Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1...

61
1 1 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts about surface reactions R. Schlögl, FHI, Berlin

Transcript of Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1...

Page 1: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

11www:

fhi-berlin.mpg.de1

Temperature-programmedreaction spectroscopy

A variety of TD spectroscopyrelated to concepts about surface reactions

R. Schlögl, FHI, Berlin

Page 2: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

22www:

fhi-berlin.mpg.de2

Overview

• Prologue: Model concepts• The research target of TPRS

– Method– Answers– Challenges and limitations

• The proptotype application: Ni (110)– Reactant modification, formic acid decomposition,

pre-treatment• A more challenging application Ag (110)

– A complex adsorbate– The role of adsorbed and sub-surface oxygen– Methanol oxidation

Page 3: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

33www:

fhi-berlin.mpg.de3

Prologue

Properties and status of models in catalysis

Page 4: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

44www:

fhi-berlin.mpg.de4

Qualitative models “concepts”

• In complex processes reaction mechanisms from chemical rules and predictions of “intermediates”:

• Synthesis or calculations of structural and thermodynamic properties of such intermediates:

• Problem of kinetic spectators or side reactions as no on-line verification possible

• Approximation of reaction experiments by TPRS and often with reactive models (alkyl-iodide instead of alkane)

Page 5: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

55www:

fhi-berlin.mpg.de5

The molecular phenomenology

Enantioselective hydrogenation

Ligand design to finetune electronic and geometric

structure by distorting metal d-states and by

shielding access to them

Reaction mechanism from structure-analysis

of molecular intermediates: No TPRS

required

Page 6: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

66www:

fhi-berlin.mpg.de6

The heterogeneous analogy

Crystallography produced a structure susceptible to selected theoretical treatment

Microstructural analysis shows that this surface is almost non-existent yet can be found:Essential or curisosity?

Grasselli et al

Page 7: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

77www:

fhi-berlin.mpg.de7

Models: Necessity

• Most catalytic reaction are too complex to be understood on “real systems”

• Multi-scale issues, structural dynamics and transport dynamics inhibit disentangling of reaction network

• In-situ analysis of real systems should define models; no a priori guess for demanding systems

• Models are required to verify qualitative conceptual suggestions; they must be functional

• Models for adsorption are usually not functional enough (except for CO oxidation)

Page 8: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

88www:

fhi-berlin.mpg.de8

Model properties

• Models are structurally and chemically well-defined

• Models allow in-situ analytics (including TPRS)• Models are slow in their function allowing to

isolate individual reaction steps• Models should not need structure-distorting

activation steps (sputtering) such that their definition is lost

• Models perform the desired reaction, no proxys

Page 9: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

99www:

fhi-berlin.mpg.de9

Models of catalyst surfaces

Somorjai 1994

Somorjai 1981

Trypsin, an enzyme

Page 10: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1010www:

fhi-berlin.mpg.de10

Model types• No model for any complete catalyst function (muti scale)• Models on atomic scale; single crystal approach and multi-

scale theory• Only limited function as mesoscopic effects “surrounding”,

molecular-molecular interaction are missing• For these dimensions no models so far (beginning in

enzymes and their genetic design)• Nanostructured model approaches in heterogeneous

catalysis under development• In homogeneous catalysis models for (bio) reactions are

available; no clear understanding of their function due to process complexity

• For macrokinetic domain textural models and computational models exist

Page 11: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1111www:

fhi-berlin.mpg.de11

Research status

• The single crystal model approach is conceptually correct and indispensable for quantitative kinetic understanding

• Its functionality is too low as no mesoscopic variability (steps); no generic approach

• Clusters on well-ordered oxides and oxide films offer potential; challenge of structural definition under operation

• So far not sufficient control over structure for non-metallic systems

• Bulk-surface interaction (sub-surface) and defect structuring (nano-engineering) still not under control and only poorly understood

Page 12: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1212www:

fhi-berlin.mpg.de12

Research concept of TPRS

What are the issues adressed?What are the conditions and

limitations?

Page 13: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1313www:

fhi-berlin.mpg.de13

The dynamic catalyst

• dynamical behavior arises from coupling of the catalyst material properties with those of the reaction environment

• the working catalyst is a unity between the material and its reaction environment; isolation of any part inhibits the correct function

• a catalyst takes part in its reaction but is regenerated in cyclic operation: no net change of the metastable catalytic material: in-situ observation mandatory

Page 14: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1414www:

fhi-berlin.mpg.de14

The Concept of TPRS

• Material science of cataylsts contributes little to the identification of the mode of operation (mechanism) and thus to structure-function correlation

• Transient kinetic experiments are used to gain insight into the reaction processes

• High pressure experiments (flow experiments) although also counted to TPRS are fundamentally different from low-pressure experiments due to the re-adsorption issue and thus very hard to anaylse quantitatively

Page 15: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1515www:

fhi-berlin.mpg.de15

The Concept of TPRS

• TPRS is the analogue to structural in-situ methods to gain insight into the function of a catalyst system

• Two main conditions must be provided:– The catalyst must be in its right material form despite very low

conversion in the TPRS experiments (relevance of a pristine surface)

– The process must be reversible or at least temperature-insensitive to the ramp employed for observation (never fully correct but sometimes a valid approximation)

• The reaction of study must be pressure-insensitive (very rarely the case!) if a prediction to real world is attempted (often not done in original literature)

Page 16: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1616www:

fhi-berlin.mpg.de16

complexity

system descriptor (p,T,[])

„practical“ catalyst

-reactive-

single crystal

well-defined (static)

complex modelsystems (dynamical)

choice? pragmatic

In-situ analysis

Functional definition

Structural definition

Model strategy: TPRS is the bridgeing method

Page 17: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1717www:

fhi-berlin.mpg.de17

TPRS: an invasive method

MeOH oxidation over 1 ML VxOy on TiO2 (110)

Page 18: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1818www:

fhi-berlin.mpg.de18

Isotopic exchange: additonal infoMeOH oxidation over VxOy TiO2 (110)

Acid-base active OD groups formed from abstraction of methyl deuterium:easy exchange with the acidic OH group of MeOHbut the inverse reaction does not occur with the methyl hydrogens (much less reactive, not acid-base active)Note the possible dependence on reaction conditions

Page 19: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

1919www:

fhi-berlin.mpg.de19

The Concept of TPRS

• Low-pressure TPRS with reactive molecules• Two modes:

– multiple pulses: TAP– Co-adsorption and flash TDS: TPRS– Sub-mode: high-pressure reaction and TPRS with the educts

(products) remaining at the surface after quench• TPRS: observation of products and fragments of a

surface reaction as function of temperature: main information: co-incidence of products

• Each peak in TPRS can be analyzed with all techniques known in TDS (many dimensions of quantitative information in principle accessible but rarely ever done).

Page 20: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2020www:

fhi-berlin.mpg.de20

Instrumentation and methodical limitscontinuous flow TPD reactor, operating underatmospheric pressure Kanervo et al

Typical TPD setup for single crystals or foils W. Ranke

Typical TPD setup for powders W. Ranke

Page 21: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2121www:

fhi-berlin.mpg.de21

Useful conditions for TPRS

• Model systems are required to exclude problems of surface heterogeneitey with respect to– Energetics (site types and distributions)– Transport (pores, diffusion)

• Real samples require careful parameter choice (thermal resistance, film diffusion) and transport modelling: maybe impossible with demanding reactions

• They cannot be used without concomittant model systems (at the appropriate pressures for material dynamics)

Page 22: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2222www:

fhi-berlin.mpg.de22

Useful conditions for TPRS

• The all-overriding issue is to avoid consecutive reactions by re-adsorption and thermal cracking: optimization of conditions is essential!!

• Use simple systems first and increase gradually the complexity of both reactant and surface

Page 23: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2323www:

fhi-berlin.mpg.de23

Answers from TPRS

• Possible reaction channels• Kinetic parameters of all products (only for

reversible processes)• Structure-sensitivity• Influence of pre-treatments (sub-surface

species, compound formation) on reaction channels

• Mode of operation for consecutive processes

Page 24: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2424www:

fhi-berlin.mpg.de24

Instrumentation and methodical limitsTypical TPD setup for single crystals or foils W. Ranke

TPD in catalysis J. Hagen

Page 25: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2525www:

fhi-berlin.mpg.de25

Main challenges

• The method is very sensitive to the phenomenon of “kinetic gap”– Heating rate dependence of “desorption energy” (as in

TDS)– Different surface diffusion processes for different products– Different strength of interaction of products from the same

reaction with the surface • The co-incidence is lost • If this is folded with distribution of site properties

(inhomogeneous surfaces) and superposition with transport: no more useful info

• Surface remanents! (TPRS with oxygen “TPO”)

Page 26: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2626www:

fhi-berlin.mpg.de26

Main challenges

• Key problem: The temperature is varied during the observation and exceeds the reaction temperature for complete observation (desorption): irreversible modifications.– Cracking of products– Sub-surface compound formation– Opening of alternative reaction channels due to progressive

desorption and change of spatial arrangements of adsorbates(example of acrolein on silver)

• Fast heating rates employed to be sensitive:– increase for complex molecules the kinetic gap – increase thermal burden on sensitive molecules (no real product

as consequence of unintended post synthetic analytical follow-up reaction): no problem in CO oxidation and decomposition reactions

Page 27: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2727www:

fhi-berlin.mpg.de27

A real-world problem (B. Steinhauer)

Page 28: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2828www:

fhi-berlin.mpg.de28

A real-world problem (B. Steinhauer)

Pellets

0

50

100

150

200

250

0 0,2 0,4 0,6 0,8 1pressure quotient p/p0

Volu

me

[cm

³/g]

Bi-modal pore size distribution:Micropores as effective diffusion limiters

Page 29: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

2929www:

fhi-berlin.mpg.de29

A real-world problem (B. Steinhauer)

0

100

200

300

0 20 40 60 80 100 120 140 160 180 200t [min]

T [°

C]

TDS

neueProbeReaktion

TDSReduktion

TDS Reduction Reaction TDS

TDS

newsample

Reduction TDS

Reaction

β = 1K/s

cooling down

Temperature profile of a total experiment

cooling down

The real world adsorption cycle

Page 30: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3030www:

fhi-berlin.mpg.de30

A real-world problem (B. Steinhauer)

0,0E+00

1,6E-09

3,2E-09

4,8E-09

6,4E-09

8,0E-09

50 100 150 200 250T [°C]

MS

Sign

al [A

]

218284456

pR: 266mbar700mbar

0.0E+00

2.0E-09

4.0E-09

6.0E-09

8.0E-09

1.0E-08

50 100 150 200 250T [°C]

MS

Sig

nal [

A]

218284456

0

5

10

15

20

25

30

0 3 6 9 12 15 18 21 24reaction time tR [min]

Sel

ektiv

ity A

A [

%]

266mbar

800mbar

Is selectivity only a quantitative (kinetic) effect or are there differences in the reactivity of active sites? (site blocking by polymer products)

Page 31: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3131www:

fhi-berlin.mpg.de31

The classic example:Ni (110) in formic acid decomposition

A consistent piece of surface science elucidating principles of

heterogeneous reactions

Page 32: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3232www:

fhi-berlin.mpg.de32

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Structures of clean (a, e) and carbide (b-d) or graphite (f-h) precovered surfaces

Page 33: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3333www:

fhi-berlin.mpg.de33

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

CO TDS with varying heating rates:

First order reaction, high Ea (37kcal/mol)

High peexp. factor of 1015 said to be due to high mobility of the desorbing transition state

How well compareabsolute T and heating rates?Think about heat transfer!

Page 34: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3434www:

fhi-berlin.mpg.de34

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Formic acid decomposition over clean Ni: the desorption of CO is controlled by its adsorbate bonding and not by ist appearance energy

CO TDS

Page 35: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3535www:

fhi-berlin.mpg.de35

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Formic acid decomposition over carbided Ni: the desorption of CO is controlled by its appearance energy: note the change of position of the hydrogen-deuterium peaks

Page 36: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3636www:

fhi-berlin.mpg.de36

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Page 37: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3737www:

fhi-berlin.mpg.de37

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Anhydride Formate

Page 38: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3838www:

fhi-berlin.mpg.de38

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

• TPRS has shown the structure-sensitivity of the formic acid decomposition in probing the surface state of Ni: structural dynamics found already in 1979

• An acid anhydride as complex surface species was postulated and identified by its decomposition products

• Perfect use of isotope labelling for mechanism discrimination

Page 39: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

3939www:

fhi-berlin.mpg.de39

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

Oxygen pre-coverage creates adsorbates and oxide phases

need for additional characterizations; sub-surface identification problem

Page 40: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4040www:

fhi-berlin.mpg.de40

Ni (110) a model case (Madix 1979, Acc Chem. Res.)

• The co-adsorption of oxygen causes two effects:– Change of energetics of the process of clean

metal (modification of the Ni surface)– Opening of a novel reaction channel

(combustion without cleavage of C-H, low energy, oxygen diffusion-controlled)

• TPRS as a very sensitive yet indirect tool probing surface states (oxidation state)

Page 41: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4141www:

fhi-berlin.mpg.de41

Ag (110) in oxidative dehydrogenation of cycloalkenes

A case with a complex substrate

Page 42: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4242www:

fhi-berlin.mpg.de42

Ag (110) and cyclo-octenes (R.J. Madix et al Surf. Sci., 1996)

Clean unimolecularsubstrate interaction, no intermolecuarinteraction, no residues

Ea ca. 17 kcal/mole (method dependent), formal raction order about 1.2 from leading edge analysis

Page 43: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4343www:

fhi-berlin.mpg.de43

Ag (110) and cyclo-octenes (R.J. Madix et al Surf. Sci., 1996)

No differeneces for the mono-and di-olefin

A major difference for the tetra-olefin:Reaction order 1.6, Ea 23 kcal/mol, strongly coverage dependent, residues (TPO), multiple interactions with substrate (mono-and di-bridged)

Page 44: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4444www:

fhi-berlin.mpg.de44

Ag (110) and cyclo-octenes (R.J. Madix et al Surf. Sci., 1996)

Strong modification of desorption and reaction due to oxygen pre-coverage

Oxidative dehydrogenation (water as by-product) and total combustion occur.

From integration it becomes clear that strong polymerisation with carbon residues is also occuring (not visible in data, would become evident when TPO were performed)

Page 45: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4545www:

fhi-berlin.mpg.de45

Ag and “pre-adsorbed” oxygen:a complex ongoing story

Methanol oxidation as pertinent test reaction (runs almost to completion) with technical

relevance (BASF process for formaldehyde):Ethylene oxidation (also technical) as

reaction complement

Page 46: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4646www:

fhi-berlin.mpg.de46

Oxidative Dehydrogenation of Methanol over Ag

R.J. Madix , J.T. Roberts, Springer Series in Surface Reactions, Vol. 34, 1994, p.9

Assigning , howeverseveral chemicalfunctions to the

same specis (acid-base vs. oxidative)

Surface sciencemodel experiments

identify onechemically active

atomic oxygenspecies

Page 47: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4747www:

fhi-berlin.mpg.de47

Dynamics: AgO (gaps)

Page 48: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4848www:

fhi-berlin.mpg.de48

Ag-O: mode of action: MeOH

Surface abundance of alpha oxygen (green) is detrimental forselectivity

Alpha oxygen isrequired to form other atomicoxygen species:

Site separation?

Page 49: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

4949www:

fhi-berlin.mpg.de49

TPRS of methanol oxidation Tegtmeier et al., Catal Lett., 1991

There are clearly two reaction pathways for MeOH oxidation with differing selectivities

Elelctrolytic silver pre-dosing with 100 mbar oxygen at 873 K for 5 minin MeOH at 10-5 mbar

Page 50: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5050www:

fhi-berlin.mpg.de50

Ag-O: speciation for methanol oxidation by TDS

300 400 500 600 700 800 900Desorption Temperature (K)

0

2

4

6

8

10

Inte

nsity

m/e

32

(nor

mal

ised

)

alphabetagammaconversion

TDS allowsisolating 3 different atomicoxygen species

Catalystconversion co-incides not withthe „surfaceatomic“ oxygenspecies

Page 51: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5151www:

fhi-berlin.mpg.de51

Ag-O: solid state transformation in TDS

multiple experimental series are requiredto obtaincharacteristicdesorption traces

high-pressuredosing and cyclisationessential,

little effect in static experimentsNote the changes in ordinate scale!

Page 52: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5252www:

fhi-berlin.mpg.de52

The non-equilibrium nature Nagy et al 1996

The identification of bulk dissolved and surface-embedded oxygen dependscritically on the conditions of TDS (2.5 K/s)

Electrolytic silver

pre-dosing with 100 mbar oxygen at 873 K for 5 min

Page 53: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5353www:

fhi-berlin.mpg.de53

Page 54: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5454www:

fhi-berlin.mpg.de54

The non-equilibrium nature

Facetting

in oxygen

under reactionconditions

Page 55: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5555www:

fhi-berlin.mpg.de55

Ag-O: a dynamic system

situation at above573 K and 1 mbaroxygen pressure

steady statedependscritically on defect density

Page 56: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5656www:

fhi-berlin.mpg.de56

0 50 100 150 200 250 300 350

C2H4O

C2H4

PTR

MS

inte

nsity

, arb

. un.

Time, min

a

TPR spectra

470 no O2420370

b

no O2500 520470420370

C2H4O

C2H4

526 528 530 532 534

3-443

2

1

O1s

sig

nal,

arb.

un.

Binding Energy, eV

a) p

(C2H

4)=

0.1

mba

r, p

(O2)

= 0.

25 m

bar

b)

p((

C2H

4)=0

.24

mba

r, p

(O2)

= 0.

25 m

bar

Ethylene Epoxidation over Ag

1

2 34

CO3

On

Oe

Embedded oxygenCO3

Page 57: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5757www:

fhi-berlin.mpg.de57

T=42

0 K

, P(O

2)= 0

.33

mba

r

526 528 530 532 534

a

5

4

3

21

O1s

inte

nsity

, arb

.un.

Binding Energy, eV282 284 286 288 290 292

5

432

1

b

C1s

inte

nsity

, arb

.un.

Binding Energy, eV

P(C2H4)

O mbar

O.03 mbar

O.1 mbar

O.24 mbar

Vacuum

On

Oe

C residues

C2H4

C2H4O

Formation of Active Species

Page 58: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5858www:

fhi-berlin.mpg.de58

The heterogeneous analogy

Some critical intermediates and the

configuration of the active sites were found to be not impossible from isolated but high level quantum chemical calculation:By far too complex for

any rigorous treatment, active sites not identified

Grasselli, Goddard et al

Page 59: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

5959www:

fhi-berlin.mpg.de59

Surface science and ammonia synthesis

Low pressure static data

Fe-H

Fe-N

Page 60: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

6060www:

fhi-berlin.mpg.de60

Electrophilic Oxygen is no peroxide

In-situ NEXAFS at 0.2 mbar ethylene/oxygenmixture

Comparison to low-Tadsorbed molecular oxygenon Ag (111)

Electrophilic oxygenis atomic in nature as

no O-O sigma* resonance

Reference: J. Pawela-Crew, R.J. Madix, J. Stöhr, Surf. Sci., 339, (1995), 23

Page 61: Temperature-programmed reaction spectroscopy - · PDF file11 www: fhi-berlin.mpg.de 1 Temperature-programmed reaction spectroscopy A variety of TD spectroscopy related to concepts

6161www:

fhi-berlin.mpg.de61

Speciation of weakly bound oxygen

Only in the presence of a gas phase of ethylene and oxygen an additional atomic species without any Ag -d band interaction is found.

Pumping off to 10-1 mbar removes this species which produces ethylene oxide