Tensors and Matrices - University of Illinois at...

149
Tensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear Algebra Meeting, May 7-9, 2010 Shmuel Friedland Univ. Illinois at Chicago () Tensors and Matrices West Canada Linear Algebra Meeting, May 7-9 / 24

Transcript of Tensors and Matrices - University of Illinois at...

Page 1: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Tensors and Matrices

Shmuel FriedlandUniv. Illinois at Chicago

West Canada Linear Algebra Meeting, May 7-9, 2010

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 1

/ 24

Page 2: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors

1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 3: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.

2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 4: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.

3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 5: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication

4 Results and conjecturesApproximations of tensors

1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 6: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 7: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors

1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 8: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.

2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 9: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem

3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 10: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations

4 CUR approximationsDiagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 11: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 12: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 13: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Overview

Ranks of 3-tensors1 Basic facts.2 Complexity.3 Matrix multiplication4 Results and conjectures

Approximations of tensors1 Rank one approximation.2 Perron-Frobenius theorem3 Rank (R1,R2,R3) approximations4 CUR approximations

Diagonal scaling of nonnegative tensors to tensors with given rows,columns and depth sums

Characterization of tensor in C4×4×4 of border rank 4

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 2

/ 24

Page 14: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 15: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3

Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 16: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 17: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 18: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 19: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,

τ =∑m1,m2,m3

i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 20: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic notions

scalar a ∈ F, vector x = (x1, . . . , xn)> ∈ Fn, matrix A = [aij ] ∈ Fm×n,

3-tensor T = [ti,j,k ] ∈ Fm×n×l , p-tensor T = [ti1,...,ip ] ∈ Fn1×...×np

Abstractly U := U1 ⊗U2 ⊗U3 dim Ui = mi , i = 1,2,3, dim U = m1m2m3Tensor τ ∈ U1 ⊗ U2 ⊗ U3

HISTORY: Tensors-as now W. Voigt 1898Tensor calculus 1890 G. Ricci-Curbastro: absolute differential calculus,T. Levi-Civita: 1900, A. Einstein: General relativity 1915

Rank one tensor ti,j,k = xiyjzk , (i , j , k) = (1,1,1), . . . , (m1,m2,m3)or decomposable tensor x⊗ y⊗ z

basis of Uj : [u1,j , . . . ,umj ,j ] j = 1,2,3basis of U: ui1,1 ⊗ ui2,2 ⊗ ui3,3, ij = 1, . . . ,mj , j = 1,2,3,τ =

∑m1,m2,m3i1=i2=i3=1 ti1,i2,i2ui1,1 ⊗ ui2,2 ⊗ ui3,3

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 3

/ 24

Page 21: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 22: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 23: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 24: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 25: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)

R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 26: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 27: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 28: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,

(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 29: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Ranks of tensors

Unfolding tensor: in direction 1:T = [ti,j,k ] view as a matrix A1 = [ti,(j,k)] ∈ Fm1×(m2·m3)

R1 := rank A1:dimension of row or column subspace spanned in direction 1

Ti,1 := [ti,j,k ]m2,m3j,k=1 ∈ Fm2×m3 , i = 1, . . . ,m1

T =∑m1

i=1 Ti,1ei,1 (convenient notation)R1 := dim span(T1,1, . . . ,Tm1,1).

Similarly, unfolding in directions 2,3

rank T minimal r :

T = fr (x1,y1, z1, . . . ,xr ,yr , zr ) :=∑r

i=1 xi ⊗ yi ⊗ zi ,(CANDEC, PARFAC)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 4

/ 24

Page 30: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 31: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)

Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 32: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 33: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 34: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 35: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Basic facts

FACT I: rank T ≥ max(R1,R2,R3)Reason U2 ⊗ U3 ∼ Fm2×m3 ≡ Fm2m3

Note:R1,R2,R3 are easily computableIt is possible that R1 6= R2 6= R3

FACT II : For τ = T = [ti,j,k ] letTk ,3 := [ti,j,k ]m1,m2

i,j=1 ∈ Fm1×m2 , k = 1, . . . ,m3. Then rank T =

minimal dimension of subspace L ⊂ Fm1×m2 spanned by rank onematrices containing T1,3, . . . ,Tm3,3.

COR rank T ≤ min(mn,ml ,nl)

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 5

/ 24

Page 36: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field andNP-hard for rational numbers

PRF: 3-sat with n variables m clausessatisfiable iff rank T = 4n + 2m, T ∈ F(2n+3m)×(3n)×(3n+m))otherwise rank is larger

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 6

/ 24

Page 37: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field andNP-hard for rational numbers

PRF: 3-sat with n variables m clausessatisfiable iff rank T = 4n + 2m, T ∈ F(2n+3m)×(3n)×(3n+m))otherwise rank is larger

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 6

/ 24

Page 38: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Complexity of rank of 3-tensor

Hastad 1990: Tensor rank is NP-complete for any finite field andNP-hard for rational numbers

PRF: 3-sat with n variables m clausessatisfiable iff rank T = 4n + 2m, T ∈ F(2n+3m)×(3n)×(3n+m))otherwise rank is larger

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 6

/ 24

Page 39: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank: F = R, C

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank=border rank=typical rank of Fm×n×l : grankF(m,n, l) -the rank of a random tensor T ∈ Fm×n×l

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 7

/ 24

Page 40: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank: F = R, C

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank=border rank=typical rank of Fm×n×l : grankF(m,n, l) -the rank of a random tensor T ∈ Fm×n×l

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 7

/ 24

Page 41: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank: F = R, C

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank=border rank=typical rank of Fm×n×l : grankF(m,n, l) -the rank of a random tensor T ∈ Fm×n×l

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 7

/ 24

Page 42: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank: F = R, C

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank=border rank=typical rank of Fm×n×l : grankF(m,n, l) -the rank of a random tensor T ∈ Fm×n×l

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 7

/ 24

Page 43: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank: F = R, C

Rr (m,n, l) ⊂ Fm×n×l : all tensors of rank ≤ r

Rr (m,n, l) not closed variety for r ≥ 2

Border rank of T the minimum k s.t. T is a limit of Tj , j ∈ N, rank Tj = k .

generic rank=border rank=typical rank of Fm×n×l : grankF(m,n, l) -the rank of a random tensor T ∈ Fm×n×l

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 7

/ 24

Page 44: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 45: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 46: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 47: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 48: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)

grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl(m+n+l−2)e

Conjecture grankC(m,n, l) = d mnl(m+n+l−2)e

for 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 49: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)e

Conjecture grankC(m,n, l) = d mnl(m+n+l−2)e

for 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 50: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 51: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank of Fm×n×l

THM: grankC(m,n, l) = min(l ,mn) for (m − 1)(n − 1) + 1 ≤ l .

Reason: For l = (m − 1)(n − 1) + 1 a generic subspace of matrices ofdimension l in Cm×n intersect the variety of rank one matrices in Cm×n

at least at l lines which contain l linearly independent matrices

COR: grankC(2,n, l) = min(l ,2n) for 2 ≤ n ≤ l

Dimension count for F = C and 2 ≤ m ≤ n ≤ l ≤ (m − 1)(n − 1) + 1:

fr : (Cm × Cn × Cl)r → Cm×n×l , x⊗ y⊗ z = (ax)⊗ (by)⊗ ((ab)−1z)grankC(m,n, l)(m + n + l − 2) ≥ mnl ⇒ grankC(m,n, l) ≥ d mnl

(m+n+l−2)eConjecture grankC(m,n, l) = d mnl

(m+n+l−2)efor 2 ≤ m ≤ n ≤ l < (m − 1)(n − 1) and (3,n, l) 6= (3,2p + 1,2p + 1)

Fact: grankC(3,2p + 1,2p + 1) = d3(2p+1)2

4p+3 e+ 1

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 8

/ 24

Page 52: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 53: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 54: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 55: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 56: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 57: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 58: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 59: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 60: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Bilinear maps and product of matrices

bilinear map: φ : U× V→W

[u1, . . . ,um], [v1, . . . ,vn], [w1, . . . ,wl ] bases in U,V,W

φ(ui ,vj) =∑

k=1 ti,j,kwk , T := [ti,j,k ] ∈ Fm×n×l

T =∑r

a=1 xa ⊗ ya ⊗ za, r = rank T

φ(c,d) =∑r

a=1(c>x)(d>y)za, c =

∑mi=1 ciui ,d =

∑nj=1 djvj

Complexity: r -products

Matrix product τ : FM×N × FN×L → FM×L, (A,B) 7→ AB

M = N = L = 2, grankC(4,4,4) = d 4×4×44+4+4−2e = d6.4e = 7

Product of two 2× 2 matrices is done by 7 multiplications

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 9

/ 24

Page 61: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 62: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1

(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 63: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),

(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 64: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),

(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 65: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,

(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 66: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4

(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lpl+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 67: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 68: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 69: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 70: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 71: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmetic

I checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 72: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Known cases of rank conjecture

grank(3,2p,2p) = d 12p2

4p+1e and grank(3,2p − 1,2p − 1) = d3(2p−1)2

4p−1 e+ 1(n,n,n + 2) if n 6= 2 (mod 3),(n − 1,n,n) if n = 0 (mod 3),(4,m,m) if m ≥ 4,(n,n,n) if n ≥ 4(l ,2p,2q) if l ≤ 2p ≤ 2q and and 2lp

l+2p+2q−2 is integer

Easy to compute grankC(m,n, l):

Pick at random wr := (x1,y1, z1, . . . ,xr ,yr , zr ) ∈ (Rm × Rn × Rl)r

The minimal r ≥ d mnl(m+n+l−2)e s.t. rank J(fr )(wr ) = mnl

is grankC(m,n, l) (Terracini Lemma 1915)

Avoid round-off error:wr ∈ (Zm × Zn × Zl)r find rank J(fr )(wr ) exact arithmeticI checked the conjecture up to m,n, l ≤ 14

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 10

/ 24

Page 73: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 74: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 75: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 76: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 77: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1

rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 78: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Vi

ρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 79: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 80: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 81: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Generic rank III - the real case

For mn ≤ l grankR(m,n, l) = mn.

For 2 ≤ m ≤ n ≤ l < mn − 1, there exist V1, . . . ,Vc(m,n,l) ⊂ Rm×n×l

pairwise distinct open connected semi-algebraic sets s.t.

Closure(∪c(m,n,l)i=1 ) = Rm×n×l

rank T = grankC(m,n, l) for each T ∈ V1rank T = ρi for each T ∈ Viρi ≥ grankC(m,n, l) for i = 2, . . . , c(m,n, l)

For l = (m − 1)(n − 1) + 1 ∃m,n:c(m,n, l) > 1, ρc(m,n,l) ≥ grankC(m,n, l) + 1

Examples [3]m = n ≥ 2, l = (m − 1)(n − 1) + 1.m = n = 4, l = 11,12

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 11

/ 24

Page 82: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 83: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 84: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 85: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of X

PX(T ) =∑d

i=1〈T ,Xi〉Xi , ‖PX(T )‖2 =∑d

i=1〈T ,Xi〉2‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 86: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 87: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 88: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :

minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 89: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 90: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 91: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λz

λ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 92: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectors

How many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 93: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Rank one approximations

Rm×n×l IPS: 〈A,B〉 =∑m,n,l

i=j=k ai,j,kbi,j,k , ‖T ‖ =√〈T , T 〉

〈x⊗ y⊗ z,u⊗ v⊗w〉 = (u>x)(v>y)(w>z)

X subspace of Rm×n×l , X1, . . . ,Xd an orthonormal basis of XPX(T ) =

∑di=1〈T ,Xi〉Xi , ‖PX(T )‖2 =

∑di=1〈T ,Xi〉2

‖T ‖2 = ‖PX(T )‖2 + ‖T − PX(T )‖2

Best rank one approximation of T :minx,y,z ‖T − x⊗ y⊗ z‖ = min‖x‖=‖y‖=‖z‖=1,a ‖T − a x⊗ y⊗ z‖

Equivalent: max‖x‖=‖y‖=‖z‖=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxT × x⊗ z = λy, T × x⊗ y = λzλ singular value, x,y, z singular vectorsHow many distinct singular values are for a generic tensor?

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 12

/ 24

Page 94: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 95: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 96: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 97: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 98: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 99: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 100: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

`p maximal problem and Perron-Frobenius

‖(x1, . . . , xn)>‖p := (

∑ni=1 |xi |p)

1p

Problem: max‖x‖p=‖y‖p=‖z‖p=1∑m,n,l

i=j=k ti,j,kxiyjzk

Lagrange multipliers: T × y⊗ z :=∑

j=k=1 ti,j,kyjzk = λxp−1

T × x⊗ z = λyp−1, T × x⊗ y = λzp−1 (p = 2t2s−1 , t , s ∈ N)

p = 3 is most natural in view of homogeneity

Assume that T ≥ 0. Then x,y, z ≥ 0

For which values of p we have an analog of Perron-Frobeniustheorem?

Yes, for p ≥ 3, No, for p < 3,Friedland-Gauber-Han [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 13

/ 24

Page 101: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 102: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 103: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 104: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a time

This amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 105: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:

Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 106: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 107: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 108: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

(R1, R2, R3)-rank approximation of 3-tensors

Fundamental problem in applications:Approximate well and fast T ∈ Rm1×m2×m3 by rank (R1,R2,R3)3-tensor.

Best (R1,R2,R3) approximation problem:Find Ui ⊂ Fmi of dimension Ri for i = 1,2,3 with maximal||PU1⊗U2⊗U3(T )||.

Relaxation method:Optimize on U1,U2,U3 by fixing all variables except one at a timeThis amounts to SVD (Singular Value Decomposition) of matrices:Fix U2,U3. Then V = U1 ⊗ (U2 ⊗ U3) ⊂ Rm1×(m2·m3)

maxU1 ‖PV(T )‖ is an approximation in 2-tensors=matrices

Use Newton method on Grassmannians - Eldén-Savas 2009 [1]

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 14

/ 24

Page 109: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximation I:

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 15

/ 24

Page 110: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 111: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 112: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 113: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 114: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 115: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,

where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 116: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 117: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 118: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Fast low rank approximations II:

Approximate A ∈ Rm×n by CUR where C ∈ Rm×p,R ∈ Rq×n

for some submatrices of A.

minU∈Cp×q ‖A− CUR‖F achieved for U = C†AR†

Faster choice: U = A[I, J]†

(corresponds to best CUR approximation on the entries read)

For given A ∈ Rm×n×l ,F ∈ Rm×p,E ∈ Rn×q,G ∈ Rl×r ,where 〈p〉 ⊂ 〈n〉 × 〈l〉, 〈q〉 ⊂ 〈m〉 × 〈l〉, 〈r〉 ⊂ 〈m〉 × 〈l〉

minU∈Cp×q×r ‖A−U × F ×E ×G‖F achieved for U = A×E† × F † ×G†

CUR approximation of A obtained by choosing E ,F ,G submatrices ofunfolded A in the mode 1,2,3.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 16

/ 24

Page 119: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

List of applications

Face recognition

Video tracking

Factor analysis

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 17

/ 24

Page 120: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

List of applications

Face recognition

Video tracking

Factor analysis

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 17

/ 24

Page 121: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

List of applications

Face recognition

Video tracking

Factor analysis

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 17

/ 24

Page 122: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

List of applications

Face recognition

Video tracking

Factor analysis

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 17

/ 24

Page 123: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:

∑j,k ti,j,k = ri > 0,

∑i,k ti,j,k = cj > 0,

∑i,j ti,j,k = dk > 0∑m

i=1 ri =∑n

j=1 cj =∑l

k=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 124: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 125: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sum

Solution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 126: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 127: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)

fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 128: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convex

fT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 129: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors to tensors with givenrow, column and depth sums

0 ≤ T = [ti,j,k ] ∈ Rm×n×l has given row, column and depth sums:r = (r1, . . . , rm)>,c = (c1, . . . , cn)

>,d = (d1, . . . ,dl)> > 0:∑

j,k ti,j,k = ri > 0,∑

i,k ti,j,k = cj > 0,∑

i,j ti,j,k = dk > 0∑mi=1 ri =

∑nj=1 cj =

∑lk=1 dk

Find nec. and suf. conditions for scaling:T ′ = [ti,j,kexi+yj+zk ],x,y, z such that T ′ has given row, column anddepth sumSolution: Convert to the minimal problem:minr>x=c>y=d>z=0 fT (x,y, z), fT (x,y, z) =

∑i,j,k ti,j,kexi+yj+zk

Any critical point of fT on S := {r>x = c>y = d>z = 0} gives rise to asolution of the scaling problem (Lagrange multipliers)fT is convexfT is strictly convex implies T is not decomposable: T 6= T1 ⊕ T2.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 18

/ 24

Page 130: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 131: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 132: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 133: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 134: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 135: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithm

True for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 136: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 137: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?

Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 138: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Scaling of nonnegative tensors II

if fT is strictly convex and is∞ on ∂S, fT achieves its unique minimum

Equivalent to: the inequalities xi + yj + zk ≤ 0 if ti,j,k > 0 and equalitiesr>x = c>y = d>z = 0 imply x = 0m,y = 0n, z = 0l .

Fact: For r = 1m,c = 1n,d = 1l Sinkhorn scaling algorithm works.

Newton method works, since the scaling problem is equivalent findingthe unique minimum of strict convex function

Hence Newton method has a quadratic convergence versus linearconvergence of Sinkhorn algorithmTrue for matrices too

Are variants of Menon and Brualdi theorems hold in the tensor case?Yes for Menon, unknown for Brualdi

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 19

/ 24

Page 139: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 140: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 141: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 142: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5

similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 143: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 144: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 145: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

Characterization of tensor in C4×4×4 of border rank 4

Major problem in algebraic statistics:phylogenic trees and their invariants [1]

W ⊂ C4×4 subspace spanned by four sections of T ∈ C4×4×4

If W contains identity matrix then W space of commuting matrices

If W contains an invertible matrix Z then any other X ,Y ∈W satisfyX (adjZ )Y = Y (adjZ )X - equations of degree 5similarly C2(X )C̃2(Z )C2(Y ) = C2(Y )C̃2(Z )C2(Z )-equations of degree 6

Strassen’s condition hold for any 3× 3× 3 subtensor of T :det(U(adjW )V − V (adjW )U) = 0, U,V ,W ∈ C3×3×3

equations of degree 9

Friedland [5] one needs a equations of degree 16

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 20

/ 24

Page 146: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

References I

E.S. Allman and J.A. Rhodes, Phylogenic ideals and varieties forgeneral Markov model, Advances in Appl. Math., 40 (2008)127-148.

R.B. Bapat D1AD2 theorems for multidimensional matrices, LinearAlgebra Appl. 48 (1982), 437-442.

R.B. Bapat and T.E.S. Raghavan, An extension of a theorem ofDarroch and Ratcliff in loglinear models and its application toscaling multidimensional matrices, Linear Algebra Appl. 114/115(1989), 705-715.

R.A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math20 (1968), 144-157.

R.A. Brualdi, S.V. Parter and H. Schneider, The diagonalequivalence of a nonnegative matrix to a stochastic matrix, J.Math. Anal. Appl. 16 (1966), 31–50.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 21

/ 24

Page 147: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

References II

Lar. Eldén and B. Savas, A Newton Grassmann method forcomputing the Best Multi-Linear Rank-(r1; r2; r3) Approximation ofa Tensor, SIAM J. Matrix Anal. Appl. 31 (2009), 248–271.

J. Franklin and J. Lorenz, On the scaling of multidimensionalmatrices, Linear Algebra Appl. 114/115 (1989), 717-735.

S. Friedland, On the generic rank of 3-tensors, arXiv:0805.3777v2.

S. Friedland, Positive diagonal scaling of a nonnegative tensor toone with prescribed slice sums, to appear in Linear Algebra Appl.,arXiv:0908.2368v1, http://arxiv.org/abs/0908.2368v2.

S. Friedland,On tensors of border rank l in Cm×n×l ,arXiv:1003.1968v1.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 22

/ 24

Page 148: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

References III

S. Friedland, S. Gauber and L. Han, Perron-Frobenius theorem fornonnegative multilinear forms, arXiv:0905.1626.

S. Friedland, V. Mehrmann, A. Miedlar, and M. Nkengla, Fast lowrank approximations of matrices and tensors, submitted,www.matheon.de/preprints/4903.

S. Friedland and V. Mehrmann, Best subspace tensorapproximations, arXiv:0805.4220v1,http://arxiv.org/abs/0805.4220v1 .

S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zmarashkin, A theory ofpseudo-skeleton approximations of matrices, Linear Algebra Appl.261 (1997), 1-21.

L.H. Lim, Singular values and eigenvalues of tensors: a variationalapproach, CAMSAP 05, 1 (2005), 129-132.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 23

/ 24

Page 149: Tensors and Matrices - University of Illinois at Chicagohomepages.math.uic.edu/~friedlan/WclamMay10.pdfTensors and Matrices Shmuel Friedland Univ. Illinois at Chicago West Canada Linear

References IV

M.W. Mahoney and P. Drineas, CUR matrix decompositions forimproved data analysis, PNAS 106, (2009), 697-702.

M.V. Menon, Matrix links, an extremisation problem and thereduction of a nonnegative matrix to one with with prescribed rowand column sums, Canad. J. Math 20 (1968), 225-232.

V. Strassen, Rank and optimal computations of generic tensors,Linear Algebra Appl. 52/53: 645-685, 1983.

Shmuel Friedland Univ. Illinois at Chicago () Tensors and MatricesWest Canada Linear Algebra Meeting, May 7-9, 2010 24

/ 24