Tema2 esfuerzos

47
BIBLIOGRAFIA • Bernard J. Hamrock, Elementos de máquinas. Ed. Mc Graw Hill. • Robert L. Norton, Diseño de máquinas. Ed. Prentice Hall. Shigley, Diseño en Ingeniería Mecánica, Ed. Mc Graw-Hill

Transcript of Tema2 esfuerzos

BIBLIOGRAFIA

• Bernard J. Hamrock, Elementos de máquinas. Ed. Mc Graw Hill.

• Robert L. Norton, Diseño de máquinas. Ed. Prentice Hall.

• Shigley, Diseño en Ingeniería Mecánica, Ed. Mc Graw-Hill

Load, Stress and Strain

When I am working on a problem, I never thinkabout beauty. I only think of how to solve theproblem. But when I have finished, if the solutionis not beautiful, I know it is wrong.

Richard Buckminster Fuller

Image: A dragline lifts a large load in a mining operation.

A Simple Crane

Figure 2.1 A simple crane and forces acting on it. (a) Assembly drawing; (b) free-body diagram of forces acting on the beam.

text reference: Figure 2.1, page 30

Supports and Reactions

Table 2.1: Four types of support with their corresponding reactions.

text reference: Table 2.1, page 35

Ladder Free Body Diagram

Figure 2.5: Ladder having contact with the house and the ground while having a painter on the ladder. Used in Example 2.4. The ladder length is l.

text reference: Figure 2.5, page 36

Load Classification

text reference: Figure 2.2, page 31

Figure 2.2 Load classified as to location and method of application. (a) Normal, tensile (b) normal, compressive; (c) shear; (d) bending; (e) torsion; (f) combined

Sign Convention

Figure 2.3 Sign convention used in bending. (a) y coordinate upward; (b) y coordinate downward.

text reference: Figure 2.3, page 32

Lever Assembly

Figure 2.4 Lever assembly and results. (a) Lever assembly; (b) results showning (1) normal, tensile, (2) shear, (3) bending, (4) torsion on section B of lever assembly.

text reference: Figure 2.4, page 33

Beam Supports

Figure 2.8 Three types of beam support. (a) Simply supported; (b) cantilevered; (c) overhanging.

text reference: Figure 2.8, page 39

Simply Supported Bar

Figure 2.9 Simply supported bar with (a) midlength load and reactions; (b) free-body diagram for 0<x<l/2; (c) free body diagram for l/2<x<l; (d) shear and bending moment diagrams.

text reference: Figure 2.9, page 40

Singularity Functions (Part 1)

Table 2.2 Six singularity and load intensity functions with corresponding graphs and expressions.

text reference: Table 2.2, page 43

Singularity Functions (Part 2)

Table 2.2 Six singularity and load intensity functions with corresponding graphs and expressions.

text reference: Table 2.2, page 43

Shear and Moment Diagrams

Figure 2.10 (a) Shear and (b) moment diagrams for Example 2.8.

text reference: Figure 2.10, page 44

Example 2.10

Figure 2.12 Figures used in Example 2.10. (a) Load assembly drawing; (b) free-body diagram.

text reference: Figure 2.12, page 48

Ø10mm

Ø6mm

□25mm

Example

Se desea transmitir una potencia de 40 CV a través de un eje que gira a 1500 rpm mediante una chaveta de profundidad máxima= 6 mmy L= 12 mm.Datos: eje macizo de Øext=45.

Example

kgrMtFtrFtMt

cmkgn

CVMt

85025,25,1912

5,19121500

407172071720

2

2

5,11802,16,0

850

2

3,5902,12,1

850

cmkg

LhFt

Ap

Ft

cmkg

LW

Ft

Ac

Ft

d

d

40 CV a 1500 rpm H/2= 6 mmy L= 12 mm.Datos: eje macizo de Øext=45.

86,15,1180

2,2196

7,33,590

2,2196

2,21963800577,0577,0 2

d

ypd

d

Scd

YS

Sn

Sn

cmkgSS

Y

Y

Determinación del coeficiente de seguridad para un material, en este caso AISI1040 615/380

Determinación de cargas

Determinación de esfuerzos

Aplicación Criterio de Fallo

General State of Stress

Figure 2.13 Stress element showing general state of three-dimensional stress with origin placed in center of element.

text reference: Figure 2.13, page 49

2-D State of Stress

Figure 2.14 Stress element showing two-dimensional state of stress. (a) Three dimensional view; (b) plane view.

text reference: Figure 2.14, page 51

Equivalent Stresses

Figure 2.15 Illustration of equivalent stresss states; (a) Stress element oriented in the direction of applied stress. (b) stress element oriented in different (arbitrary) direction.

text reference: Figure 2.15, page 52

Stresses in Oblique Plane

Figure 2.16 Stresses in oblique plane at angle .

text reference: Figure 2.16, page 52

Stresses in Oblique Plane

22cos22

senxyyxyx

2cos22 xy

yx sen

2cos22 xy

yx sen

text reference: Shigley pag 28,29

yx

xy

2

2tan0

xy

yx

22tan0

Mohr’s Circle

Figure 2.17 Mohr’s circle diagram of Eqs. (2.13) and (2.14).

text reference: Figure 2.17, page 55

Mohr’s Circle Example

Un elemento con el siguiente estado tensional. Se desea: a) hallar los esfuerzos y las direcciones principales e indicar en el elemento su orientación correcta, con respecto al sistema xy. Se trazará otro elemento en que se muestren T1 y T2, determinando los esfuerzos normales correspondientes y marcando los signos letras.

text reference: Shigley, page 31-32

MPa

0

00

05080

Results from Example

Figure 2.18 Results from Example 2.13 (a) Mohr’s circle diagram; (b) stress element for principal normal stresses shown in x-y coordinates; (c) stress element for principal stresses shown in x-y coordinates.

text reference: Figure 2.18, page 57

Mohr’s Circle for Triaxial Stress State

Figure 2.19 Mohr’s circle for triaxial stress state. (a) Mohr’s circle representation; (b) principal stresses on two planes.

text reference: Figure 2.19, page 59

Example 3.5

Figure 2.20 Mohr’s circle diagram for Example 3.5. (a) Triaxial stress state when 1=23.43 ksi, 2=4.57 ksi, and 3=0; (b) biaxial stress state when 1=30.76 ksi and 2=-2.760 ksi; (c) triaxial stress state when 1=30.76 ksi, 2=0, and 3=-2.76 ksi.

text reference: Figure 2.20, page 60

Stresses on Octahedral Planes

Figure 2.21 Stresses acting on octahedral planes. (a) General state of stress. (b) normal stress; (c) octahedral shear stress.

text reference: Figure 2.21, page 61

Normal Strain

Figure 2.22 Normal strain of cubic element subjected to uniform tension in x direction. (a) Three dimensional view; (b) two-dimensional (or plane) view.

text reference: Figure 2.21, page 64

Shear Strain

Figure 2.23 Shear strain of cubic element subjected to shear stress. (a) Three dimensional view; (b) two-dimensional (or plane) view.

text reference: Figure 2.23, page 65

Plain Strain

Figure 2.24 Graphical depiction of plane strain element. (a) Normal strain x; (b) normal strain y; and (c) shear strain xy.

text reference: Figure 2.24, page 66

Circular Bar with Tensile Load

Figure 4.10 Circular bar with tensile load applied.

text reference: Figure 4.10, page 149

Example

text reference: Figure 2.12, page 48

Twisting due to Applied Torque

Figure 4.11 Twisting of member due to applied torque.

text reference: Figure 4.11, page 152

l

r

Hipotesis de Coulomb: secciones transversales circulares, permanecen planas.

Principio de Saint Venant: secciones transversales no circulares.

Bending of a Bar

Figure 4.12 Bar made of elastomeric material to illustrate effect of bending. (a) Undeformed bar; (b) deformed bar.

text reference: Figure 4.12, page 156

Figure 4.14 Undeformed and deformed elements in bending.

text reference: Figure 4.14, page 157

Elements in Bending

Bending Stress Distribution

Figure 4.15 Profile view of bending stress variation.

text reference: Figure 4.15, page 158

Las secciones más económicas, serán aquellas que tengan el mayor módulo resistente wz, con el menor gasto de material.

¿Calcular b´ tal que tengan el mismo valor de Wx?

Example 4.10

Figure 4.16 U-shaped cross section experiencing bending moment, used in Example 4.10.

text reference: Figure 4.16, page 159

Curved Member in Bending

text reference: Figure 4.17, page 161

r

drr n )(

Curved Member in Bending

0)(

dAr

rrEddA

A

n

A

r

drrEE n )(

r

drr n )(

Condición: sumatorio de esfuerzos en el rn=0

A

n

A

n

rdA

Ar

r

dArA 0

Curved Member in Bending

dArA

rA

1_

r

drrEE n )(

)(_

nrre

A

n

rdA

Ar

Aer

Mc

rr

EAerM

n

AeEd

ArrdAEd

r

dArArArrdA

Ed

dAr

rrrrEddA

r

rrEddArrM

A

n

A

nnn

A

nn

A

n

A

n

2

222 )2()())((

Cross Section of Curved Member

Figure 4.18 Rectangular cross section of curved member.

text reference: Figure 4.18, page 162

Example: Cross Section of Curved Member

Una sección transversal rectangular de un elemento curvo, tiene las dimensiones:

b= 1´ y h=r0-ri=3´, sometida a un momento de flexión puro de 20000lbf-pulg.

Hallar:

a) Elemento recto.

b) Elemento curvo. r=15´.

c) Elemento curvo. r=3´.

text reference: Figure 4.18, page 162

Tabla de Ganchos

Example: Cross Section of Curved Member

Una sección trapezoidal de un elemento curvo, tiene las dimensiones:

ri=10 cm

F= 125 kg

Tadm=1380 Kg/cm2

Hallar: valor de a.

text reference: Figure 4.18, page 162

01

01 2

3 bb

bbhrr in

Development of Transverse Shear

Figure 4.19 How transverse shear is developed.

text reference: Figure 4.19, page 165

Maximum Shear Stress

Table 4.3 Maximum shear stress for different beam cross sections.

text reference: Table 4.3, page 168