Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

download Tensile,  Creep,  and ABI Tests on Sn5%Sb  Solder.pdf

of 8

Transcript of Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    1/8

    J o u r n a l o f E l e c t r o n i c M a t e r i a l s Vo l . 2 6 No . 7 1 9 9 7

    Special ssue Paper

    T e n s ile , C r e e p , a n d A B I T e s ts o n S n 5 S b S o l d e r

    fo r M e c h a n i c a l P r o p e r t y E v a l u a t io n

    K. LINGA MURTY,* FAHMY M. HA GG AG /a nd RAO K. MAHIDHARA*

    *North Carolina State University, Raleigh, NC 27695-7909

    *Advanced Technology Corporation, 661 Emo ry Valley Road, Suite A,

    Oak Ridge, TN 37830

    Sn5 Sb is one of the mate ria ls considered for replacing lead containing alloys

    for soldering in electronic packaging. We eval uated the tensile properties of the

    bulk materi al at varied strain- rates a nd tempe ratu res (to 473K) to determi ne

    the underly ing deformation mechanisms. Stress exponents of about three and

    seven were observed at low and high stresses, respectively, and very low

    activation energies for creep (about 16.7 and 37.7 kJ/mole) were noted. A

    maxi mum ductility of about 350 was noted at ambient temper ature . Creep

    tests performed in the same temperature regime also showed two distinct

    regions, albeit with slightly different exponents (three an d five) and activation

    energy (about 54.4 kJ/mole). Ball indentation tests were performed on the

    shoulder portions of the creep samples (prior to creep tests) using a Stress-

    Strain Microprobe~ (Advanced Technology Corporation) at vari ed ind enta tion

    rates (strain-rates). The automated ball indentation (ABI) data were at rela-

    tively high strai n-rates; however, they were in excellent agree ment with creep

    data, while both these results deviated from the tensile test data. Work is

    planned to perform creep at high str esses at ambient and extend ABI tests to

    elevated temperatures.

    Ke y w ords : Chemical diffusion, creep, deformation mechanisms, dislocation

    glide, dislocation pipe diffusion, grain -boundary diffusion, lead-

    free, self-diffusion, solder, tensile properties

    I N T R O D U T I O N

    Sn-Sb alloys are viable candidates as soldering

    materi als in electronic packaging and ar e considered

    in the development of lead-free alloys to replace

    currently used lead-based alloys. Tin alloyed with

    5 Sb has a near-perit ecti c composition and a rela-

    tively high melt ing point of 245~ This alloy has good

    creep resistance and thermal fatigue characteris-

    tics. 1,2 The room t empera tur e ductil ity of the alloy is

    very high while the contact angle for the alloy on

    copper subs tra te is relat ively large (43 + 4 ~ com-

    pared to t ha t of 17 + 4 ~ for the Pb-Sn eutectic, albeit

    it is quite adequate from the wettability consider-

    ation/Mechanical and creep properties have been

    reporte d by several investigators using conventional

    tensile and creep tests on bulk specimens.4~

    It is important to develop techniques to charac-

    *Currently with Tessera Inc., 3099 Orchard Dr., San Jose,

    CA 95134

    (Received November 15, 1996; accepted February 21, 1997)

    terize mechanical, creep, and fatigue properties of

    solder structures so tha t these charact eristics can be

    evaluate d in

    near r ea l

    situations where the amounts

    of material available are relatively small. A funda-

    menta l require ment is the development of echniques

    to characterize the mechanic al and fracture proper-

    ties of components of various joint configurations so

    tha t proper a ssessme nt can be made of the degrada-

    tion and remaining life of solder joints in various

    applications. While destructive tests of specimens

    made from materials of which these structures are

    constructed provide relevant data, direct measure-

    ment, preferably using nondestructive techniques on

    the real structures, is desirable for reliable assess-

    ment of the safety of these structures. One such

    technique is the automated ball indentation (ABI)

    which has been demonstrated to yield the stress-

    strain behavior of many structural met al s/T he se

    tests are relatively simple, rapid, and essentially

    nondestructive.

    We report here the room-temperature deformation

    characteristics obtained on the shoulder portions of

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    2/8

    8 4 0 M u r t y , H a g g a g , a n d M a h i d h a ra

    3 0

    2

    10

    S n - S S b / T e n s i l e Tests

    j e

    . 0 / , 5 1 . 0

    p l a s t i c s t r a i n

    F i g . 1 . S t r e s s v s s t ra i n a t ~ = I O - 4 s - L

    i , 1 1 5 2 . 0

    400

    300

    i 200

    100

    i i I i

    S n - S S b S o l d e r

    1041ec'l ~

    0 i I t 1 | I i I

    275 325 375 425 475

    Temperature K

    F i g . 2 . T e m p e r a t u r e v a r i a t i o n o f d u c t i li t y a t t w o c o n s t a n t s t r a i n -r a t e s

    t h e t e n s i l e / c r e e p s p e c i m e n s u s i n g t h e s t r e s s - s t r a i n -

    m i c r o p ro b e ( S S M - - d e v e l o p e d b y t h e A d v a n c e d T e c h -

    n o lo g y C o r p o r a ti o n b a s e d o n t h e A B I p r i n c i p l e ) t o

    c o m p a r e w i t h t h e s t a n d a r d d e s t r u c ti v e t e n s il e a n d

    c r e e p t e s t r e s u l ts . A l t h o u g h t h e S S M c a n b e u s e d o n

    s m a l l s o l d e r b u m p s , s u c h t e s t s r e q u i r e f u r t h e r d e v e lo p -

    m e n t s w h e r e r e l a ti v e l y s m a l l i n d e n t e r s ( o f m i c r o n

    s iz e ) n e e d t o b e u s e d a n d v e r y l o w l o a d s ( m i c r o g r a m s )

    c a n b e m o n i t o r e d . A m a j o r o b j e c t i v e o f t h e c u r r e n t

    s t u d y is t o i n v e s t i g a t e t h e u n d e r l y i n g d e f o r m a t i o n

    m e c h a n i s m i n t h e s o l d e r a l lo y .

    E X P E R I M E N T A L

    D E T A I L S

    T i n - a n t i m o n y a l l oy w i t h c h e m i c a l c o m p o s i t i o n S n -

    5 % S b w a s o b t a i n e d i n t h e f o r m o f i m m t h i c k s h e e t

    f r o m A l p h a M e t a l s , I nc . T e n s i l e s p e c i m e n s w i t h a

    g a g e l e n g th o f 1 2. 4 m m w e r e m a c h i n e d f r om t h e s h e e t

    p a r a l l e l t o t h e r o l li n g d i r e c ti o n . T h e m e c h a n i c a l p r o p -

    e r t i e s w e r e c h a r a c t e r i z e d u s i n g t e n s i l e t e s t s p e r -

    f o r m e d o n a c l os e d -l o o p I n s t r o n t e s t i n g m a c h i n e a t

    t e m p e r a t u r e s f r o m a m b i e n t t o 4 7 3 K b o t h a t c o n s t a n t

    c r o s s - h e a d s p e e d a n d a l s o s t r a i n - r a t e c h a n g e t e s t s .

    Th e s t r a i n - r a t e s r a n g e d f ro m ~ 5 x 1 0~ s ~1 to - 1 10 2 s -1.

    I n a d d i ti o n , t e n s i l e c r e e p t e s t s w e r e p e r f o r m e d u n d e r

    c o n s t a n t l o ad i n t h e s a m e t e m p e r a t u r e r a n g e a n d t h e

    s t r a i n s w e r e m o n i t o r e d u s i n g a l in e a r v a r i a b l e d i f f e r-

    e n t i a l t r a n s f o r m e r ( L V D T ) in t h e l o a d- l in e . T h e

    s t r e s s e s r a n g e d f r o m a b o u t 1 . 2 5 M P a t o 30 M P a .

    M e t a l l o g r a p h y w a s p e r f o r m e d u s i n g o p ti c al a n d s c a n-

    n i n g e l e c t r o n m i c r o s c o p y .

    A B I t e s t i n g i n v o l v e s m u l t i p l e i n d e n t a t i o n s a t t h e

    s a m e l o c a ti o n u s i n g a s p h e r i c a l i n d e n t e r w h i l e m e a -

    s u r i n g t h e l o a d v s d e p t h o f p e n e t r a t i o n f r o m w h i c h

    t r u e s t r e s s a n d t r u e s t r a i n a r e e v a l u a t e d u s i n g t h e

    e l a s t i c a n d p l a s t i c a n a l y s e s . 7 F o r A B I t e s t s , n o s p e c i f i c

    s p e c i m e n p r e p a r a t i o n w a s n e c e s s a r y e x c e p t t o m a k e

    s u r e t h a t t h e s p e c i m e n w a s f l a t a n d t h e s u r f a c e s w e r e

    p a r a l le l . W h i l e t h e s h o u l d e r p o r t i o n s o f t h e t e s t e d

    s p e c i m e n s c o u l d b e u s e d f o r A B I t e s t i n g , o n e o f th e

    a r c h i v a l c r e e p s p e c i m e n s w a s d e v o t e d f o r t h i s p u r -

    p o s e to e l im i n a t e a n y m i c r o s t r u c t u r a l d e v e l o p m e n t

    t h a t m a y h a v e t a k e n p l ac e d u r in g l o n g t e r m e x p o s u r e

    a t h i g h t e m p e r a t u r e . l ig h t m e c h a n i c a l p o l is h w a s

    g i v e n t o r e m o v e a n y s u r f a c e c o n t a m i n a t i o n t h a t m i g h t

    h a v e a c c u m u l a t e d . T h e b a l l in d e n t a t i o n t e s t s w e r e

    p e r f o r m e d o n a t a b l e t o p s y s t e m m o d e l P o r t a F l o w - P 1 @

    s y s t e m u s i n g a t u n g s t e n c a r b i d e s p h e r i c a l i n d e n t e r

    w i t h 1 . 57 5 m m ( 0 .0 6 1 ) d i a m e t e r ( D ), a n d m a x i m u m

    d e p t h o f p e n e t r a t i o n (hm ax) o f a b o u t 0 . 1 m m ( 0 . 0 0 4 ) .

    T h e i n d e n t e r v e l o c i t y w a s v a r i e d f r o m 5 . 0 8 1 0 -4 to

    0 . 5 0 8 m m / s ( 2 x 1 0 - s t o 0 . 0 2 i n / s) a n d t h e i n d e n t a t i o n

    l o a d v s d e p t h w e r e c o n t i n u o u s ly m e a s u r e d u s i n g a n

    o n - l i n e l o a d c e l l a n d a n L V D T , r e s p e c t i v e l y ( F i g. l b ) .

    A t t h e m a x i m u m i n d e n t a t i o n d e p t h o f 0 .1 m m , t h e

    d i a m e t e r s o f i n d e n t a t i o n s w e r e l e ss t h a n 0 .3 7 5 m m

    w h i l e s p e c i m e n t h i c k n e s s w a s a b o u t f o u r t i m e s t h i s

    v a l u e . A t t h e s a m e t i m e , b e c a u s e o f t h e r e l a t i v e l y

    s m a l l ( 1 0 g m ) g r a i n s iz e , a l a r g e n u m b e r o f g r a i n s a r e

    c o v e r e d .

    E X P E R I M E N T A L R E S U L T S A N D

    D I S C U S S I O N

    T e n s i l e T e s t R e s u l t s

    U n i a x i a l t e n s i l e t e s t s w e r e c o n d u c t e d a t c o n s t a n t

    c r o s s - h e a d s p e e d s c o r r e s p o n d i n g t o s t r a i n - r a t e s o f

    1 0-~ s -1 a n d 1 0 -3 s -1 a t t e m p e r a t u r e s f r o m a m b i e n t t o

    4 7 3 K . T y p i c a l s t r e s s v s s t r a i n c u r v e s a r e s h o w n i n

    F i g . 1 a s a f u n c t i o n o f t h e t e s t t e m p e r a t u r e a t a

    n o m i n a l s t r a i n - r a t e o f 1 0-4 s -L Th e d u c t i l i t y i s h i g h ,

    w i t h a v a l u e a r o u n d 3 50 % a t 3 9 8 K ( 25 ~ M a x i m u m

    d u c t i l i t y (3 5 0% ) s e e m s t o c o r r e s p o n d t o a s t r a i n - r a t e

    s e n s i ti v i ty o f 0 .3 a n d d e c r e a s e s a s t e s t t e m p e r a t u r e

    w a s i n c r e a s e d . O n t h e o t h e r h a n d , a t e = 1 0 ~ s -1,

    d u c t i l i t y w a s m u c h l o w e r t h a n a t ~ = 1 0 ~ s -1 a t a l l

    t e m p e r a t u r e s ; i t a l so i n c r e a s e d w i t h t e m p e r a t u r e .

    F i g u r e 2 d e p i c t s t h e i n f l u e n c e o f t e s t t e m p e r a t u r e o n

    d u c t i l i t y a t t h e s e t w o s t r a i n - r a t e s .

    M e t a l l o g r a p h i c e x a m i n a t i o n w a s p e r f o r m e d o n f r ac -

    t u r e d s p e c i m e n s . S p e c i m e n s d e f o r m e d a t ~ = 1 0-3 s -~

    d i d n o t e x h i b i t c o a r s e n i n g o f g r a i n s o r S n S b i n t e r m e -

    t a l li c p a r t i c le s a s i n d i c a t e d b y s p e c i m e n s t e s t e d a t

    2 9 8 K ( 2 5 ~ a t 1 0-~ s -L H o w e v e r , d e f o r m a t i o n a t a =

    1 0 -4 s -~ a t e l e v a t e d t e m p e r a t u r e s s h o w e d c o n s i d e r a b l e

    c o a r s e n i n g o f g r a i n s . T h e c o n c e n t r a t i o n o f S n S b i n t e r-

    m e t a l l i c p a r ti c l e s w i t h i n t h e m a t r i x a l s o d e c r e a s e d

    d u e t o g r a i n b o u n d a r y s e g r e g a t i o n a n d / o r d i s s o l u t io n

    o f t h e S n S b i n te r m e t a l l i c . F i g u r e s 3 a a n d 3 b c o m p i l e

    t h e o p t i c al m i c r o g r a p h s t a k e n f r o m t h e g a g e s e c t i o n s

    o f t h e f r a c t u r e d s p e c i m e n s a t r o o m t e m p e r a t u r e a n d

    4 2 3 K ( 1 5 0~ r e s p e c t i v e l y , a n d c l e a r l y d e p i c t t h e i n -

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    3/8

    Tensile, Creep, and ABI Tests on Sn5%Sb Solder

    for Mechanical Property Evaluation

    841

    situ grain growth and coarsening of he intermetallics

    at the elevated temperature. These microstructural

    modifications seem to be responsible for the observed

    ductility loss at high temper ature s and low strain-

    rates.

    Deformation enhanced grain-growth has been re-

    ported for several alloy systems, including Sn-lBi and

    7475 A1, and causes th e stra in-r ate sensitiv ity expo-

    nent m and, therefore, resistance to necking, to de-

    crease with strain. 6 The SnSb interm etallic s tend to

    segregate at grain boundaries, thereby causing a

    reduct ion in the overall ductility. It has been sug-

    gested s tha t the co ncurrent phase change due to high

    activity of dislocations and vacancies ne ar grain bound-

    aries during high temperature deformation makes

    boundaries preferred locations for anomalous nucle-

    ation effects. Therefore, the combined influence of

    microstructural instability due to grain and SnSb

    particle-coarsening during high temperature defor-

    mation reduces the ductility significantly. However,

    the s trai n-ra te s ensitivi ty m, indicative of the ductil-

    ity at ~ = 10 -4 s -1, rema in ed high er.

    Strain-rate change tests were supplemented by

    constant cross-head speed (initial strain-rate) tests at

    str ain -ra tes of 10 -4 s -1 and 10-3 s -1 to cha ract eriz e the

    stra in-ra te depe ndence of the flow stress. The true

    (ultimate) tensile stresses were evalua ted at the load

    b

    Fig. 3. Optical micrographof the Sn-5 Sbsolder deformedat ~ =

    -4 1

    10 s- to fracture at 298 (a), and 423K (b).

    maxim a and true strain-rates were calculated at the

    corresponding true uniform strains. These data are

    plotted on double-logarithmic scale in Fig. 4a as the

    true strain-rate vs the true stress, with low stress

    da ta following the power-law,

    = A ~ . (la)

    Far larger strain-rates are noted at high stresses

    where an exponential stress dependence is usually

    noted. The stress exponent, n, varied from around

    three to slightly less tha n four. Data at high stresses

    followed an expon ential stress dependen ce as shown

    in Fig. 4b,

    = A e B'~, (l b)

    with B = 1.33 + 0.29, which is essentially indep ende nt

    of the test temp erature .

    The activation energy was determined using these

    data at a constant strai n-rate of 2 x 10~ s -1 by plot tin g

    the normalized stress vs inverse absolute tempera-

    ture where the stress is divided by the tempe rature

    dependent elastic modulus. Such a plot is shown in

    Fig. 5 which yie lded a valu e of 26.8 + 1.6 kJ/m ole for

    the activation energy for creep. This value is very

    small co mpared to th at for self-diffusion in Sn as well

    as t ha t for lattice diffusion of Sb atoms (about 100.5

    10 -1

    10 -2

    lu

    9 10 -3

    lo 4

    1 0 - 5

    1 -I

    i . . . . .

    Sn-5Sb / Tens i le Tests

    298

    K

    A = o D /

    o 373 K ~ ~, o [] /

    r

    423

    K

    A o o [] /

    473K~ n=4

    I 0 I 0 0

    S t res s MPa

    r

    S n - 5 S b T e n s i l e D a t a / H i g h S t r e s s

    B = 1.325 + 0.285

    10 2

    t i t D f = 9 4 K 073 K

    * 423 K

    473 K

    10 -3 , I , I I , I ,

    0 1 0 2 0 3 0 4 0 5 0

    Stress, MPa

    b

    Fig. 4. a) Log-log plot of strain-rat e vs tensile stress, and b) high

    stress data exhibiting exponential stress variation of strain-rate.

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    4/8

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    5/8

    Tensile, Creep, and ABI Tests on Sn5%Sb Solder

    for Mechanical Property Evaluation 843

    experiment al results falls in this region, and thus we

    believe that the high stress region is due to climb of

    edge dislocations. On the other hand, the activation

    energy is noted to be 54.4 kJ/mole, which is closer to

    tha t for grain boundary diffusion tha n t hat for lattice

    or chemical interdiffusion. If his is taken to repre sent

    the low-te mperatu re climb mechan ism due to climb of

    dislocations by vacancies diffusing through disloca-

    tion pipes, one expects a value o f seven for the s tress

    exponent.~l,~4

    While the tensile and creep data reveal these two

    mechani sms at the lower stresses, creep data did not

    extend to very high stresses in the power-law break-

    down regime. The tensile test results, however, do

    exhibit an increasing n value with applied stress at

    very high stresses, which is indicative of the power-

    law breakdown. Disagreement between the experi-

    mental activation energies and model predictions

    notwithstanding, the plausible deformation mecha-

    nisms a re viscous glide at low stresses, low-tempera-

    ture dislocation climb at int erme diat e stresses, and

    power-law breakdown at very high stresses. More

    experimental work is warranted to determine the

    various para met ers in all of the stress ranges. Micro-

    struc tural investigations following deformation will

    shed light on the un derlyin g creep mechanism. In the

    climb creep regime, one expects to find distinct

    subgrain formation whereas randomly distributed

    dislocations are observed in the viscous glide creep

    contro lled region. 15

    ABI e s u l t s

    As pointed out earlier, a major objective of he study

    #3 - 0.005 in/s / ~ ~ t

    #2 - 0.001 . / - ~ t

    ~ . ~ J l . - - ~ Sn5%Sb t

    ~ r DISPLACEMENT t

    t

    Indenter Velocity ~ I

    #1 - 0.02 ires ..

    #2- 0.0001 f_ f

    #3 - 0 0000~~ / - f ~

    Fig. 7 . Indentat ion load N) vs depth mm) curves at var ied indenter

    speeds .

    was to use SSM to obtain the stre ss-stra in curves to

    demonstrate use of the ABI technique to determine

    these mechanical data on small size specimens in a

    nondestructive fashion. A numbe r of such tests could

    be performed in a limited space on the specimen

    shoulder. Typical load vs deformation (depth) curves

    are included in Figs. 7a and 7b corresponding to

    different indent er speeds. The system, in its cu rren t

    configuration allows testing at ambient te mperature,

    and a hig h-tem pera ture chamber is being installed.

    We report here ABI test results at room tempe ratur e

    and compare them with creep and tensile test data

    obtained on the same mat erial.

    The sys tem software utilizes elastic-plastic analy-

    ses to evaluate the true plastic strains and stresses

    from the depth and load data; the details are pre-

    sented in th e Appendix A. 18,17The strain- rate is evalu-

    ated from the indent er speed s from,

    = 2 v ~ 3 )

    5 d p '

    where v i is the indent er velocity and dp is the plastic

    inden ter dia mete r at the point of interest. The effect

    of flow stress (about 7% true plastic strain) on the

    strain-rate is shown on a double log plot in Fig. 8

    which reveals that the data set breaks into two dis-

    tinct regions.

    At low stresses, strain-rate followed a power-law

    10 0

    .r

    101

    10 -2

    I0 -3

    10 -4

    105

    10

    r

    E]

    ~3

    Sn-5Sb / ABI

    data

    oom Temperature

    i i i i i i i i

    Stress, MPa 100

    Fig. 8. Doub le-log plot of s t rain-rate vs s t ress of ABI da ta.

    .=

    1 0 0 . . . . . . .

    10 -1 Sn- 5Sb /

    oom Temperature

    10 -2 n 9

    10 -3

    10 -4

    10 -s

    10 -6 s

    I CreepData 1

    10 -7 = Tensile

    a t a

    10-8 . . . . . . . . . . . . . . .

    1 1

    S t r e s s M P a

    Fig. 9. Com pariso n of tens i le, creep, and AB I test resul ts .

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    6/8

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    7/8

    Tensile, Creep, and ABI Tests on Sn5 Sb Solder

    for Mechanical Property Evaluation

    where b is the Bur gers vector.

    Physically, the activation area may be interpr eted

    as the area swept by a dislocation segment in sur-

    mounti ng a barri er in its slip plane or the area swept

    betw een consecutive events. The ABI data in Fig. 10b

    yield a val ue of 96.5b 2, wit h valu es of ~10b 2 to 100b 2

    corres ponding to the climb of edge dislocations as the

    dominant mechanism vs nonconservative glide of

    jogged screw dislocation with a charact erist ic activa-

    tion are as in excess of 1000b2.19 One can co mbine t he

    two equations [Eq. (5) and Eq. (6)] using a Sinh-

    function so that the whole data set may be described

    by a single equation,

    = A(sinh B(~)n = 1.235 x 10 -5 (si nh 0 . 0 4 ~ ) 4 5 . 8 )

    Here, ~ is in per sec and (~ is in MPa. This implies tha t

    a doubleqo g plot of str ain- rat e vs sinhB(~ should yield

    a stra ight line as indicated in Fig. 11, with the slope

    of the line bein g 4.5. Thus, we note th at the ABI

    technique is useful in nondestructive evaluation of

    the deformation mechanisms in materials.

    It is clear tha t by decreasing the size of the in-

    denter, say to micron size, ver y small specimens can

    be tested using SSM. It is possible to utilize this

    machine and technique in characterizing

    real

    solder

    joints in electronic packages. Such development is

    now underwa y, especially to use this as a probe to

    monitor the degradation of struct ural materialsY

    CONCLUSIONS

    Tensile and creep tests, perfor med on bulk Sn5Sb

    solder at various tempe rat ures from ambi ent to 473K,

    exhibited power-law stress dependence of strain- rate

    at low stresses and exponential stress variation at

    high stresses. In addition, automated ball indenta-

    tion (ABI) tests were perf ormed at room temper atu re

    at various strain rates, and the results were in excel-

    lent agreement with creep tests. Slight deviation

    exhibited by the tensile test dat a from the creep and

    ABI results was believed to arise from the flat tensile

    stress vs strain curves which made an accurate de-

    termi natio n of the ul timate tensile stress difficult.

    The present study clearly demonstrated the useful-

    ness of the ABI technique to charact erize the me-

    chanical properties of microelectronic solder joints.

    C K N O W L E D G M E N T S

    We wish to express our appreciation to the re-

    viewers for various constructive suggestions and for

    their efforts in correcting the manuscript.

    R E F E R E N C E S

    1. D. Hanson and E.J. Sanford,J. Inst. Metals 62, 215 (1938).

    2. J.S. Hwang and R.M. Vargas, Proc. 1989 Intl. Syrup. on

    Microelectronics 38 (1990).

    3. J.S. Hwang,

    Solder Paste in Electronic Packaging,

    (New

    York: van Nostrand Reinhold, 1989).

    4. J.L. Christian, Electro Technology June, 109 (1963).

    5. R.K. Mahidhara et al.,

    Scripta Met.

    31, 1145 (1994).

    6. R.K. Mahidhara et al., J. Mater. Sci. Lett. 13, 1387 (1994).

    7. F.M. Haggag and K.L. Murty, Proc. Nondestructive Evalua-

    tion NDE) and Materia ls Properties III,

    TMS Fall Meeting,

    845

    Cincinnati, 1996.

    8. A.G. Guy and J.E. Pavlick,TransAIME 221, 802 (1961).

    9. K.L. Murty, F.A. Mohamed and J.E. Dorn,Acta Metall. 20,

    1009 (1972).

    10. KL. Murty, Scripta Met. 7, 899 (1973).

    11. K. Linga Murty and I. Turlik, Proc. Joint ASME/JSME

    Advances in Electronic Packaging, eds. W.T. Chen and H.

    Abe, 1 (1992), p. 309.

    12. H. Oikawa, K. Sugawara and S. Karashima,Trans. Jpn. Inst.

    Metals

    19, 611 (1978).

    13. S. Kikuchi,Y. Motoyamaand M. Adachi, Keikinzoku,

    J. Jpn.

    Inst. Light Metals 30 (1980).

    14. O.D. Sherby and P.M. Burke, Prog. in Mater. Sci. 13, 325

    (1967).

    15. K.L.Murty, J. Ravi

    andWiratmo,Nucl. Eng. andDesign

    156,

    359 (1995).

    16. F.M. Haggag, Small Specimen Test Techniques Applied to

    Nuclear Reactor Vessel Thermal Annealing and Plan t Life

    Extension,

    ASTM STP 1204, eds. W.R. Corwin, F.M. Haggag

    and W.L. Server, (Philadelphia, PA: American Society for

    Testing and Materials, 1993), p. 27.

    17. K. Linga Murty and Fahmy M. Haggag,Proc. Second Intl.

    Conf. on Microstructure and Mechanical Properties o f Aging

    Materials, TMS Annual Meeting, Las Vegas, Feb. 1995.

    18. H. Francis, Trans. ASME July, 272 (1976).

    19. KL. Murty, M. Gold and A.L. Ruoff,

    J. Appl. Phys.

    41, 4917

    (1970).

    P P E N D I X

    B I D a t a n a l y s i s

    A brief summ ary of the r elevant equations used in

    the derivation of the flow properties from ABI tests is

    included here, while details can be found in various

    references.7,16, '7 As no te d in Fig. 7, the pr im ar y info r-

    mation obtained from ABI tests is the indentat ion

    load (P) and the depth /hei ght of pene tra tio n (hp). The

    system software calculates the plastic strain while

    the flow stresses are evaluated using elastic and

    plastic analyses. The true plastic strain is given by,

    d

    s = 0 . 2 D ' (A1)

    wher e dp and D are the p las t i c indentation diameter

    and diameter of indenter, respectively. The corre-

    sponding flow stress is calculated using,

    4P

    ~ i - - - - ~d~5' (A2)

    wher e (~i is the tr ue inde ntat ion stress, P is inden-

    tation load, and 5 is a param ete r which depends on the

    system compliance and indentation stress with a

    val ue b etw een 1.12 and 2.87ocm. The fa ctor a mdepends

    on strain r ate sensitivity, with a value of unity for

    strain- rate insensitive materials. The plastic inden-

    tat ion depth, dp, is given by,

    l p / I I / D I h 0 2 5 a }

    d , = 2.735 ~Ei E-~fi ~h2, ~--~'~ ~-~- hvD (A3)

    Here, E i and E~ rep res ent the elastic moduli of the

    indent er and t he specimen, respectively. As we note

  • 8/10/2019 Tensile, Creep, and ABI Tests on Sn5%Sb Solder.pdf

    8/8

    8 4 6 M u r t y , Ha g g a g , a n d M a h i d h a ra

    h e r e , t h e p a r a m e t e r d D a p p e a r s i n b o t h t h e l e ft a n d

    r i g h t - h a n d t e r m s , a n d t h u s a n i t e r a t i v e s o l u ti o n i s

    s o u g h t w h i c h t h e s o f t w a r e o f t h e s y s t e m h a s t h e

    c a p a b i l i t y t o e v a l u a t e . T h e p l a s t ic s t r e s s a n d s t r a i n

    c a n b e r e l a t e d b y t h e p o w e r l aw ,

    a i = K ~ ' , ( A 4 )

    w h e r e K a n d n ' a r e t h e s t r e n g t h c o e f fi c i en t a n d t h e

    s t r a i n - h a r d e n i n g p a r a m e t e r , r e s p ec t iv e l y . F r o m t h e

    f a c t t h a t t h e s t r a i n - h a r d e n i n g p a r a m e t e r , n ', i s e q u a l

    t o t h e t r u e u n i f o r m s t r a i n , o n e c a n e v a l u a t e t h e

    t e n s i l e s t r e s s ( az s) ,