion of (1 + b) n 3.2 The Binomial Expansion of (a + b) n.

Binomial Theorem

103

2

2Find the constant term in the expansion of .x

x

1212

64210x

x

The combined

powers of x are 0.

The constant term is 13440.

1032

10 2The general term is

rr

xr x

3 10 2 0r r 6r

6

40 32

10 2The term in is

6x x

x

Exercise 6.2, qn 7(c)