TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

73
TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1 1. Introducción. 2. El diodo semiconductor: unión p-n no polarizada, potencial de contacto. 3. Unión p-n polarizada, ecuación de Schockley. 4. El transistor bipolar (BJT): configuración en base común y configuración en emisor común; 5. El transistor como amplificador y conmutador. 6. Transistores de efecto de campo (FET). 1. INTRODUCCIÓN La difusión de portadores es un fenómeno típico de los semiconductores. Mediante la adición de impurezas aceptoras o donadoras se crean fácilmente gradientes de concen- tración de electrones, o de huecos, que originan flujos de difusión de portadores mayorita- rios con densidades de corriente. J p = - qD p dp/dx J n = qD n dn/dx Estos flujos son el fundamento de los procesos que ocurren en los diodos de unión. También es el fundamento de los transistores de unión bipolar, BJT. Por último se estudia- ra el transistor de efecto de campo, FET, que es un dispositivo controlado por una tensión, a diferencia del BJT que está controlado por una corriente. En todos ellos existen uniones PN (o NP). 2. UNION P-N NO POLARIZADA 2.1. Generalidades Se obtiene una unión cuando un monocristal semiconductor (Si, Ge, AsGa,...) se dopa sucesivamente con impurezas aceptoras y donadoras, de forma que se tengan dos zonas yuxtapuestas, P y N, de semiconductores extrínsecos tipo-p y tipo-n respectivamen- te. Entre ellas, en la interfase, aparece una tercera zona llamada de transición, de de- plexión, de carga espacial o de vaciamiento, que es de pequeñísimo espesor, del orden del μm. Es en la zona de transición donde tienen lugar los procesos fundamentales, de rectifi- cación, absorción y emisión de luz, etc., que ocurren en las diversas clases de dispositivos de unión. Las zonas P y N son neutras, el número de huecos (o de electrones) móviles mayo- ritarios en la BV (o en la BC) es igual al número de aniones de impureza aceptora (o dona-

Transcript of TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

Page 1: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

1

1. Introducción.

2. El diodo semiconductor: unión p-n no polarizada, potencial de contacto.

3. Unión p-n polarizada, ecuación de Schockley.

4. El transistor bipolar (BJT): configuración en base común y configuración en emisor

común;

5. El transistor como amplificador y conmutador.

6. Transistores de efecto de campo (FET).

1. INTRODUCCIÓN

La difusión de portadores es un fenómeno típico de los semiconductores. Mediante

la adición de impurezas aceptoras o donadoras se crean fácilmente gradientes de concen-

tración de electrones, o de huecos, que originan flujos de difusión de portadores mayorita-

rios con densidades de corriente.

Jp = - qDp dp/dx Jn = qDn dn/dx

Estos flujos son el fundamento de los procesos que ocurren en los diodos de unión.

También es el fundamento de los transistores de unión bipolar, BJT. Por último se estudia-

ra el transistor de efecto de campo, FET, que es un dispositivo controlado por una tensión,

a diferencia del BJT que está controlado por una corriente. En todos ellos existen uniones

PN (o NP).

2. UNION P-N NO POLARIZADA

2.1. Generalidades

Se obtiene una unión cuando un monocristal semiconductor (Si, Ge, AsGa,...) se

dopa sucesivamente con impurezas aceptoras y donadoras, de forma que se tengan dos

zonas yuxtapuestas, P y N, de semiconductores extrínsecos tipo-p y tipo-n respectivamen-

te. Entre ellas, en la interfase, aparece una tercera zona llamada de transición, de de-

plexión, de carga espacial o de vaciamiento, que es de pequeñísimo espesor, del orden del

µm. Es en la zona de transición donde tienen lugar los procesos fundamentales, de rectifi-

cación, absorción y emisión de luz, etc., que ocurren en las diversas clases de dispositivos

de unión.

Las zonas P y N son neutras, el número de huecos (o de electrones) móviles mayo-

ritarios en la BV (o en la BC) es igual al número de aniones de impureza aceptora (o dona-

Page 2: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

2

dora) fijas en la red. Despreciando los minoritarios, a T = 300 K, las concentraciones de

portadores mayoritarios, huecos en la zona P de valor pp y electrones en la zona N de valor

nn son:

pp ≅ Na nn ≅ Nd

En la zona de transición confluye el flujo de electrones, mayoritarios en la zona N,

que por difusión se inyectan en la zona P y análogamente, los huecos de la zona P se inyec-

tan en la zona N.

La zona de transición prácticamente no contiene portadores, está vacía de electro-

nes y huecos de conducción, las cargas de los iones de impurezas no se compensan con la

carga opuesta de sus correspondientes portadores. Se forma una distribución dipolar de

carga: negativa, de aniones aceptores, junto a la zona P y otra de carga positiva, de catio-

nes donadores, junto a la zona N.

Por tanto, la zona de transición queda subdividida en dos subzonas con cargas nega-

tiva y positiva respectivamente.

Como consecuencia de esta distribución dipolar aparece un campo electrostático

interno, Ei, dirigido de la zona N a la zona P, que genera tres efectos interrelacionados:

1º) Ei en la zona de transición crea una diferencia de potencial, Vo, de contacto entre las

zonas neutras, zona P y zona N, y con ello se establece una barrera energética equiva-

lente al producto de la carga del portador por la diferencia de potencial, esto es, eVo,

que se opone a los dos flujos de difusión de electrones y de huecos.

2º) Los electrones y huecos minoritarios en las zonas P y N respectivamente, de concentra-

ciones np y pn, que no tienen posibilidad de difundirse y están en las cercanías, o dentro

de la zona de transición, son arrastrados por Ei originando sendas corrientes de arrastre,

Isn e Isp, de sentido opuesto a las corrientes de difusión Idn e Idp. Las corrientes inversas

de saturación Isn e Isp, tienen una magnitud del µA, son cuasi independientes de Vo y de-

penden de la temperatura que regula las concentraciones de minoritarios pn y np.

Page 3: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

3

3º) En el equilibrio térmico ambas corrientes, de difusión y arrastre, se compensan y dan

lugar a un equilibrio dinámico en el cual los niveles de Fermi, EFp y EFn, de una y otra

zonas neutras, P y N, se igualan.

Idn + Isn = 0 EFp = EFn

Idp + Isp = 0

Por simplicidad se ha supuesto un semiconductor en forma de barra, cuya área de sección

recta es A y con su eje según XO . Esta restricción no resta generalidad a los resultados,

que coinciden con los obtenidos experimentalmente con otras geometrías.

Insistamos que en la zona de transición V(x) varía y existe un campo E(x), mientras que

las zonas P y N del semiconductor, fuera de la zona de transición, son equipotenciales. Las

zonas P y N se comportan como conductores óhmicos, cuyas conductividades dependen de

la concentración de impurezas, Na y Nd. En la zona de transición, tiene lugar el salto de

potencial, Vo, entre una y otra zona. En ésta se forma una doble capa de cargas opuestas

normales a XO . Por todo ello, en esta zona de transición residen las propiedades:

a) de conducción no lineal, (rectificación de corriente, condensador de capacidad varia-

ble, regulador de tensión y como puerta lógica en un circuito digital), y

b) de interacción fotónica, (fundamento para la construcción del diodo láser, el diodo

emisor de luz o LED, el fotodetector y la célula solar).

En la Figura 1 se muestra el paso del electrón de la zona p a la zona n. A continua-

ción se forma la zona de transición ZT donde ya están los iones positivos en el lado n y

negativos en el lado p. Las zonas P y N son neutras, la zona de transición, ZT, cuya anchu-

ra W se ha amplificado, está cuasi vacía de portadores y contiene una carga dipolar debida

a las cargas de los iones de impurezas aceptoras o donadoras. Estos iones están fijos en la

estructura reticular del semiconductor cuya red no se deforma en el dopado. Esta carga

dipolar origina el campo eléctrico E dirigido de n a p, mostrado en la figura inferior

Page 4: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

4

Figura 1

Hay que destacar que ninguno de los dos cristales por separado tiene carga eléctrica, ya

que en cada cristal, el número de electrones y protones es el mismo, de lo que podemos

decir que los dos cristales, tanto el p como el n, son neutros. (Su carga neta es 0). Al unir

ambos cristales, se manifiesta una difusión de electrones del cristal n al p indicada por la

corriente Je. A medida que progresa el proceso de difusión, la zona de carga espacial va

incrementando su anchura profundizando en los cristales a ambos lados de la unión. Sin

embargo, la acumulación de iones positivos en la zona n y de iones negativos en la zona p,

crea un campo eléctrico (E) que actuará sobre los electrones libres de la zona n con una

determinada fuerza de desplazamiento, que se opondrá a la corriente de electrones y ter-

minará deteniéndolos.

Este campo eléctrico es equivalente a decir que aparece una diferencia de tensión entre las

zonas p y n. Esta diferencia de potencial (Vo) es de 0,7 V en el caso del silicio y 0,3 V si

los cristales son de germanio.

E

W

E

W

e-

E

W

E

W

e-

Page 5: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

5

Por otra parte la densidad ρ(x) de carga se indica en la Figura 2. De acuerdo con el princi-

pio de conservación de la carga es:

∫∫ =+ +−

n

p 0

0

0x

x

dxdx ρρ

Figura 2

La Figura 2 muestra:

a) La densidad ρ(x) de carga de la distribución dipolar en la zona de transición,

ZT.

b) El salto de potencial en la zona de transición entre P y N.

0VVVEdx pn

x

x

n

p

=−=∫−

La Figura 3 muestra la variación de energía de los electrones:

δE(x) = -qδV(x), q = e = 1’6·10-19 C

Hay que tener en cuenta que el dopado no altera la anchura de la banda prohibida, Eg, por

tanto se verifica que:

Egp = Ecp – Evp = Ecn – Evn = Egn

En el equilibrio los niveles de Fermi EFp y EFn se igualan, EFp = EFn

Figura 3

Ecp

Evp

EFp

EFn

eVoEgp

Egn

Ecp

Evp

EFp

EFn

eVoEgp

Egn

Page 6: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

6

La figura 4 muestra el sentido y la magnitud de los flujos de portadores y sus co-

rrientes de difusión () y de arrastre ()

Flujo de partículas Corriente

Difusión

Arrastre

Difusión

Arrastre

h+

h+

e-

e-

h +

h+

e-

e-

Figura 4 2.2. Potencial de contacto, Vo

El potencial de contacto Vo genera una barrera energética que han de saltar los por-

tadores que se difunden y limita este proceso. El campo Ei, crea un flujo de arrastre, co-

rriente inversa de saturación, en sentido inverso al flujo de difusión.

En el equilibrio isotérmico ambos flujos se compensan y la corriente neta de la

unión PN es nula: Jp(x) = Jn(x) = 0.

Refiriéndonos a los huecos se sigue:

La suma de las densidades de corriente de difusión, de los mayoritarios, y de arras-

tre, de los minoritarios, se anula.

Jp(x) = q·[µpp(x)E(x) - Dpdx

)x(dp] = 0

P N

Ei

h+ h+ h+

h+

h+ h+

h+ h+

h+

e-e-

e-

e-

e-

e-

e-

e-

e-

e-e-

e-

JsnJdn

JdpJsp

P N

Ei

h+ h+ h+

h+

h+ h+

h+ h+

h+

e-e-

e-

e-

e-

e-

e-

e-

e-

e-e-

e-

Ei

h+ h+ h+

h+

h+ h+

h+ h+

h+

e-e-

e-

e-

e-

e-

e-

e-

e-

e-e-

e-

JsnJdn

JdpJsp

Jsn, densidad de corriente de arrastre de e de P a N (minoritarios)

Jdn, densidad de corriente de difusión de e de N a P (mayoritarios)

Jsp, densidad de corriente de arrastre de h de N a P (minoritarios)

Jdp, densidad de corriente de difusión de h de P a N (mayoritarios)

Jsn, densidad de corriente de arrastre de e de P a N (minoritarios)

Jdn, densidad de corriente de difusión de e de N a P (mayoritarios)

Jsp, densidad de corriente de arrastre de h de N a P (minoritarios)

Jdp, densidad de corriente de difusión de h de P a N (mayoritarios)

Page 7: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

7

dx

)x(dp

)x(p

1)x(E

Dp

p =µ

Recordando que:

q

kTD=

µ y

dx

)x(dV)x(E −=

)x(p

)x(dp)x(dV

kT

q=−

Las zonas P y N son prácticamente equipotenciales, el salto de potencial se realiza a

lo largo de ZT. En uno y otro lado de esta zona las concentraciones y los potenciales son:

Na ≅ pp y Nd ≅ nn, Vp y Vn

Integrando:

∫ ∫=−n

p

n

p

V

V

P

P p

dp)x(dV

kT

q : Vo = Vn – Vp =

n

p

p

pln

q

kT (1)

Como pp·np = pn· nn = n2i o bien, Nanp ≅ pnNd ≅ n2i, el potencial de contacto, Vo, es:

V0 = :lnln2

d

i

a

n

p

Nn

N

q

kT

p

p

q

kT= )2(

n

NNln

q

kTV

2i

da0 =

Vo, a T = 300 K es del orden de décimas de voltio.

Igual resultado se obtendría anulando Jn(x).

La expresión (1) puede escribirse como:

pn = pp kT

qV0

e−

Que está de acuerdo con la ley maxweliana de equilibrio entre las poblaciones pp y pn de

dos niveles energéticos de separación E2 - E1 = qV0. Fig. 5.

Fig. 5

La última expresión puede formularse como: kT

qV

p

n

n

p0

en

n

p

p==

y se denomina LEY DE EQUILIBRIO

qV0

Pp

PnΕ2

E1

Page 8: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

8

2.3. La unión abrupta*

El modelo de unión abrupta idealiza la función ρ(x) de cambio gradual (Figura 2) y

difícil de modelar por una función matemática, por dos escalones a –xp < x < 0: ρ(x) = -eNa

y 0 < x < xn : ρ(x) = eNd, Fig. 6a. Este modelo es muy útil para el cálculo y sus resultados

concuerdan con las medidas obtenidas experimentalmente.

ε−

= aeN

dx

dE

ε= deN

dx

dE

Fig. 6 a y b

De acuerdo con las leyes de la Electrostática se verifica:

1º) La conservación de la carga:

Q+ + Q- = 0: e·xpANa = e·xnANd: xpNa = xnNd

xp + xn = W

De donde resulta:

,NN

WNx

da

dp +

= da

an NN

WNx

+= (3)

Las igualdades (3) nos miden la penetración de la zona de carga en las semizonas “p”

y “n” de la zona de transición del semiconductor.

2º) La determinación del campo electrostático a partir del Teorema de Gauss en forma di-

ferencial:

-xp

xn

x

eNd

-eNa

ρ(x)

-xpxn

E(x)

x

Em

a)

b)

-xp

xn

x

eNd

-eNa

ρ(x)

-xpxn

E(x)

x

Em

a)

b)

Page 9: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

9

Tomemos un cilindro infinitesimal en el semiconductor, con sección recta de área A y

longitud, dx. La carga en su interior es dq = ρAdx, y el flujo neto del campo electrostático

es según fig. 7 el flujo saliente menos el flujo entrante y por el teorema de Gauss tenemos:

Fig. 7

( )

ερ

ερ

εφ

=⇒==

+=−+===

dx

xdEAdxdxA

dx

xdE

AxEdxdx

xdExEAxEdxxEdSxE

dqd xx

)()(

)()(

)()()()( :

La densidad de carga vale: )( ad NNnpq −+−=ρ donde q = e.

Teniendo en cuenta que para:

ap eNxx −=⇒≤≤− ρ,0

dn eNxx =⇒≤≤ ρ,0

Resulta:

εε

ρ )( ad NNnpq

dx

dE −+−==

En la Zona de Transición, p = n = 0

El cambio de pendiente indica que E (0) = Em es un valor extremo, mínimo de la fun-

ción E(x), fig 6b.

0 < x < x n ∫ ∫ε=

0

E

x

0

d

m

n

,dxeN

dE Em = nd x

Ne

ε− (4)

-xp < x < 0 ∫ ∫−ε

−=m

p

E

0

0

x

a ,dxeN

dE Em = pa x

Ne

ε− (5)

0

0

>=

<−=

ε

εd

a

Ne

dx

dE

eN

dx

dE

E(x + dx)E(x)

A

dx

Page 10: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

10

E(x) = :dx

)x(dV− V0 = V (xn) – V (-xp) = ∫

n

p

x

x

dx)x(E

3º) Cálculo de la anchura, W, de la ZT.

Vo es la diferencia de potencial que se establece entre las dos zonas neutras a través de

la zona de carga, y vale:

∫∫ +=−

n

p

x

0

0

x

0 dx)x(Edx)x(EV

El valor de Vo es igual al área del triángulo rayado Fig., 6.b de base W y altura el valor

máximo del módulo del campo, Em:

Vo = da

adn

d

NN

WNNe

2

Wx

eN

2

W

2

WE

+ε=

ε=

Despejando W de la igualdad anterior, resulta:

W = 21

da

0

N

1

N

1

e

V2

+

ε (6)

La anchura W de la ZT disminuye al aumentar las magnitudes del dopado Na y Nd.

2.4. Capacidad de la unión*

En la ZT la carga espacial Q = Qn = Qp vale:

Q = eNdxn = eNdW21

da

dao

da

a

NN

NNVe2

NN

N

+

ε=+

(7)

Como hemos indicado, de estas relaciones se establece una analogía con un con-

densador, formado por una doble capa. Aún cuando son constantes Na y Nd y por consi-

guiente lo es Vo, se puede variar el salto de potencial polarizando el semiconductor me-

diante una diferencia de potencial V aplicada entre las zonas P y N, de forma que el nuevo

salto de potencial V´0 sea V0 + V y en este caso la carga espacial tiene por expresión: Q´ =

2/1

da

da0 NN

NNe2´V

+

ε . Se define la capacidad dinámica C como el cociente ´dV

´dQ

o

, de don-

de resulta:

dV´0 = d (V0 + V) = dV, C = 2/1

00

´V2

1

dV

´dQ

´dV

´dQ −==2/1

da

da

NN

NNe2

+

ε (8)

Page 11: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

11

Ej.1 Se considera la unión PN en una barra de un monocristal de Ge con: Nd = 1022 m

-3 y

Na = 3·1024 m

-3, ni = 2,5·10

19 m

-3. Determinar a 300 K: a) La diferencia de potencial de

barrera V0, y b) la diferencia entre Ei y EF en una y otra región, fig. 8.

Fig. 8

La unión no modifica EG = EC - EV ni tampoco2

EEE VCi

+= en una y otra región neutra.

La energía de la zona de tipo n disminuye en qV0.

VT =q

kT

A 300º K

b) pp = nikT/)EE( Fpipe

nn = nikT/)EE( inFne −

Eip - EFp = eVn

NpV

i

ap

T 304,0105,2

103ln026,0ln

19

24

=⋅

⋅=

EFn - Ein = eVn

NnV

i

dnT 155,0

105,2

10ln026,0ln

19

22

=⋅

=≅

EFn = EFp : qV0 = Eip - Ein = (0,304 + 0,155) eV = 0,459 eV

VT = 0,026 eV

qV0

Εcp

Evp

ΕipΕcn

Ein

Evn

EFnΕFn

a) V0 = VT =2i

da

n

NNln 0’026

( )=

⋅⋅219

2422

105,2

10310ln 0,459 V

Page 12: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

12

Ej. 2*. Suponiendo que era una unión abrupta la unión PN del cristal del ejemplo anterior

y sabiendo que ε´= (Ge) = 16 y que el área de la sección recta de la barra es A =

0,3 mm2. Calcular:

a) La anchura W de la ZT

b) Las penetraciones –xp y xn de la ZT en las zonas P y N respectivamente

c) Las cargas Q+ = -Q- contenidas en la ZT

d) Campo eléctrico máximo en la unión, E0

a) 21

222419

1221

0

10

1

103

1

106,1

459,0)10849,816(2112

+

⋅⋅⋅⋅⋅

=

+= −

da NNq

VW

ε=

= 2,82·10-7 m = 0,282 µm

b) mNN

NWx

da

an µ282,0

10103

103282,0

2224

24

=+⋅

⋅=

+=

mNN

NWx

da

dp µ001,0

10103

10282,0

2224

22

=+⋅

=+

=

c) Q+ = -Q- = qNdxnA = 1,6·10-19·1022·0,282·10-6·3·10-6 = 1,34·10-11 C

d) mVxN

qE nd /10187,310849,816

10282,010106,1 6

12

62219

0 ⋅=⋅⋅

⋅⋅⋅⋅−=−= −

−−

ε

Ej. 3. En un semiconductor (ni = 1019 m

-3, ε´ = 10) se forma una unión PN. Las conducti-

vidades y movilidades de las regiones P y N respectivamente son:

σp = 8·102 (Ω·m)-1 µp = 0,2SV

m2

⋅ σn = 4·103 (Ω·m)-1 µn = 0,4

SV

m2

Calcular:

a) El potencial de contacto.

b)* La capacidad de transición si el área de la sección recta del diodo es A

= 1,5 mm2.

σn = qµnnn ≅ qµnNd : n

nd

qN

µσ

= , análogamente: p

pa q

σ=

Page 13: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

13

Vnq

Vn

NNVV

ipn

pn

T

i

daT 43,0

)10(2,04,0)106,1(

108104ln026,0lnln

219219

23

2220 =⋅⋅⋅⋅⋅

=== −µµσσ

σ

µ⋅+

σµ⋅ε

=

+

ε=

p

p

n

n0

da

0ee

e

V2

N

1

N

1

q

V2W =

m523

12 1063,1108

2,0

104

4,043,01085,8102 −− ⋅=

⋅+

⋅⋅⋅⋅⋅=

pFFW

AC 13,81013,8

1063,1

105,1

1036

10 12

5

6

9=⋅=

⋅⋅

⋅⋅== −

πε

Ej. 4: La forma geométrica de un esquema de bandas de una unión PN, no polarizada, en

unidades kT, son unas líneas quebradas. A la temperatura de 27 ºC se conocen los

valores: EVP = 0, ECP = 60 kT eV, EFN – EiN = 15 kT eV, EiP – EFP = 10 kT y

W = 5 µm.

a) Dibujar el diagrama de bandas.

b) Calcular V0, Ei y ρ(x)

a) Cuando se produce la unión isoterma ocurre:

- La anchura de la banda prohibida, 60 kT, permanece constante en P y N.

- Los niveles de Fermi se igualan.

- Se determinan los valores de Ei en la zona P y N, con origen en el nivel único de

Fermi como sigue:

EFN – EiN = 15 kT : ECN – EFN = 15 kT

EiP - EFP = 15 kT : ECP – EFP = 40 kT

Fig. 9

ECP – ECN = 40 kT – 15 kT = 25 kT

ΕCP = 60 kT

EVP = 0

ΕiPΕCN

EVN

EFNΕFP

W = 5 µm

15 kT

∆E = 25 kT eV = eV0

15 kT

10 kT

40 kT

P N

EiN

Page 14: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

14

b) V026'0e

)Cº27(kT= ; V

e

kT

e

EV 65,0026,025

250 =⋅==

∆=

m

V

m

V

W

V

dx

dVE 6

60 1013,0

105

65,0⋅=

⋅=−=−= −

Supuesto rectilíneo el salto de potencial V0, la 0dx

Vd2

2

= , en la ZT. Por consiguiente

la carga de esta zona se encuentra en forma pelicular en las interfaces de la zona P con ZT

y de ZT con N.

Fig. 10

Ej. 5: Con un semiconductor de ni = 1016 m

-3, EG = 60 kT, se realizó una unión p

+-n no

polarizada (Na = 2·1022 m

-3, Nd = 5·10

20 m

-3) a 27ºC. Dibujar el diagrama de ban-

das (en unidades kT).

KT(27ºC) = 0,026 eV; Ve

kT026,0= ; VVV 65,0

10

10ln026,0

32

43

0 ==

kTkTeV

kTV

kTkT

eVeVE o 25

026,0

65,0

026,00

0 =====∆

kT

)EE(

ind

FNiN

ennN−

−=≅ : EFN – EiN = kT

n

NkT

i

d 6,24ln =

kT

)EE(

ipa

iPFiP

enpN−

−== : EiP - EFP = kT

n

NkT

i

d 3,28ln =

Desde la recta EFP = EFN se sitúan EiP y EiN y desde estas ECP y EVN. A partir de la

prolongación de ECP se sitúa ECN bajando de 25 kT eV.

Fig. 11

V(x)

ρ(x)

x)

x)

0'65 V

ΕCP

EVP

ΕiP

ΕCN

EVN

EFNΕFP

30 kT 25 kT eV

28'3 kT

EiN24'6 kT

P N

Page 15: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

15

3. UNION POLARIZADA

Cuando se somete al diodo a una diferencia de tensión externa, V, por medio de una batería

se dice que el diodo está polarizado, pudiendo ser la polarización directa o inversa.

En los circuitos el diodo se representa por el símbolo dado por la Fig. 12

Figura 12

donde al extremo p se le denomina ánodo, A, y al n cátodo, C.

3.1. Polarización directa.

En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial,

permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo

polarizado directamente conduce la electricidad.

Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de

la batería al ánodo del diodo y el polo negativo al cátodo, como se observa en la Figura 13.

Figura 13

En estas condiciones podemos observar que:

• El polo negativo de la batería repele los electrones libres del cristal n, con lo que

estos electrones se dirigen hacia la unión p-n.

• El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es

equivalente a decir que empuja a los huecos hacia la unión p-n.

A (p) C (n)A (p) C (n)

Page 16: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

16

• Cuando la diferencia de potencial entre los bornes de la batería es mayor que la di-

ferencia de potencial en la zona de carga espacial, los electrones libres del cristal n,

adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales pre-

viamente se han desplazado hacia la unión p-n.

• Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de

carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en

electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positi-

vo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p,

desde el cual se introduce en el hilo conductor y llega hasta la batería.

De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones

de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta

el final.

3.2. Polarización inversa.

En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la

zona n, como se muestra en la Figura 14, lo que hace aumentar la zona de transición, W, y

la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como

se explica a continuación:

Figura 14

• El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales sa-len del cristal n y se introducen en el conductor dentro del cual se desplazan hasta

Page 17: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

17

llegar a la batería. A medida que los electrones libres abandonan la zona n, los áto-mos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia) y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.

• El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tie-nen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.

• Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.

En esta situación, el diodo no debería conducir la corriente; sin embargo, debido al efecto

de la temperatura se formarán, por roturas de enlaces, pares electrón huecos a ambos lados

de la unión produciendo una pequeña corriente (del orden de 1 µA) denominada corriente

inversa de saturación. Además, existe también una llamada corriente superficial de fugas

la cual, como su propio nombre indica, conduce una pequeña corriente por la superficie del

diodo, ya que en la superficie los átomos de silicio no están rodeados de suficientes átomos

para realizar los cuatro enlaces covalentes necesarios para obtener estabilidad. Esto hace

que los átomos de la superficie del diodo, tanto de la zona n como de la p, tengan huecos

en su orbital de valencia con lo que los electrones circulan sin dificultad a través de ellos.

No obstante, al igual que la corriente inversa de saturación, la corriente superficial de fugas

es despreciable.

Page 18: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

18

Desde un punto de vista energético, dependiendo de que la polarización sea directa o in-

versa, la diferencia de potencial, V, se resta o se adiciona a Vo, de forma que la barrera de

potencial disminuye, e (Vo-V), o aumenta e (Vo+V), facilitándose o dificultándose, los flu-

jos de difusión de huecos o de electrones sin que se altere el valor de las corrientes de

arrastre de minoritarios, como se muestra en la Figura 16 b) y c).

Figura 16

Como término de comparación se ha incluido en la Figura 16 a) la unión no polarizada. Es

importante observar que:

Haciendo e

kTVT = , VKVT 026,0)300( ≅ se tiene que si es n´ el número de electrones

capaces de saltar la barrera energética, se tiene:

P N

W

V = 0

--

++ P

V > 0

I(mA)

P N

V < 0

Is(mA)

Ei (O) Ei (V) Ei (-V)

a) b) c)

W´´

Vo

V(x)

x)Vo -V

V(x)

x)

Vo+VV(x)

x)

P N

W

V = 0

--

++ P

V > 0

I(mA)

P N

V < 0

Is(mA)

Ei (O) Ei (V) Ei (-V)

a) b) c)

W´´

Vo

V(x)

x)Vo -V

V(x)

x)Vo -V

V(x)

x)

Vo+VV(x)

x)

Vo+VV(x)

x)

eVoEFp

e (Vo-V)

e (Vo+V)eV

eV

EFp EFn

EFn

EFp

EFn

ECP

EVP

ECN

EVN

eVoEFp

e (Vo-V)

e (Vo+V)eV

eV

EFp EFn

EFn

EFp

EFn

ECP

EVP

ECN

EVN

Page 19: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

19

To V/Vnoen´n −=

To V/)VV(noen´n −−= To V/)VV(

noen´n +−=

Jsn Jsn Jsn Jdn Jdn Jdn Jsn = Jdn Jsn < Jdn Jsn > Jdn

a) En conformidad con la experiencia las zonas neutras, P y N, con equipotenciales, salvo

una pequeña caída óhmica. La diferencia de potencial de polarización V se produce en

la zona de transición.

b) La anchura W y el campo interno Ei disminuyen con la polarización directa y aumen-

tan con la polarización inversa. Esto se explica fácilmente porque si se aplica un poten-

cial externo positivo al lado n, como se hace en la polarización inversa, se está aumen-

tando el campo total a través de la unión. Las cargas libres originadas se moverán por

acción del campo. El resultado es la aparición de más iones positivos y negativos a am-

bos lados. La zona se ensancha y no contiene cargas libres. Si el potencial externo es

positivo en el lado p, ocurre lo contrario y la zona de transición se estrecha.

c) Dado que δE = q·δV (y para los electrones, q = -e) entre las bandas Ecp y Ecn, Evp y Evn,

y los niveles de Fermi se produce un salto energético δE(x) = -e·V(x).

Al subir el potencial en la zona P el colectivo nn disminuye su energía potencial.

Cuanto mayor es el crecimiento del potencial V en la zona de transición: V0 – V < V0 <

V0 + V, tanto mayor es la magnitud del salto energético δE´´ = -e(V0 + V), δEo = -eVo,

δE´ = -e(Vo – V) de energía potencial de los electrones.

d) Para V = 0 y en estado de equilibrio isotérmico están igualados los niveles de Fermi

EFp = EFn. Cuando se polariza la unión, los niveles de Fermi se diferencian: si V > 0

EFn sube, eV; si V < 0, EFn baja.

En el caso V = 0 la corriente neta es nula, se compensan los flujos de difusión y de

arrastre:

Jsn = Jdn ; Jsp = Jdp

J = Jdn – Jsn + Jdp – Jsn = 0

Page 20: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

20

e) El número de electrones, n´, capaz de saltar la barrera energética es proporcional a la

potencia de base e y exponente – (V0 ± V)/VT potencial de polarización de la zona de

transición:

n´(V0) : n´(V0 - V) : n´(V0 - V) :: T

0

V

V

e−

: T

0

V

VV

e−

: T

0

V

VV

e+

f) La corriente inversa de saturación, de símbolo , no depende de la barrera energéti-

ca:

Jsn (Vo) = Jsn (V0-V) = Jsn (V0+V) = Jsn

La corriente de difusión, de símbolo, es proporcional a n´, y se verifica que:

Jdn (V0-V) > Jdn (Vo) = Jsn > Jdn (V0+V)

La densidad de corriente neta, J, en cada caso es:

Con polarización nula J = Jd + Js = 0.... Jd = |Js| ∼ µA

Con polarización directa J (mA) ≅ Jd + Js >0

Con polarización inversa J (-µA) ≅ Jd + Js

Si en lugar de referirnos a electrones lo hacemos con huecos, el razonamiento y los

resultados son análogos cambiando los signos de los saltos energéticos.

3.3. Características de un diodo ideal. Ecuación de Shockley

En una unión idealizada se suponen las siguientes hipótesis:

1º) La unión es abrupta y monodimensional.

2º) La zona de transición está vacía de portadores.

3º) El salto de potencial, V0 ± V, está localizado en la zona de transición.

4º) El número n´ de portadores capaces de saltar la barrera de potencial es:

T

o

V

VV

Ce´n−

=

5º) Las uniones del diodo con el circuito son óhmicas y están relativamente alejadas

de la zona de transición. Esta última condición se introduce, porque en los ca-

sos usuales, la corriente de difusión de minoritarios se atenúa exponencialmen-

te al alejarse de los bordes de la zona de transición y debe ser prácticamente

nula en las uniones del diodo.

Si es e

kTVT = y de acuerdo con la ley del equilibrio:

Page 21: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

21

• V = 0 : Jn = Jdn + Jsn = 0JeC snV

V

nT

0

=+−

: Jsn = T

0

V

V

neC−

Donde se ha supuesto que la corriente de difusión es proporcional al número n´ de

electrones que pueden saltar la barrera de potencial.

• V ≠ 0 : Jn = -Jsn + =−

−T

0

V

)VV(

neC -Jsn + =−

TT

0

V

V

V

V

n eeC |Jsn| )1e( TV

V

Análogamente para los huecos, Jp = |Jsp| )1e( TV

V

La densidad de corriente inversa de saturación total es, Js:

Js = Jsn + Jsp

La densidad de corriente total, J, es la suma de las densidades de corriente de elec-

trones y de huecos:

J = Jn + Jp

La intensidad, I, total se obtiene multiplicando por el área A de la sección recta del

diodo:

)1e(|I|I TVV

S −= Ecuación de Schockley.

Para polarizaciones directas, V > 0, la corriente crece exponencialmente. La unión

PN es conductora. Para polarización inversa, V < 0, la corriente es muy pequeña, cuasi la

de saturación, y la unión PN no es conductora. Todo ello hace que un diodo PN sea rectifi-

cador, solo deja pasar la corriente en un sentido.

La curva característica del diodo se representa en la Figura 17.

Fig. 17

Page 22: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

22

Donde los parámetros representados son:

• Tensión umbral, de codo o de partida (Vγ ). La tensión umbral (también llamada barrera de potencial) de polarización directa coin-cide en valor con la tensión de la zona de carga espacial del diodo no polarizado. Al po-larizar directamente el diodo, la barrera de potencial inicial se va reduciendo, incremen-tando la corriente ligeramente, alrededor del 1% de la nominal. Sin embargo, cuando la tensión externa supera la tensión umbral, la barrera de potencial desaparece, de forma que para pequeños incrementos de tensión se producen grandes variaciones de la inten-sidad.

• Corriente máxima (Imax). Es la intensidad de corriente máxima que puede conducir el diodo sin fundirse por el efecto Joule. Dado que es función de la cantidad de calor que puede disipar el diodo, depende sobre todo del diseño del mismo.

• Corriente inversa de saturación (Is). Es la pequeña corriente que se establece al polarizar inversamente el diodo por la forma-ción de pares electrón-hueco debido a la temperatura, admitiéndose que se duplica por cada incremento de 10º en la temperatura.

• Corriente superficial de fugas. Es la pequeña corriente que circula por la superficie del diodo (ver polarización inversa), esta corriente es función de la tensión aplicada al diodo, con lo que al aumentar la tensión, aumenta la corriente superficial de fugas.

• Tensión de ruptura (Vr). Es la tensión inversa máxima que el diodo puede soportar antes de darse el efecto avalan-cha.

Teóricamente, al polarizar inversamente el diodo, este conducirá la corriente inversa de saturación; en la realidad, a partir de un determinado valor de la tensión, en el diodo nor-mal o de unión abrupta la ruptura se debe al efecto avalancha; no obstante hay otro tipo de diodos, como los Zener, en los que la ruptura puede deberse a dos efectos:

• Efecto avalancha (diodos poco dopados). En polarización inversa se generan pares electrón-hueco que provocan la corriente inversa de saturación; si la tensión inversa es elevada los electrones se aceleran incrementando su energía cinética de forma que al cho-car con electrones de valencia pueden provocar su salto a la banda de conducción. Estos electrones liberados, a su vez, se aceleran por efecto de la tensión, chocando con más elec-trones de valencia y liberándolos a su vez. El resultado es una avalancha de electrones que provoca una corriente grande. Este fenómeno se produce para valores de la tensión supe-riores a 6 V.

• Efecto Zener (diodos muy dopados). Cuanto más dopado está el material, menor es la anchura de la zona de carga. Puesto que el campo eléctrico E puede expresarse como co-ciente de la tensión V entre la distancia d; cuando el diodo esté muy dopado, y por tanto d sea pequeño, el campo eléctrico será grande, del orden de 3·105 V/cm. En estas condicio-

Page 23: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

23

nes, el propio campo puede ser capaz de arrancar electrones de valencia incrementándose la corriente. Este efecto se produce para tensiones de 4 V o menores.

Para tensiones inversas entre 4 y 6 V la ruptura de estos diodos especiales, como los Zener, se puede producir por ambos efectos.

Ej.6: Para determinar la corriente inversa de saturación, IS, de un diodo de unión se mon-

tó el circuito que se adjunta. Calcular IS y la resistencia del diodo si se invierte su

polarización.

Fig. 18

Se tiene:

mAI 92,0105

6,43

=⋅

=

La tensión de polarización directa del diodo es V = 5 – 4,6 = 0,4 V

A

ee

II

TVVS

10

026,04,0

4

109,1102,9

1

−−

⋅=⋅

≅−

=

Al invertir la polarización es : I = IS = 1,9·10-10

VR = 5·103 Ω·1,9·10-10 = 9,5·10-7 V ∼ 0

La tensión aplicada al diodo es: V = 5 V

La resistencia del diodo en esas condiciones es Ω⋅=⋅

== −9

10103,26

109,1

5

A

V

I

VR

D

D

V

V = 5 V

5 ΚΩ

VR = 4,6 V

V

V = 5 V

5 ΚΩ

VR = 4,6 V

Page 24: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

24

3.4. Análisis del circuito de un diodo

La batería (o dispositivo equivalente) que polariza al diodo conecta su polo positivo

a la unión óhmica, Mp, metal-semiconductor, tipo P. La batería suministra una corriente I y

el diodo es recorrido por los flujos de huecos y electrones que originan cuatro corrientes,

fig. 19a y b

Fig. 19a

En todo instante y en cualquier sección del diodo semiconductor se verifica:

Ipp + Inp = Ipn + Inn = I

En el contacto Mp, metal-semiconductor tipo P, Fig. 19b, por la batería se extraen

electrones y por consiguiente se generan huecos. Estos compensan la pérdida de huecos

debido a la corriente Ipp, que se dirige hacia la zona de transición, de forma que la concen-

tración de huecos en P, pp, es prácticamente constante, pp ≅ Na.

Fig. 19b

I > 0 V > 0+ -

Mp Mn

h+

e-

e- e-

Inyección

Uniones metal-semiconductor

P N

P ZT N

Ipp

Inp

Inn

Ipn

Símbolo de huecosSímbolo de electrones

Ipp corriente de huecos en la zona PIpn corriente de huecos en la zona NInn corriente de electrones en la zona NInp corriente de electrones en la zona PI corriente total que circula por el diodo

I I

Page 25: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

25

Simultáneamente, la corriente de electrones, Inp inyectados en la frontera de la zona

P, se van difundiendo y recombinando con parte de los huecos de P, y esto hace que la co-

rriente Inp no sea constante, sino que vaya disminuyendo conforme nos acercamos a la zona

de transición, Fig. 19a.

Los huecos no recombinados alcanzan la zona de transición y saltan la barrera de

potencial energética e (V0 ± V) y se inyectan en la zona N.

Estos huecos inyectados, minoritarios en la zona N, originan una corriente de difu-

sión, Ipn, que avanza por esta zona. La corriente Ipn se va atenuando exponencialmente al

recombinarse con los electrones mayoritarios de la zona N, Fig. 19ª.

Análogamente, por el contacto Mn, metal-semiconductor tipo N, conectada al polo

negativo, introduce electrones en la zona N, que compensan la pérdida de éstos electrones

debida a la corriente Inn, de forma que permanece prácticamente constante la concentración

de electrones en N, nn, de ésta zona.

Cuando los electrones no recombinados alcanzan la zona de transición saltan la

barrera energética e (V0 – V) y se inyectan en la zona P, originando una corriente de difu-

sión de minoritarios, Inp, que se va atenuando exponencialmente por recombinación al ale-

jarse de la zona de transición con los huecos, mayoritarios en P.

A distancias suficientemente grandes de la zona de transición, se verifica que am-

bas corrientes de minoritarios Ipn = Inp = 0, y consecuentemente Ipp = Inn = I.

3.5. DIODO REAL

Un diodo real difiere en algunos aspectos del diodo ideal tan exitosamente modeli-

zado por Schockley. En la Fig. 20 se indican las características I = f(V) para dopados de

magnitud media de los semiconductores Ge, Si y AsGe.

Fig. 20

I(mA)

Ge

VD(V)

Si AsGa

0'3 V 0'7 V 0'9 V

200

50

100

150

Page 26: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

26

Fundamentalmente hay dos clases de diferencias entre los diodos ideal y real:

3.5.1. Polarización directa

En los diodos reales existe un voltaje umbral, Vγ, tal que si no se alcanza no se inicia el

paso de corriente. La Fig. 20 indica algunas tensiones umbrales, Vγ (Ge) = 0’3 V, Vγ (Si) =

0,7 V y Vγ(AsGe) = 0,9 V.

En aproximación práctica, cuando el diodo forma parte de un circuito se sustituye el

diodo ideal por un generador de fuerza electromotriz = - Vγ y una pequeña resistencia Rd ≅

0, Fig. 21

.

Fig. 21

Ej.7: Calcular la intensidad que recorre el circuito en los casos de que el diodo sea de Si o

de Ge.

Fig. 22

mAk

VSiI 65,4

2

)7'010()( =

Ω−

= mAk

VGeI 85,4

2

)3,010()( =

Ω−

=

I

Vab

I

Vab

a b a b

RD

θ

tg θ = 1/RD

θ = π/2RD = 0

+ 10 V

R = 2 K Ω

Page 27: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

27

Ej. 8: Sabiendo que la tensión umbral del silicio es Vγ (Si) = 0,7 V determinar la intensi-

dad ID que recorre el diodo y la diferencia de potencial en la resistencia de 3 kΩ.,

fig.22

Fig. 22

Calculando el circuito equivalente de Thévenin entre los nudos a y b:

V6448

18VTH =

+= y Ω=

+⋅

= K3

8

84

48RTH

Como el orden de las tensiones es del voltio y de las resistencias del KΩ se puede

sustituir la característica del diodo por su tensión umbral; Vγ = 0,7 V. En este caso,

mAI D 93,03

3

87,06

=+

−= y la caída de tensión en la R = 3 KΩ es V = 0,93·3 = 2,79 V.

Ej.9: Determinar la intensidad, ID, y las diferencias de potencial aplicadas a la resisten-

cia y al diodo (de característica indicada) en el circuito esquematizado en la fig. 23.

Fig. 23

La relación entre las variables del diodo, intensidad, ID y tensión, VD, verifican:

18 V

8 K Ω

a

b

4 K Ω

3 K Ω

R = 200 Ω

ID VD

VCC = 50 V

VD

ID(mA)

10 20 30 40 50

300

200

100

Page 28: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

28

VCC = IDR + VD : 1 = R/V

I

V

V

CC

D

CC

D + : 1 = 25,050DD IV

+

ID y VD están en el plano V, I sobre una recta, recta de carga, que pasa por los pun-

tos O1 (VCC,0) y O2 (0,VCC/R). La recta de carga intercepta con la característica, ID = f(VD),

en Q el punto de trabajo del diodo, Fig. 24.

En este caso O1 = (50 V, 0) y O2 = (0,250 mA) interceptando a la característica en

el punto Q = (20 V, 150 mA).

Sabiendo que ID = 150 mA, la caída de potencial en R = 200Ω, es V = 200·0,15 =

30 V y en el diodo VD = 20 V.

Fig. 24

Ej.10: Calcular la capacidad que es necesario conectar al circuito de la Fig. 25 para que

se obtenga en Vout una señal de salida rectificada con rizado inferior al 2 % respecto

a una señal continúa ideal. Datos: Vint = A sen wt, f = 10 KHz, R = 100 KΩ.

Fig. 25

a) Si no se considera el condensador, puede ocurrir que (1) la tensión de entrada Vint sea

positiva, polariza directamente el diodo, entonces equivale a un corto, por tanto la ten-

sión de salida, Vout = Vint, (2) la tensión de salida sea negativa, polariza inversamente el

diodo, entonces equivale a un abierto, Vout =0. En la Figura 26 se muestra la tensión de

salida y la de entrada si no hay C.

VD

ID(mA)

Q

ID=f(VD)

O2

O1

10 20 30 40 50

300

200

100

Vint

+

_∼

Vout

R C ?Vint

+

_∼

Vout

R C ?

Page 29: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

29

Fig. 26

b) Con condensador. En ese caso al alcanzarse la tensión máxima de entrada dado por A,

el condensador comienza a descargarse a través de la R. Si el valor de la constante de

tiempo del circuito RC es del orden del periodo T de la señal, entonces no es útil el cir-

cuito para rectificar la señal de alterna y convertirla a continua, Fig. 27

Fig. 27

La tensión de descarga del condensador viene dada por la expresión: RC

t

C AetV−

=)(

Si por el contrario, T << RC, el condensador se descarga lentamente y se puede controlar el rizado. La relación entre el valor de la pequeña amplitud del rizado a y el valor de la amplitud de la señal de entrada A, vale:

RC

TRCTTaylorpor

A

eA

A

a RC

T

=+−≅−

≅−

)/1(1)()1(

Para obtener un rizado del 2 %, resulta: 0,02 = 1 / fRC, siendo f la frecuencia. Por tanto la capacidad C = 50 / fR = 50 /(104·105) = 5·10-8 = 50 nF. Si se calcula el valor de RC resulta 5·10-3 que equivale a 50 T, ya que el periodo T , inver-so de la frecuencia, vale 10-4 s.

Vint

t

Vout

t

Vint

t

Vout

t

Vout

t

Vout

tA

tdescargaa

Si RC ∼ T no vale aproximación

T

Vout

t

Vout

tA

tdescargaa

Si RC ∼ T no vale aproximación

T

Page 30: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

30

4. EL TRANSISTOR BIPOLAR (BJT): CONFIGURACIÓN EN BASE COMÚN Y

EMISOR COMÚN.

4.1 Introducción

Los transistores constituyen el componente básico universalmente utilizado en la

electrónica, tanto analógica como digital. Son el fundamento de la microelectrónica y con

ella del hardware. Los transistores son dispositivos de estado sólido que realizan funda-

mentalmente funciones de amplificación y de conmutación.

Los transistores se introducen en la ciencia y en la técnica a mediados del siglo XX. En

1948 aparece el transistor bipolar. En 1956 se concedió el premio Nobel a Shockley, Bar-

deen y Brattain por sus contribuciones en este campo. En la década de los 60 empezaron a

construirse los dispositivos de efecto de campo, FET, aunque el concepto básico ya se co-

nocía en 1930.

Existen dos clases de transistores:

1. Bipolares que conducen por electrones y huecos. Se les conoce con las iniciales ingle-

sas BJT -bipolar junction transistor, transistor de unión bipolar-. Se utilizan general-

mente en electrónica analógica y en algunas aplicaciones de electrónica digital como

la tecnología TTL –transistor transistor logic, lógica transistor a transistor.

2. Monopolares, conducen por portadores mayoritarios, electrones o huecos. Se les co-

noce con las iniciales inglesas FET -field effect transistor, transistor de efecto campo,

porque son controlados por tensión. A su vez la familia de los FET engloban varios ti-

pos, como los JFET - junction field effect transistor-, transistor de unión de efecto

campo, los MOSFET -metal-oxide-semiconductor field effect transistor, transistor de

efecto campo metal-oxido-semiconductor-, los MISFET, metal insulator semiconduc-

tor, que utilizan un aislante en lugar de un óxido, etc. El transistor MOS es usado ex-

tensamente en toda la electrónica digital y es el componente fundamental de los cir-

cuitos integrados.

Trataremos de describir de forma casi cualitativa el fundamento físico de los transisto-

res bipolares y de los de efecto de campo.

Page 31: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

31

4.2. TRANSISTORES BIPOLARES, BJT

4.2.1 Estructura

El transistor de unión bipolar es un dispositivo obtenido dopando un monocristal

semiconductor, de forma que se tengan tres regiones yuxtapuestas PN P ó N P N. Las tres

zonas semiconductoras se denominan Emisor, E, que emite portadores y está fuertemente

dopada, Base, B que está intercalada entre las dos zonas y que sirve para modular el paso

de portadores y colector, C, que recibe o colecta los portadores. Entre ellas hay dos unio-

nes, emisor-base y base-colector, análogas a las de un diodo de unión. En la fig. 28, se sim-

boliza los dos tipos de transistores NPN y PNP.

Fig. 28

Para que estas dos uniones puedan funcionar como transistor se necesitan, al me-

nos, dos condiciones:

1. Que la anchura de la base, WB, del orden del micrómetro, sea muy pequeña

comparada con la longitud de difusión, L, de los portadores que inyecta el emi-

sor en la base.

2. Que la base esté ligeramente dopada con relación al emisor.

Si no se cumple la primera condición, el dispositivo se comporta más bien como

dos diodos de unión en serie y no como transistor. Con la segunda condición se favorece la

inyección y se dificulta la recombinación de electrones y huecos en la base durante su difu-

sión desde el emisor hacia el colector.

Por simplicidad el estudio se va a limitar a un transistor monodimensional de forma

cilíndrica y área de su sección recta A. Su eje, tomado como OX, es normal a las zonas de

transición que separan emisor-base y base-colector.

N

N

C

B

E

PB

C

E

N

N

C

B

E

P

N

N

C

B

E

PB

C

E

B

C

E

P

N

P

C

B

E

C

B

E

P

N

P

C

B

E

P

N

P

C

B

E

C

B

E

Page 32: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

32

4.2.2 Potenciales y distribución de portadores en un transistor sin polarizar

Veamos como son los potenciales electrostáticos en las distintas zonas de un transistor y

como se distribuyen los portadores de cargas cuando funciona en modo activo, esto es,

cuando las polarizaciones de las uniones son las indicadas en la fig.29 para un PNP.

Potenciales:

Fig. 29

Sean VD y VI las polarizaciones directa o inversa de las dos uniones contenidas en

el transistor. Aún cuando las uniones no estén polarizadas, en cada una de ellas se crea su

correspondiente barrera de potencial, entre emisor-base, Vo, y entre colector-base V´o. En

cada una de las zonas de transición aparece un campo electrostático, E0 y E0’, ambos de

sentidos opuestos, fig. 30a. Puesto que la magnitud del dopado en el emisor y en el colec-

tor pueden ser distintas, los valores de las diferencias de potenciales Vo y V´o también

pueden serlo. Recuérdese que Vo = VT ln (NaNd/ni2) y que V´o = VT ln (N´aNd/ni

2) por lo

que al ser la concentración de aceptores del emisor Na mucho mayor que la del colector N´a

será Vo>V´o en valor absoluto, fig. 30b.

Si se polariza directamente la unión emisor-base con una tensión VD > 0, e inver-

samente la unión base-colector con una tensión VI < 0 disminuye la altura de la barrera de

potencial en la primera unión en VD y aumenta en la segunda en VI. Consecuentemente hay

una disminución del campo electrostático en la unión emisor-base EO, y un fuerte aumento

del campo en la unión colector-base E´O, fig. 30c, ya que V´o+VI> Vo -VD. La dis-

minución del campo electrostático entre el emisor y base facilita el flujo de huecos por

inyección entre uno y otra.

P N P

Vo Vo’

E

B

C

VD

P N P

Vo Vo’

E

B

C

VD

VI

P N P

Vo Vo’

E

B

C

VD

P N P

Vo Vo’

E

B

C

VD

VI

Page 33: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

33

La fig. 30c está necesariamente deformada en escala según la dirección horizontal

ya que las anchuras de las uniones y de la base están muy aumentadas.

Fig. 30

El mayor porcentaje, α, de los huecos inyectados por el emisor en la base se difun-

de por ésta hacia la unión base-colector. Los huecos que han penetrado en esta unión son

acelerados por su intenso campo electrostático y se inyectan en el colector originando casi

la totalidad de la corriente de colector. Como la longitud de difusión de los portadores de-

ntro de la base es muy grande, se cumple que Lp > WB, y por tanto solo una pequeña pro-

porción, 1-α, de los huecos inyectados en la base se recombinan con los electrones de la

misma. Este pequeño porcentaje de huecos constituye en gran medida la corriente de base.

E B C

P PN

- +

- +

+ -

+ -

E0 E´0a)

V

V0V 0

V = 0

b)

V

V0 V 0 c)V0-VD

VD VI

V 0 + V I

E0E 0

Page 34: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

34

4.2.3. Flujos de portadores y corrientes en un transistor

Por convenio se ha tomado el sentido de las intensidades de corrientes que se indi-

can en la fig. 31.

Fig. 31

En un transistor PNP, en modo activo (la zona donde amplifica el transistor), las

uniones EB y BC están polarizadas en forma VD > 0, VI < 0. Los flujos de los portadores

se indican en la Fig. 32.

Fig. 32

(1) Flujo de huecos h+ inyectados por el emisor en la base. El sentido de su corriente, IpE,

coincide con la corriente de emisor, IE.

(2) Flujo de electrones e- inyectados por la base en el emisor. El sentido de su corriente,

InE, es opuesta al de su flujo de éstos electrones y coincide con el sentido de IE.

IE = IpE + InE

Ambos flujos están generados por inyección de la unión PN directamente polariza-

da emisor-base.

E

B

C

IC

IB

IEE

B

C

IE IC

IB

P PE C

N

B

N NE C

P

B

E

B

C

IC

IB

IE

E

B

C

IC

IB

IEE

B

C

IE IC

IB

E

B

C

IE IC

IB

P PE C

N

B

P PE C

N

B

N NE C

P

B

N NE C

P

B

E B C

IE

IB

IC

E C

B

(1)

(2)

(3)

(4)

(5)

IpE IpE -IBB

h+

h+

InEInC

e- e-e-e-

E B C

IE

IB

IC

E C

B

(1)

(2)

(3)

(4)

(5)

IpE IpE -IBB

h+

h+

InEInC

e- e-e-e-

IBB

E B C

IE

IB

IC

E C

B

(1)

(2)

(3)

(4)

(5)

IpE IpE -IBB

h+

h+

InEInC

e- e-e-e-

E B C

IE

IB

IC

E C

B

(1)

(2)

(3)

(4)

(5)

IpE IpE -IBB

h+

h+

InEInC

e- e-e-e-

IBB

Page 35: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

35

(3) Fracción del flujo de huecos que se recombinan con los electrones de la base. El senti-

do de esta corriente, IBB, coincide con la corriente de base, IB.

(4) Flujo de electrones de colector a base. El sentido de su corriente, InC es opuesto al de la

base. InC es una corriente inversa de saturación en la unión inversamente polarizada

colector-base.

IB = IBB + InE - InC

(5) Fracción del flujo de huecos difundidos en la base, y que no se han recombinado, que

alcanzan el colector. El sentido de su corriente, IpE-IBB coincide con el sentido de la

corriente de colector, IC.

IC = IpE - IBB + InC

De acuerdo con la ley de Kirchhoff, se verifica que IE = IB + IC.

El orden de magnitud de las corrientes son: del mA, para IE ≈ IpE y IC = IpE - IBB.

El resto de las intensidades son del orden del µA.

Aplicando las leyes de Kirchhoff a los terminales de un transistor y teniendo en

cuenta el sentido de las corrientes, Fig. 32, podemos escribir: VEB + VBC + VCE = 0, IE =

IB + IC

Fig. 32

El transistor PNP es complementario del NPN de forma que todos los voltajes y corrientes

son opuestos a los del transistor NPN. Así para encontrar el circuito complementario de un

NPN se sustituye el transistor NPN por el PNP y después se invierten todas las tensiones y

corrientes.

En el análisis realizado, no se han considerado las corrientes de recombinación en

las zonas de transición emisor-base y base colector, por ser despreciables frente al resto.

N P N P N P

+ - B

E-

C+

VEB

C E

B B

EC

IE ICIE IC

E+

C-

B

VEBVBC

VBC

IB- +

IB

Page 36: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

36

En principio, para cada transistor, teórica y experimentalmente, se establecen dos

parámetros, α yβ. En el caso más simple:

IC = α IE,

IC = β IB

que relacionan las intensidades de emisor, base y colector en corriente continúa.

Teniendo en cuenta que IE = IB + IC podemos establecer una relación entre los parámetros α

y β:

α−

α=β⇒α+

βα

=+=+= ⋅1I

I

I

I

I

I

I

I

I

I1

E

C

E

C

C

B

E

C

E

B

Los valores de α y β son específicos de cada transistor y varían en corriente alterna.

Ej. 12. En el esquema indicado en la fig. 33, se representa un transistor en configuración

emisor común. Su parámetro β es 80 y la resistencia emisor-base, es de 100 Ω.. De-

terminar las intensidades de base, colector, emisor y el parámetroα.

Fig. 33

Admitimos que VCC es tal que el transistor está en modo activo. Entonces,

mARR

VI

EB

BBB 314,0

1005000

6,1=

+=

+=

IC = βIB = 80·0,314 mA = 25,12 mA

IE = IB + IC = 0,314 + 25,12 = 25,424 mA 987,081

80

1==

+=

ββα

B

E

C

IC

IB

IE

VCC

R=5 K Ω

VBB = 1'6 V

Page 37: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

37

Ej. 13. En el circuito, fig.34, suponiendo que VCE = -6 V, que el parámetro β =100 y que

la tensión emisor-base VEB es de 0,7 V, calcular la resistencia RB de polarización de

la base.

Fig. 34

1) Por el camino T (tierra) E(emisor) C(colector), resulta:

Dado que VEC = 6 V (mayor que 0,2 V, tensión normal de saturación se su-

pone que el transistor está en modo activo).

VEC + RCIC + VCC = 0

AR

VVI

C

ECCC

C 08,050

610=

−=

−−=

AI

I CB

4108100

08,0 −⋅===β

2) Por el camino TEB, resulta:

IBRB + VEB + VCC = 0

Ω=⋅=⋅−

=−−

= − 625.11108

3,9

108

7,010 4

4B

EBCC

BI

VVR

RCIC

VEC

VCC

VEC + RCIC = -VCC

IBRB

VEB

VCC

VEB + RBIB = -VCC

B

E

C

IC

IB

IE

50 Ω = R C

-10 V= V CC

R B ?

Page 38: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

38

Ej. 14. Sabiendo que el transistor de la fig. 35 tiene los parámetros β = 40 y VEB = 0,7 V.

Determinar las intensidades de base, colector y emisor. Calcular también VCE

Fig. 35

(1) Por el camino TEBRBVCC resulta:

VEB + IB RB -VCC = 0, de donde IB RB = VCC – VEB de aquí:

mAKR

VI

B

EBB 54,0

8

7,055=

Ω−

=−

=

mAII BC 6,2154,040 =⋅== β

(2) Por el camino: TECRCVCC resulta: VEC + IC RC -VCC + = 0

(3) IE = IC + IB

Luego:

IE = IC + IB = 22,14 mA

VEC = VCC - IC RC

VEC = 5 - IC RC = 5 – 21,6 mA·0,1 KΩ = 2,84 V

Ej. 15 En el circuito de la fig. 36, sabiendo que la tensión de la batería es de 9 V, β = 100,

RB=100 KΩ y R c=0.5 KΩ, determinar las intensidades IB, IC e IE, así como la VCE.

La tensión umbral base-emisor, VBE ≅ 0.6 V (NPN) para un transistor de Si.

Fig. 36

B +

E

C

IC

IB-IE

RCRB

VC = 9 vVB +

E

C

IC

IB-IE

RCRB

VC = 9 vV

B

E

C

IC

IB

IE

RB =8 kΩ RC = 100 Ω

VCC = -5 V

B

E

C

IC

IB

IE

RB =8 kΩ RC = 100 Ω

VCC = -5 V

RB = 8 kΩ

Tierra

VCC = 5 V

E

B

C

IE

IB

ICRB = 8 kΩ

Tierra

VCC = 5 V

E

B

C

IE

IB

IC

TierraTierra

VCC = 5 V

E

B

C

IE

IB

IC RC = 100 ΩRB = 8 kΩ

Tierra

VCC = 5 V

E

B

C

IE

IB

ICRB = 8 kΩ

Tierra

VCC = 5 V

E

B

C

IE

IB

IC

TierraTierra

VCC = 5 V

E

B

C

IE

IB

IC RC = 100 Ω

Page 39: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

39

(a) En la primera malla resulta: -9 V + IB RB + VBE = 0,

mAK

V

R

VVI

B

BECB 084,0

100

6,09=

Ω

−=

−=

(b) IC = βIB = 100·0,084 = 8,4 mA

(c) IE = IC + IB = 8,4 mA + 0,08 mA ≅ 8,48 mA

(d) En la segunda malla : -9 V + IC RC + VCE = 0;

Luego VCE = 9 – IC RC = 9 – 8,4 mA x 0,5 kΩ = 4,8 V

Como VCE + VEB + VBC = 0 : VCB = VCE + VEB = 4,8 – 0,6 = 4,2 V; luego VCB está

inversamente polarizado. Como VBE está directamente polarizado, el transistor está en mo-

do activo, tal y como se ha supuesto en la resolución.

4.2.4. Modos de funcionamiento de un transistor

Hasta ahora hemos tratado el transistor en "modo activo":

• unión E-B directamente polarizada, VEB > 0

• unión C-B inversamente polarizada, VCB < 0

Este modo es el general y exclusivamente utilizado en procesos electrónicos analó-

gicos. En éstos procesos se relacionan en forma continua las magnitudes VEB, IE, IB e IC.

Estas magnitudes están ligadas por funciones continuas que se corresponden con un con-

junto continuo de estados de trabajo del transistor como amplificador.

En procesos electrónicos digitales las variables solo pueden tomar dos valores que

corresponden a dos estados discretos (on y off, 0 y 1). A los de transistores se les obliga a

funcionar como conmutadores y a operar en otros modos distintos del activo. El cuadro de

la figura indica el signo de las polarizaciones D (directa, +), o I (inversa, -) en los cuatro

modos posibles.

PNP NPN MODO VEB VCB VBE VBC Activo +,D -,I +,D -,I Inverso -,I +,D -,I +,D Saturación +,D +,D +,D +,D Corte -,I -,I -,I -,I

VCB

VEB

Inverso Saturación

Corte Activo

VBC

VBE

Inverso Saturación

Corte Activo

Page 40: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

40

En la Figura 37 se recogen todos los modos de operación del transistor.

1. En el modo activo las diferencias de potenciales de las uniones E-B y C-B tienen pola-

rización directa e inversa respectivamente. Es el modo usual cuando se utiliza el tran-

sistor como amplificador analógico. Se comporta como una fuente de corriente constante

controlada por la intensidad de base (ganancia en corriente). Este parámetro lo suele pro-

porcionar el fabricante dándonos un máximo y un mínimo para una corriente de colector

dada (IC).

4. El modo inverso es antisimétrico del anterior, sin cambiar la estructura física y

geométrica del transistor se permutan las funciones del emisor y el colector. Este mo-

do suele carecer de interés.

5. En el modo saturación las dos uniones están polarizadas directamente. El

transistor se comporta como dos diodos en oposición que suman sus intensidades de

salida en la intensidad de la base. En este modo el transistor es utilizado para aplica-

ciones de conmutación (potencia, circuitos digitales, etc.) y lo podemos considerar

como un cortocircuito entre el colector y el emisor.

6. En el modo de corte ambas polarizaciones son inversas. Si se desprecia las corrientes

inversas de saturación (del orden del µA) son IE ≅ Ic ≅ IB ≅ 0. Se utiliza para aplicaciones

de conmutación.

Page 41: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

41

Figura 37 4.2.5. Configuraciones de un transistor

Independientemente de que un transistor sea un PNP o un NPN, es un dispositivo

de tres terminales E, B y C que se conectan a dos circuitos: de entrada por el que entra en

el transistor la señal que le excita y de salida por el que sale la señal que ha sido procesada

por el transistor.

Los dos circuitos, de entrada y de salida, tienen necesariamente un terminal común

(normalmente puesto a tierra), fig. 38.

Fig.38

El terminal común puede ser la base, el emisor o el colector. La figura 39 esquematiza las

tres configuraciones para un transistor PNP.

Fig. 39

De estas tres configuraciones la más utilizada es la de emisor común y por brevedad nos

limitaremos a ella estudiando un transistor como amplificador y como conmutador.

1 2 3

E

S

Entrada SalidaSeñal de entrada

RL∼

B

E

C

B

E

CB

E C

Base común Emisor común Colector común

Page 42: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

42

Ej.16. Realizar un esquema de tensiones e intensidades en la configuración emisor común

de un transistor NPN en el modo activo:

Cuando el transistor funcione en modo directo son:

VBE > 0 polarización directa

VCB > 0 polarización inversa

VBE + VEC + VCB = 0

VEC = - (VBE + VCB) < 0

IC + IB = IE

Fig. 40

Para un PNP se debe cambiar el sentido de tensiones e intensidades.

4.2.6. El transistor como amplificador

Como es sabido el transistor es un dispositivo capaz de transferir una intensidad

prácticamente constante, IC = αIE ≅ IE desde un circuito de pequeña resistencia emisor-

base, REB, resistencia de entrada, correspondiente a una unión PN directamente polarizada,

hacia otro circuito de gran resistencia base-colector, RBC, debida a una unión inversamente

polarizada. El valor de RBC disminuye al crecer IE de forma que IE lo regula independien-

temente del valor de RC. Como se verifica que es IC = αIE, la fuente energética VCC entrega

una potencia I2CRC= α2I2ERC, de forma que la corriente del emisor o de la base, controla la

salida de energía de la fuente VCC.

De aquí se sigue que el nombre de transistor proviene de las palabras inglesas trans-

fer resistor, es decir, transferencia de resistencia, fig. 42.

B

C

E E

VBE

VCE

IE

+

-

+

-

IB

IC

REB

Transistor

RBC

RC

VCC

IE

IC

RBC >> REB

RBC >> RC RBC = f(IE)

Page 43: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

43

Fig. 42

La mayor parte de los equipos electrónicos necesitan de circuitos que recibiendo

pequeñas señales eléctricas en su entrada resultan reproducidos a mayor escala a la salida.

A estos circuitos se les llama amplificadores. La figura 43.a representa un esquema de un

amplificador ideal, sin distorsión, en él se incrementa la amplitud de la señal sin alterar su

frecuencia.

.

a) b)

Fig. 43

Un elemento básico de los amplificadores es el transistor. El análisis de un amplifi-

cador mediante su asimilación a un cuadripolo (red de dos puertas), resulta de interés ya

que permite caracterizarlo mediante una serie de parámetros relativamente simples que nos

proporciona información sobre su comportamiento, Fig. 44.

Figura 44 De esta forma podemos definir los siguientes parámetros:

1. Ganancia de tensión (normalmente en decibelios): Av = Vo / Vi 2. Impedancia de entrada (ohmios): Zi = Vi / Ii 3. Impedancia de salida (ohmios): Zo = Vo / Io (para Vg = 0) 4. Ganancia de corriente (normalmente en decibelios): Ai = Io / Ii 5. Ganancia de potencia (normalmente en decibelios): Ap = Po / Pi

Un amplificador será tanto mejor cuanto mayor sea su ganancia de tensión y menor sea su impedancia de entrada y salida.

Amplificador

Entrada Salida

VCC

-VCC

V2V1

-VCC

-V2-V1

tt

Page 44: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

44

En cuanto a la frecuencia, los amplificadores dependen de ésta, de forma que lo que es válido para un margen de frecuencias no tiene porqué serlo necesariamente para otro. De todas formas, en todo amplificador existe un margen de frecuencias en el que la ganancia permanece prácticamente constante (banda de paso del amplificador), Fig. 45 El margen dinámico de un amplificador es la mayor variación simétrica de la señal que es capaz de presentar sin distorsión a la salida; normalmente expresado en voltios de pico (Vp) o voltios pico-pico (Vpp).

Fig. 45

Existe una gran variedad de clases de amplificadores, dependiendo del tipo de señal a am-

plificar. Así podemos encontrar amplificadores de corriente o de tensión, de baja o alta

potencia, de baja o alta frecuencia, etc., pero todos tienen en común una función de ganan-

cia, A, ya sea de tensión, corriente, potencia, etc., definida como:

entradadeseñalamplitud

salidadeseñalamplitudA =

Hay que decir que la ganancia en potencia de un amplificador es compatible con el prin-

cipio de conservación de la energía, porque no es el transistor el dispositivo que aporta

energía, sino la fuente de alimentación -batería- que lo polariza. Como máximo la poten-

cia de la señal de salida estará limitada por la potencia de alimentación; como se muestra

en el esquema de la figura 43.

La amplificación cuando se cuantifica en decibelios, por ejemplo para la potencia, viene

dada por la expresión:

entradadepotencia

salidadepotencialog10db ⋅=

El circuito más simple de un amplificador con un transistor, se muestra en la figura 46:

Como se observa, una pequeña señal de tensión ve (t) se adiciona a la tensión de ba-

tería VBB que alimenta el circuito de polarización en la base. La corriente que recorre RB es

la superposición de la corriente IB de la batería, VBB más la corriente variable ib que genera

Page 45: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

45

la pequeña señal a amplificar ve (t). El haz de curvas de un transistor, IC = f (VC), tomando

como parámetro IB se denomina característica de salida del transistor.

Ya que ve (t) puede ser positiva o negativa, al superponerse a VBB, debemos estar

seguros de que VBB sea suficientemente grande como para que el transistor funcione en

modo activo, esto es, que esté polarizada directamente la unión emisor-base. Para ello, se

determina el punto de operación del circuito sin señal externa (NPN), figura 46:

Fig. 46

Determinar el punto de operación Q es elegir los valores de RB y RC para que el

transistor funcione en este punto en modo activo. Se verifica que: VCC = ICRC +VCE . Por

tanto Q es la intersección de la característica de salida IB y la recta de carga de RC:

1/

=+CC

CE

CCC

C

V

V

RV

I.Usualmente Q se toma en el punto medio de la región lineal de la ca-

racterística.

La señal ve (t) genera cambios en las corrientes de base y consiguientemente varia-

ciones ic (t) y vCE (t) en IC y VCE. El punto de trabajo en cada instante Q(t) =(IB + iB, IC +

iC, VCE + vCE) oscila alrededor del punto de operación (IB, IC ,VCE). En el ejemplo de la fig.

18.b son: RC = 0,2 MΩ, IB = 6 µA, VCE = 5 V, IC = 31 mA, y la amplitud oscilaciones de iB

del orden de 2 µA que generan vibraciones de amplitud 10 mA en la corriente de colector.

RB

RC = 0,2 M Ω

C

E

B

VBB

Ve(t)

10 V = V CC > 0

∼ VS(t)

IB

2

4

6

IB = 10 µA

IC (mA)

VCE (V)10

50

Q

10

20

30

40 8

5a) b)

Page 46: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

46

4.2.7. Cálculo de la ganancia en tensión del amplificador

Consideramos un transistor PNP conectado en emisor común, polarizado en modo

activo, VEB > 0 y VCB < 0, fig. 47.

Fig. 47

Sean:

rBE la resistencia de la unión emisor-base

RL, la resistencia de carga.

Vcc, la tensión de alimentación

VBB la batería de polarización de emisor-base

ve y vs las tensiones de entrada y salida respectivamente.

Sean iB e ic los incrementos de las corrientes de base IB y de colector IC. Estas co-

rrientes aunque son constantes elegidas para que funcione el transistor en su región lineal,

no intervienen en el cálculo de la ganancia en tensión.

Se verifica:

BEB

eB RR

vi

+=

eBEB

BC vRR

ii+β

=β=

eBEB

CCCS v

RR

RRiV

+β==

La ganancia en tensión, BEB

C

e

SV RR

R

v

vA

+β==

Así, si son β = 100, RBE = 0,5 KΩ, RC = 10 KΩ y RB = 5 KΩ, es:

RBC

E

B

VBB VCC

RC

ve

vS

RBC

E

B

VBB VCC

RC

ve

vS

Page 47: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

47

1815,05

10100 =

Ω+

Ω=

K

KAV

Prácticamente como r´=rBE y β no son totalmente constantes, ni bien determinadas,

es más conveniente recurrir a métodos gráficos.

Ej. 17: El circuito de la figura 48 esquematiza un transistor NPN de β = 20 y REB = 15 Ω

(que suponemos constante). Una señal vs = ve = 3·senωt se aplica al circuito de en-

trada. Calcular la tensión vs de salida y la ganancia Av.

Fig. 48

R = 485 Ω RC = 20 KΩ

952,021

20

1==

+=

ββα

mA6)15485(

V3

RR

vi

EB

eE =

Ω+=

+=

mAmAii EC 712,5952,06 =⋅== α

2,1141020712,5 3 =Ω⋅⋅== mARiv CCS V

vS = 114·senωt 383

114

v

vA

e

Sv ===

RIB

VBB VCC

RC

ve(t)

IE IC

vS(t)

Page 48: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

48

Ej. 18: Hallar el punto de funcionamiento Q y el factor de amplificación de tensión en el

circuito de la figura 49:

Fig. 49

VBB = 2 V, VBE = 0,6 V, VCC = 15 V, RB = 20 KΩ, RC = 2,5 KΩ, RBE ~ 0, β = 60

AI B µ701020

6,023

=⋅

−= mAAII BC 2,47060 =⋅=⋅= µβ

VCE =VCC – ICRC = 15 – 2,5·103 Ω·4’2·10-3 A = 4,5 V

Q = (VCE , IC) = (4,5 V , 4,2 mA)

5,7601020

105,23

3

=⋅⋅⋅

=+

= βB

C

VRR

RA

Ej. 19: Las figuras 50 a, b y c representan un esquema de un circuito, las características

de entrada IB = f(VBE), parámetro VCE y de salida IC =f(VCE), parámetro IB del tran-

sistor tipo NPN conectado en forma de emisor común.

a) b) c)

Fig. 50

Determinar:

1) La intensidad del colector, si son VBE = 0.8 V y VCC = 15 V.

2) Las regiones de saturación, activa y de corte

R. ACTIVA

Región de saturación

Región de corte

RB

VBB VCC

RC

IE

ICIB

E

BC

EB

C

RC = 3 KΩ

VCC = 15 V

vS

Page 49: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

49

1º) En la característica de entrada se observa que si es, VBE = 0,8 V para VCE = 10

V es IB = 17,5 µA

De la característica de salida se obtiene: IC = f(VCE, IB) = f(5 V, 17,5 µA) = 2,7

mA.

También podríamos haber hecho:

15 V = ICRC + VCE 115

V

R/15

I CE

C

C =+ ; RC = 3 KΩ : 1V15

V

mA5

I CEC =+⋅

que representa la recta de carga dibujada, de coordenadas (15 V, 5 mA). Esta

recta, para VCE = 5 V, tiene como IC = 2,7 mA, en las características de salida.

2º) Las regiones rayadas:

• de corte entre Ib = 0 y el eje VCE ; VEB < 0’5 : IB ≅ 0, IC = 0, vs = VCC

• de saturación entre el eje Ic y la envolvente al haz de características de

salida.

VEB ≈ 1 V; IB > 40 µA, IC > βIB; VCC ≅ ICRC; VCE ≅ 0, vs ≅ 0

Ej. 20: En la figura 51 a se esquematiza un BJT, (NPN) conectado como emisor común.

Sus curvas características (IC = f(VCE), parámetro Ib) se indican en la figura 23 b.

Fig. 51

RC = 50Ω , RB = 9.5KΩ y REB = 500Ω.

Determinar: El punto de reposo, las variaciones de VBE y las ganancias de tensión

y de intensidad para una señal de entrada oscilante de Vpp = 2 V.

RB RC

C

EB VSVe

VCC = 30 V

IB

IC

IE

6

5

4

3

2

1 mA = IB

a) b)

Page 50: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

50

ve = 0: mA3)5009500(

V30

RR

VI

EBB

CCb =

Ω+=

+=

VCC = ICRC + VCE

V

V

A

I

V

V

RV

I CEC

CC

CE

CCC

C

306,0/1 +=+=

Las variables IC y VCE verifican una relación lineal, "recta de carga" que pasa por

los puntos:

O1 = (30 V, 0) y O2=(0 V, 6 A)

La intersección del haz de características: IC = f(VCE, IB= 3 mA) y la recta de carga

es el punto, Q = (15 V , 0’3 A), de reposo o de operación.

Calculemos los límites entre los que varía VEB durante la excitación de entrada Vs.

En Q: VEB = IB·RBE = 3·10-3·500 = 1,5 V; Vpp/2 = 1 V

Durante la excitación:

V´EB=1,5 + 1 = 2,5: I´b = 500

5,2= 5 mA

V´´EB=1’5 - 1 = 0’5: I´´b = 500

5,0= 1 mA

El punto Q oscila entre los puntos Q1 y Q2:

Q1 = (0,42 A ,8 V), Q2 = (0,17 A , 22 V)

7)1(1

822

v

vA

e

Sv =

−−−

=∆∆

=

6210)15(

17,042,03

=−

−=

∆∆

== −B

C

iI

IA β

Page 51: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

51

4.2.8. El transistor como conmutador

La lógica algebraica de Boole utiliza variables, proposiciones o conjuntos, que solo

pueden tomar dos valores: verdadero o falso, o sus equivalentes (on-off, 1-0).

La electrónica digital descompone, o compone, la magnitud de una señal en impul-

sos de tensión de niveles 1 ó 0 que se enlazan mediante un código, análogamente a como

se hace en el sistema de numeración digital.

Entre las variables se establecen tres operaciones básicas:

Operación Significado Símbolo del operador (puertas)

Unión, Disyunción

Intersección, Conjunción

Negación

p ∪ q p o q p OR q

p ∩ q p y q p AND q

p nop NOT p

Con un transistor se puede realizar la operación NOT. En este caso se dice que el

transistor trabaja como un conmutador o un inversor, Fig. 52.

Fig. 52

Vimos que un transistor trabajando como amplificador puede adoptar un conjunto

continuo de estados de polarización, en régimen lineal y modo activo, cada uno de ellos

situado sobre la línea de carga para cada IB.

Como conmutador el transistor solo adopta dos estados correspondientes a los mo-

dos de "saturación" y de "bloqueo o corte". Para lograr esto debemos proceder así:

(a) Modo de corte: el transistor opera como un interruptor abierto, esto es, no conduce o

está en estado de OFF. Para ello se polarizan inversamente las dos uniones, Fig. 53a. En

ese caso solo circulan las corrientes inversas de polarización. Por tanto IB = 0, de donde IC

≈ 0. Así VC > 0 y VE ≈ 0.

(b) Modo de saturación: Si las dos uniones se conectan en polarización directa. En este

caso las corrientes a través de las uniones son, IB > 0 y por tanto IC puede ser muy alta. Se

Inversor

1 0 0 1

ve vs

0 1 1 0

pq

pq

p

p + q

p x q

p

Page 52: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

52

dice que está saturada. El transistor funciona como interruptor cerrado, conduce la corrien-

te o está en estado de ON, Fig. 53b.

(a) (b)

Figura 53

Al tomar IB valores extremos, 0 o un valor muy alto, el punto de funcionamiento conmuta

entre Q1 y Q2, como se muestra en Fig. 54.

Al oscilar IB en este caso entre 0 y 45 µA, IC varía

entre 0,1 y 18 mA. VCE a su vez oscila entre 15 y

0,2.

Fig. 54

En términos de tensiones un ‘1’ lógico significa un valor de tensión a la entrada suficien-

temente alta como para poner el transistor en saturación, y por tanto, su salida será un ‘0’

lógico, cuya tensión suele variar en torno a 0,2 V: vs ≅ 0,2 V. El valor de tensión para el ‘1’

lógico dependerá del circuito. Así, en un circuito, será suficiente 0,5 V para poner el tran-

sistor en saturación y en otro caso será necesario más de 1 V.

Por otra parte, el ‘0’ lógico se corresponde con un valor de tensión tal que pone el

transistor en zona de corte. Por lo tanto, como el transistor no conduce, a la salida existirá

un ‘1’ lógico cuya tensión real se corresponde con la tensión de alimentación con lo que

estamos polarizando.

IB = 0

10

20

IB = 50 µA

IC (mA)

VCE (V)15

20Q2

0,2

40

30

Q10,1

IB = 0

10

20

IB = 50 µA

IC (mA)

VCE (V)15

20Q2

0,2

40

30

Q10,1

VC

P N P

Vo Vo’

E

B

C

P N P

Vo Vo’

E

B

C

VE

salida

entrada VC

P N P

Vo Vo’

E

B

C

P N P

Vo Vo’

E

B

C

VE

salida

entrada

P N P

Vo Vo’

E

B

C

P N P

Vo Vo’

E

B

C

VE

salida

entrada VC

P N P

Vo Vo

E

B

C

P N P

Vo Vo

E

B

C

VE

salida

entrada VC

P N P

Vo Vo

E

B

C

P N P

Vo Vo

E

B

C

VE

salida

entrada

P N P

Vo Vo

E

B

C

P N P

Vo Vo

E

B

C

VE

salida

entrada

Page 53: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

53

El ejemplo 21, muestra un ejemplo de cálculo de estos niveles de tensiones.

Ej.21: En el esquema del circuito de la figura 55, el parámetro β = 50.

Se aplica una tensión de VBE de 1V.

Determinar:

a) La tensión de salida si IC = 2 mA

b) Si se añade a VBE una señal procedente de una fuente de alterna, ¿cuál deber

ser la amplitud mínima de ésta para sacar al transistor del modo activo?

c) Como debería ser una señal para que el transistor fuera alternativamente de

corte a saturación. ¿Cómo sería la señal de salida en este caso?

Suponer que la unión base-emisor es ideal con tensión umbral, Vγ = 0’6 V (Vγ =

VBEactiva = VBEsat

Fig. 55

VCC = ICRC + VCE = ICRC + VS

a) 20 V = 5 KΩ ·2 mA + VS => VS = VCE = 20 – 10 = 10 V

b) Transistor en corte: VBE no está directamente polarizada, la tensión base-emisor

no es suficiente para polarizarlo. Admitimos que por simplicidad que la tensión umbral es

igual a Vγ = 0,6 V = VBE.

En este caso, la amplitud del generador, Vg debe ser tal que se verificará Fig. 56:

Fig. 56

RB = 10 K Ω

RC = 5 KΩ

C

EB

VBB = 1 VIE

IB = 0

IC = 0

VS

20 V

vB(t)

vs(t) = 20 V

RB = 10 K Ω

RC = 5 KΩ

C

EB

VBB = 1 VIE

IB

IC

VS

20 V

vB(t)

vs(t)

RB = 10 K Ω

RC = 5 KΩ

C

EB

VBB = 1 VIE

IB

IC

VS

20 V

vB(t)

vs(t)

Page 54: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

54

-VBB + Vg + VBE = 0 Condición límite

Vg = VBB – VBE = 1 – 0,6 = 0,4 V

Si Vg ≥ 0,4 V, VBE < 0,6 V corte

Habría que aplicar una tensión opuesta a VBB de 0,4 V en adelante.

Transistor en saturación: condición única de saturación VCE ≅ 0,2 V.

Cerramos el bucle, Fig. 57 a

Fig. 57 a Fig. 57 b

-VCC + ICRC + 0,2 = 0

mAR

VI

C

CC

C 96,32,0

=−

=

En el límite de activa-saturación, L, Fig. 57 b se sigue cumpliendo que IC = βIB,

luego mAmAI

I C

satB 0792,050

96,3.lim

===β

-VBB + Vg + IBlim. sat · RB + VBEsat = 0

-1 + Vg + 0,0792 mA·10 KΩ + 0,6 = 0

Vg = -0,39 V

Habría pues que aplicar una tensión opuesta a la señalada, mayor o igual de 0,39 V.

La señal Vg debería ser cuadrada, según se esquematiza en la Fig. 58 a.

IC

VCE

L

IB

0'2 V

RB = 10 K Ω

RC = 5 KΩ

C

EB

VBB = 1 VIE

IB >>>

IC = 0

VS

20 V

vB(t)

vs(t) = 0 V

Page 55: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

55

a) b)

Fig. 58

La señal de salida se esquematiza en la Fig. 58 b. Se observa que cuando Vg = -0,4 V, el

transistor no conduce y VS = VCC = 20 V.

Cuando el transistor está en saturación, Vg = 0,39 V, en ese caso VS = VCE = 0,2 V.

Por otra parte, el punto de trabajo, oscila en la recta de carga, de forma casi instan-

tánea, dependiendo de la velocidad de conmutación del generador, entre los puntos L y C,

Fig. 59

Fig. 59

IC

VCE

L

C

Vg

0'39

-0'4

corte

saturación

T 2T t

Entrada

VS

0'2

20

T 2T t

Salida

Page 56: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

56

4.2.9. Modelo de Ebers-Moll (*)

Las igualdades:

IC = α·IE IE = CI1

α

IC = β·IB IB = IE - IC

no son más que expresiones de muy buena aproximación en el modo directo VEB > 0 y

VCB < 0 para un PNP. Como IE y IC son del orden del mA en ellas se han despreciado las

corrientes inversas de saturación de orden del µA. Teniéndolas en cuenta se tiene:

)1e(III TCB V/VCOEFC −+α=

)1e(III TEB V/VEOCRE −+α=

Los nuevos coeficientes αF y αR, directo e inverso, en el modo directo son próxi-

mos a α y 1/α respectivamente.

Ebers-Moll probaron experimental y teóricamente que en un transistor están aco-

plados en mayor o menor medida los diodos emisor-base y base-colector en todos los mo-

dos. Por consiguiente, las corrientes IE e IC dependen linealmente de exponenciales en las

variables de VEB y VCB.

Tanto para los modos directo como inverso, se formulan las ecuaciones para IE e IC

en función de las variables VEB y VBC en el caso de un transistor bipolar tipo PNP:

)1e(a)1e(aI TCBTEB V/V12

V/V11E −+−=

)1e(a)1e(aI TCBTEB V/V22

V/V21C −+−=

Este modelo representa el transistor en los diferentes modos de operación. Así por

ejemplo, cuando trabaja en modo de corte, VEB < 0 y VCB < 0, el modelo se reduce a dos

corrientes inversas de saturación de las dos uniones, y IE e IC tienden a cero.

Los coeficientes de acoplo a11, a12 y a12= a21 son parámetros físicos específicas del

transistor dado.

Estas ecuaciones son utilizadas:

a) En los programas de cálculo de simulación de circuitos como el programa

SPICE (Simulation Program with Integrate Circuit Emphasis).

b) En la formulación de distintos circuitos equivalentes a transistores aptos para

distintas circunstancias (de frecuencia, de alto o bajo nivel de señal, etc.).

Page 57: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

57

5. TRANSISTORES MONOPOLARES

Los transistores bipolares tienen una impedancia de entrada baja, lo que representa

en muchos casos una gran dificultad. En los monopolares esto no ocurre, su impedancia de

entrada es alta, en especial en el MOS.

Anteriormente hemos visto que en los transistores bipolares una pequeña corriente de

base controla una corriente de colector muy superior. Los transistores de efecto de campo

son dispositivos de tres terminales en los que la corriente principal se controla mediante

una tensión. Las características principales son:

1. La potencia de control es nula, es decir, no se absorbe corriente por el terminal de control.

2. Una señal muy débil puede controlar el dispositivo.

3. La tensión de control se emplea para crear un campo eléctrico.

5.1. TRANSISTOR DE UNIÓN DE EFECTO DE CAMPO, JFET

En los transistores monopolares circula una sola clase de portadores mayoritarios a

lo largo de un canal n o p entre la fuente, S, y el drenador, D. Estos portadores móviles son

arrastrados por el campo eléctrico generado por la diferencia de potencial establecida entre

el drenador y la fuente VD = VDS. Un campo transversal electrostático a este flujo, creado

por la diferencia de potencial VGS, entre la puerta G y la fuente S, controla la magnitud de

este flujo y con ella la corriente de drenador, ID.

Un JFET de canal N se fabrica difundiendo una región de tipo P en un canal de tipo

N, tal y como se muestra en la Figura 1. A ambos lados del canal se conectan los termina-

les de fuente (S, Source) y drenador (D, Drain). El tercer terminal se denomina puerta (G,

Gate).

Page 58: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

58

Figura 1. Esquema del transistor JFET de canal N

Los símbolos de este tipo de dispositivos son:

Figura 2: Símbolos de los transistores JFET

Las explicaciones incluidas en este apartado se refieren fundamentalmente al transistor

NJFET, teniendo en cuenta que el principio de operación del PJFET es análogo.

PRINCIPIO DE OPERACION DEL NJFET

A continuación se explica cómo se controla la corriente en un JFET. Al igual que sucede

con los transistores BJT el JFET tiene tres regiones de operación:

• Región de corte

• Región lineal

• Región de saturación

Canal NCanal N

Page 59: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

59

Es preciso hacer notar que en este caso, la saturación alude a un fenómeno completamente

distinto al de los transistores BJT.

Región de corte

Centremos nuestra atención en la Figura 1. La zona de tipo P conectada a la puerta forma

un diodo con el canal, que es de tipo N. Como se recordará, cuando se forma una unión PN

aparecen en los bordes de la misma una zona de deplección en la que no hay portadores de

carga libres. La anchura de dicha zona depende de la polarización aplicada. Si esta es in-

versa, la zona se hace más ancha, proporcionalmente a la tensión aplicada. Aplicando una

tensión VGS negativa aumentamos la anchura de la zona de deplección, con lo que

disminuye la anchura del canal N de conducción.

Si el valor de VGS se hace lo suficientemente negativo, la región de agotamiento se exten-

derá completamente a través del canal, con lo que la resistencia del mismo se hará infinita

y se estabiliza el valor de ID (Figura 3). El potencial al que sucede este fenómeno se deno-

mina potencial de bloqueo (Pinch Voltage, VP). En este caso por mucho que se aumente

VDS, la corriente ID permanece constante.

Figura 3: Esquema del transistor JFET de canal N polarizado con la tensión de bloqueo

Por lo tanto, para valores más negativos que VP el transistor NJFET se encuentra polariza-

do en la región de corte, y la corriente de drenador resulta ser nula.

Región lineal

Si en la estructura de la Figura 1 se aplica una tensión VDS mayor que cero, aparecerá una

corriente circulando en el sentido del drenador a la fuente, corriente que llamaremos ID. El

Page 60: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

60

valor de dicha corriente estará limitado por la resistencia del canal N de conducción. En

este caso pueden distinguirse dos situaciones según sea VDS grande o pequeña en compara-

ción con VGS.

Valores pequeños del voltaje drenador-fuente

La Figura 4 presenta la situación que se obtiene cuando se polariza la unión GS con una

tensión negativa, mientras que se aplica una tensión entre D y S menor.

Figura 4: Esquema del transistor JFET de canal N polarizado con VGS < 0

Por el terminal de puerta (G) no circula más que la corriente de fuga del diodo GS, que en

una primera aproximación podemos considerar despreciable. La corriente ID presenta una

doble dependencia:

• La corriente ID es directamente proporcional al valor de VDS

• La anchura del canal es proporcional a la diferencia entre VGS y VP. Como ID está

limitada por la resistencia del canal, cuanto mayor sea VGS - VP, mayor será la an-

chura del canal, y mayor la corriente obtenida.

Los dos puntos anteriores se recogen en la siguiente expresión:

Por lo tanto, en la región lineal obtenemos una corriente directamente proporcional a VGS y

a VDS.

Page 61: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

61

Valores altos del voltaje drenador-fuente

Para valores de VDS comparables y superiores a VGS la situación cambia con respecto al

caso anterior: la resistencia del canal se convierte en no lineal, y el JFET pierde su compor-

tamiento óhmico. Veamos por qué sucede esto.

Cuando se aplica un voltaje VDS al canal de 5 voltios, por ejemplo, este se distribuye a lo

largo del canal, es decir, en las proximidades del terminal D la tensión será de 5 V, pero a

medio camino la corriente circulante habrá reducido su potencial a la mitad (2,5 V), y en el

terminal S el potencial será nulo. Por otra parte, si VGS es negativa (- 2 V, por ejemplo), la

tensión se distribuirá uniformemente a lo largo de la zona P, al no existir ninguna corriente

(Figura 5). (NOTA: se desprecia la caída de tensión en las zonas situadas por debajo de los

contactos). Si V(x) es el potencial debido a la caída de tensión entre D y S resulta si S está

unido a tierra que: 0 = V(0) < V(x) < V(L) = VDS siendo L la longitud del canal.

Figura 5: Esquema del transistor JFET de canal N polarizado con VGS = -2 V y VDS = 5 V

En las proximidades del terminal S la tensión inversa aplicada es de 2 V, que se correspon-

de con la VGS = -2 V. Sin embargo, conforme nos acercamos a D esta tensión aumenta: en

la mitad del canal es de 4,5 V, y en D alcanza 7 V. La polarización inversa aplicada al

canal no es constante, con lo que la anchura de la zona de deplección tampoco lo será

(Figura 6). Cuando VDS es pequeña, esta diferencia de anchuras no afecta a la conducción

en el canal, pero cuando aumenta, la variación de la sección de conducción hace que la

Page 62: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

62

corriente de drenador sea una función no lineal de VDS, y que disminuya con respecto a la

obtenida sin tener en cuenta este efecto.

Figura 6: Esquema del transistor JFET de canal N en la región de conducción no lineal

Región de saturación

Si VDS se incrementa más, se llegará a un punto donde el espesor del canal en el extremo

del drenador se acerque a cero. A partir de ese momento, la corriente se mantiene indepen-

diente de VDS, puesto que los incrementos de tensión provocan un mayor estrechamiento

del canal, con lo que la resistencia global aumenta (Figura 7).

Figura 7: Esquema del transistor JFET de canal N en la región de corriente constante

La región de saturación se da cuando se estrangula el canal en el drenador, lo que sucede

cuando la tensión puerta-drenador es más negativa que VP, es decir:

Page 63: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

63

VGD < VP => VGS - VDS < VP => VDS > VGS - VP

Antes de seguir adelante, comparemos las figuras Figura 3 y Figura 7. En el caso del blo-

queo, todo el canal resulta afectado por la zona de deplección, que es constante porque la

tensión VGS se aplica uniformemente a lo largo de la unión. En cambio, en la región de co-

rriente constante sólo parte del canal ha llegado al bloqueo (provocado por VDS, que varía a

lo largo del mismo), y es lo que permite la circulación de la corriente. Se demuestra que

cuando el canal está estrangulado en el extremo cercano al drenador pero no en el extremo

cercano a la fuente, la corriente ID ya no depende de VDS y la expresión de ID viene dada

por: 2

1

−=

P

GSDSSD

V

VII .

CURVAS CARACTERISTICAS

Son dos las curvas que se manejan habitualmente para caracterizar los transistores JFET.

En primer lugar, en la representación de ID frente a VGS, para una VDS dada, se aprecia cla-

ramente el paso de la región de corte a la de saturación (Figura 8). En la práctica sólo se

opera en el segundo cuadrante de la gráfica, puesto que el primero la VGS positiva hace

crecer rápidamente IG.

Figura 8: Característica VGS - ID del transistor NJFET

En la característica VDS - ID del transistor NJFET se observa la diferencia entre las regiones

lineal y de saturación (Figura 9). En la región lineal, para una determinada VGS, la corriente

Page 64: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

64

crece proporcionalmente a la tensión VDS. Sin embargo, este crecimiento se atenúa hasta

llegar a ser nulo: se alcanza el valor de saturación, en donde ID sólo depende de VGS.

Figura 9: Característica VDS - ID del transistor NJFET

Nótese que, según esta gráfica, la región de saturación del JFET se identifica con la región

activa normal de los transistores bipolares. Mientras que en los BJT la corriente de colector

sólo depende de la de base, aquí la magnitud de control es la tensión VGS. Por el contrario,

si la resistencia del JFET en la región lineal es muy pequeña puede encontrarse un cierto

paralelismo entre las regiones lineal de JFET y de saturación del BJT.

PARAMETROS DEL JFET

Se presenta a continuación algunas de las características de los transistores JFET que ofre-

cen los fabricantes en las hojas de datos:

• IDSS: Es la corriente de drenador cuando el transistor JFET se encuentra en configura-ción de fuente común y se cortocircuita la puerta y la fuente (VGS=0). En la práctica marca la máxima intensidad que puede circular por el transistor. Conviene tener en cuenta que los transistores JFET presentan amplias dispersiones en este valor.

• VP (Pinch-Off Voltage): es la tensión de estrangulamiento del canal. Al igual que IDSS, presenta fuertes dispersiones en su valor. Cuando se aplica VP, se estabiliza ID.

• RDS(ON): Es el inverso de la pendiente de la curva ID/VDS en la zona lineal. Este valor se mantiene constante hasta valores de VGD cercanos a la tensión de estrangulamiento.

• BVDS (Drain-Source Breakdown Voltage): es la tensión de ruptura entre fuente y dre-nador. Tensiones más altas que BVDS provocan un fuerte incremento de ID.

3 V

Pinch-off

3 V3 V

Pinch-off

Page 65: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

65

• BVGS (Gate-Source Breakdown Voltage): es la tensión de ruptura de la unión entre la puerta y la fuente, que se encuentra polarizada en inversa. Valores mayores de BVGS provocan una conducción por avalancha de la unión.

______________________________________________________________________

Ej. 22 El JFET del circuito esquematizado tiene por potencial de estrangulamiento Vp

= -5 V y la corriente de saturación para VG = 0, es IDSS = 5 mA. Calcular la corriente

de drenador y la diferencia de potencial entre drenador y puerta.

______________________________________________________________________

mAV

VII

P

GS

DSSDSat 8,15

2151

22

=

−−

−=

−=

VRIVV CDSCCDS 9,35,48,112 =⋅−=−=

_________________________________________________________________________

Ej. 23 En el JFET canal-p del circuito esquematizado, determinar la

corriente de drenador y la tensión de puerta para que la tensión VDS

sea –12 V, sabiendo que la corriente IDSS = -8 mA y Vp = 4 V.

• -4 mA; 1,2 V.

________________________________________________________________________

mAIKI

RIVV

DD

DDCCDS

422012 −=⇒Ω⋅−−=−

−=

2

1

−=

P

GS

DSSDV

VII De aquí que sustituyendo resulte:

41

8

4 GSV−=

−−

Luego VVGS 2,1=

RC = 4,5 K Ω

VCC = 12 V

ID

-2 V

G

D

S

VCC = -20 V

RD = 2 KΩID

DG

S

Page 66: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

66

5.2 TRANSISTOR MOSFET

Las prestaciones del transistor MOSFET son similares a las del JFET, aunque su principio

de operación y su estructura interna son diferentes. Existen cuatro tipos de transistores

MOS:

• Enriquecimiento de canal N

• Enriquecimiento de canal P

• Empobrecimiento de canal N

• Empobrecimiento de canal P

Los símbolos son:

Figura 10: Transistores MOSFET

Page 67: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

67

La característica constructiva común a todos los tipos de transistor MOS es que el terminal

de puerta (G) está formado por una estructura de tipo Metal/Óxido/Semiconductor. El óxi-

do es aislante, con lo que la corriente de puerta es prácticamente nula, mucho menor que en

los JFET. Por esa razón en el símbolo de la Figura 10 la puerta está aislada de los otros

electrodos y los MOS al ser la corriente de puerta casi nula se emplean para tratar señales

de muy baja potencia.

PRINCIPIO DE OPERACION

De entre todos los tipos de transistores MOS existentes se va a analizar el principio de fun-

cionamiento de dos de ellos: los NMOS de enriquecimiento y empobrecimiento.

5.2.1 NMOS de enriquecimiento

En la Figura 11 se presenta el esquema de un MOS de canal N de enriquecimiento. Las dos

regiones N están fuertemente dopadas.

Figura 11: Esquema del transistor NMOS de enriquecimiento

Supongamos que se aplica una tensión VDS mayor que cero mientras que VGS se mantiene

en cero. Al aplicar una tensión positiva a la zona N del drenador, el diodo que forma éste

con el sustrato P se polarizará en inversa, con lo que no se permitirá el paso de corriente: el

MOS estará en corte.

Supongamos que aplicamos un potencial VGS positivo pero pequeño, mientras mantenemos

la VDS positiva también. La capa de aislante de la puerta es muy delgada, tanto que permite

al potencial positivo aplicado repeler a los huecos y se produce en una primera fase una

zona de vaciamiento y si se sigue aumentando el potencial se atraen a los electrones (mino-

Page 68: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

68

ritarios del sustrato de tipo P presentes en todo el semiconductor debido a la rotura espon-

tánea de enlaces). A mayor potencial aplicado, mayor número de electrones será atraído, y

mayor número de huecos repelido. La consecuencia de este movimiento de cargas es que

debajo del terminal G se crea un canal negativo, de tipo N, que pone en contacto el drena-

dor con la fuente. La fuente constituye una isla de donde fluyen los portadores que forman

el canal cuando se establece la corriente y es el terminal negativo en los NMOS. Recapitu-

lando, por encima de un valor positivo VGS = VTH (Tensión umbral, Threshold Voltage) se

posibilita la circulación de corriente ID (Figura 12). Nos encontramos ante una región de

conducción lineal.

Figura 12: Esquema del transistor NMOS de enriquecimiento en conducción

Si el valor de VDS aumenta, la tensión efectiva sobre el canal en las proximidades del dre-

nador (VGS - VDS) va disminuyendo, con lo que el canal se estrecha en dicha zona, y se

pierde la linealidad en la relación ID - VDS. Finalmente se llega a una situación de satura-

ción similar a la que se obtiene en el caso del JFET.

Proceso de acumulación: si la polarización que se aplica a la puerta G fuese negativa res-

pecto al sustrato tipo p, se produce una acumulación de carga positiva (huecos, mayorita-

rios en el sustrato p) debida a la creación de un campo eléctrico entre ambas partes del ais-

lante que tiende a aproximar los huecos hacia la zona inmediatamente debajo del aislante.

Page 69: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

69

5.2.2 NMOS de empobrecimiento

En la Figura 13 se presenta el esquema de un MOS de canal N de empobrecimiento.

Figura 13: Esquema del transistor NMOS de empobrecimiento

En este caso el canal ya está creado. Por lo tanto, si con VGS = 0 aplicamos una tensión VDS

aparecerá una corriente de drenador ID. Para que el transistor pase al estado de corte será

necesario aplicar una tensión VGS menor que cero, que expulse a los electrones del canal.

Figura 14: Esquema del transistor NMOS de empobrecimiento en corte

También en este caso, la aplicación de una VDS mucho mayor que VGS provoca una situa-

ción de corriente independiente de VDS.

Page 70: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

70

CURVAS CARACTERISTICAS

Con los transistores MOS se manejan dos tipos de gráficas: la característica VGS - ID, con

VDS constante, y la VDS - ID con VGS constante.

5.2.3 Transistor NMOS de enriquecimiento

Figura 15: Característica VGS - ID del transistor NMOS de enriquecimiento

En la Figura 16 se pone de manifiesto cómo la intensidad ID aumenta bruscamente cuando

se supera la tensión umbral VTH (Threshold Voltage) y se crea el canal. Es un componente

idóneo para conmutación, puesto que pasa de un estado de corte a uno de conducción a

partir de un valor de la señal de control. En los dispositivos con el terminal de puerta de

aluminio y el aislante de óxido de silicio, la tensión umbral está en torno a los cinco vol-

tios.

Page 71: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

71

Figura 16: Característica VDS - ID del transistor NMOS de enriquecimiento

La característica VDS - ID del transistor NMOS de enriquecimiento es muy similar a la del

JFET, pero los valores de VGS cambian: en este caso la conducción se da para voltajes posi-

tivos por encima del umbral.

5.2.4 Transistor NMOS de empobrecimiento

Figura 17: Característica VGS - ID del transistor NMOS de enriquecimiento

El NMOS de empobrecimiento puede funcionar también como transistor de enriquecimien-

to. Si la tensión VGS se hace positiva se atraerán electrones al canal. Además, a diferencia

de los JFET, la impedancia de entrada continua siendo muy elevada.

Figura 19: Característica VDS - ID del transistor NMOS de empobrecimiento

Page 72: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

72

PARAMETROS

Los parámetros comerciales más importantes del transistor MOS son análogos a los de los JFET.

APLICACIONES DE LOS TRANSISTORES DE EFECTO DE CAMPO

Las aplicaciones generales de todos los FET son:

ELECTRONICA ANALOGICA

Para estas aplicaciones de emplean transistores preparados para conducir grandes corrien-

tes y soportar elevadas tensiones en estado de corte.

• Resistencias variables de valor gobernable por tensión (variando la anchura del ca-

nal).

• Amplificadores de tensión, especialmente en la amplificación inicial de señales de

muy baja potencia.

• Control de potencia eléctrica entregada a una carga.

En el caso de la amplificación los circuitos se diseñan para que el punto de operación DC

del MOS se encuentre en la región de saturación. De este modo se logra una corriente de

drenador dependiente sólo de la tensión VGS.

ELECTRONICA DIGITAL

Los MOS se emplean a menudo en electrónica digital, debido a la capacidad de trabajar

entre dos estados diferenciados (corte y conducción) y a su bajo consumo de potencia de

control. Para esta aplicación se emplean dispositivos de muy baja resistencia, de modo que

idealmente pueda considerarse que:

• La caída de tensión en conducción es muy pequeña.

• La transición entre el estado de corte y el de conducción es instantánea.

Page 73: TEMA 4. DISPOSITIVOS SEMICONDUCTORES 1. Introducción. 2 ...

TEMA 4. DISPOSITIVOS SEMICONDUCTORES

73

______________________________________________________________________

Ej.24 Las constantes específicas de un MOS de canal-n son: Vinv = -4 V y la corriente

de saturación a VG = 0 es IDSS = 6 mA. Con buena

aproximación la corriente de drenador viene dada por

la expresión IDsat =

2

inv

GSDSS V

V1I

− . Calcúlese en el

esquema indicado las tensiones drenador-fuente, VDS, y

puerta-fuente, VGS, para que la corriente de saturación

sea IDsat = 4 mA.

_________________________________________________________________________

VVVKmAVRIV DSDSDSDDSatCC 72415 =⇒+Ω⋅=⇒+=

VVV

GS

GS 73,04

1642

−=⇒

−−=

VCC = 15 V

RD = 2 KΩ IDsat = 4 mA

+

-VDS

VGS+

-