TechRef Synchronous Machine

download TechRef Synchronous Machine

of 21

Transcript of TechRef Synchronous Machine

  • 7/25/2019 TechRef Synchronous Machine

    1/21

    D I g S I L E N T T e c h n i c a lD o c u m e n t a t i o n

    Synchronous Generator

  • 7/25/2019 TechRef Synchronous Machine

    2/21

    S y n c h r o n o u s G e n e r a t o r - 2 -

    DIgSILENT GmbH

    Heinrich-Hertz-Strasse 9

    D-72810 Gomaringen

    Tel.: +49 7072 9168 - 0

    Fax: +49 7072 9168- 88

    http://www.digsilent.de

    e-mail: [email protected]

    Synchronous Generator

    Published by

    DIgSILENT GmbH, Germany

    Copyright 2010. All rights

    reserved. Unauthorised copying

    or publishing of this or any part

    of this document is prohibited.

    TechRef E lmSym V6

    Last modified: 24.06.2010

    Build 331

  • 7/25/2019 TechRef Synchronous Machine

    3/21

    T a b l e o f C o n t e n t s

    S y n c h r o n o u s G e n e r a t o r - 3 -

    Table of Contents

    1 General Description ..................................................... .......................................................... ............................... 4

    1.1 Mathematical Description ............................................................................................................................................... 5

    1.1.1 Equations with stator and rotor flux state variables in stator-side p.u.-system ..............................................................5

    1.1.2 Mechanics ................................................................................................................................................................ 7

    1.1.3 Equations with stator currents and rotor flux variables as used in the PowerFactory model ...........................................7

    1.1.4 Saturation ................................................................................................................................................................ 9

    1.1.5 Simplifications for RMS-Simulation ........................................................................................................................... 10

    1.2 Input Parameter Conversion ......................................................................................................................................... 101.2.1 Reactances, Resistances and Time Constants ........................................................................................................... 10

    1.2.2 Saturation .............................................................................................................................................................. 13

    1.3 Input-, Output and State-Variables of the PowerFactoryModel ....................................................................................... 14

    1.4 Rotor Angle Definition .................................................................................................................................................. 15

    2 Input/Output Definition of Dynamic Models .......................................... ......................................................... ... 17

    2.1 Stability Model (RMS) ................................................................................................................................................... 17

    2.2 EMT-Model .................................................................................................................................................................. 19

    3 References ................................................... ......................................................... .............................................. 21

  • 7/25/2019 TechRef Synchronous Machine

    4/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 4 -

    1General Description

    The correct modelling of synchronous generators is a very important issue in all kinds of studies of electrical

    power systems. PowerFactory provides highly accurate models which can be used for the whole range of different

    analyses, starting simplified models for load-flow and short-circuit calculations up to very complex models for

    transient simulations.

    Basically there are two different representations of the synchronous generator:

    The round rotor generator or turbo generator

    The salient rotor generator

    The generators with a round rotor are used when the shaft is rotating with or close to synchronous speed of

    1500 min-1to 3000 min-1. These types are normally used in thermal or nuclear power plants. Slow rotating

    synchronous generators with speed of 60 min-1to 750 min-1, which are for example applied in diesel or hydro

    power plants, are realized with salient rotors.

    A schematic diagram of both types of machines is shown in Figure 1 and Figure 2. These figures are also

    indicating the orientation d- and q-axis according to the theory of the synchronous machine developed in the next

    section.

    Figure 1: Schematic diagram of a three-phase round rotor synchronous machine

  • 7/25/2019 TechRef Synchronous Machine

    5/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 5 -

    Figure 2: Schematic diagram of a three-phase salient rotor synchronous machine

    In the figures the three stator windings are shown as well as the rotor windings. The winding e is the excitation

    winding fed by the excitation voltage vesupplied by the excitation system. Then one damper winding can be

    defined for the direct (d-) axis and up to two damper windings can be included into the quadrature (q-) axes. All

    these windings are shown in Figure 2. The rotor is rotating with its speed . Also the rotor angle is the angle

    between the d-axis and the stator field.

    1.1Mathematical Description

    To describe the generator equations it is common practise not to use instantaneous values leading to a three-

    dimensional problem in the abc coordinate system, but to transform all value into a rotating reference frame. This

    transformation is called dq0or Parks Transformation [1].

    1.1.1Equations with stator and rotor flux state variables in stator-side p.u.-system

    Stator voltage equations (the stator current are shown in generator orientation):

    dt

    diru

    ndt

    diru

    ndt

    diru

    n

    s

    d

    q

    n

    qsq

    qd

    n

    dsd

    0

    00

    1

    1

    1

    +=

    ++=

    +=

    (1)

  • 7/25/2019 TechRef Synchronous Machine

    6/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 6 -

    Rotor voltage equations, d-axis:

    dt

    dir

    dtdiru

    n

    DDD

    n

    eeee

    +=

    +=

    0

    (2)

    Rotor voltage equations, q-axis, round rotor:

    dtdir

    dt

    dir

    n

    Q

    QQ

    n

    xxx

    +=

    +=

    0

    0

    (3)

    Rotor voltage equations, q-axis, salient pole:

    dt

    dir

    n

    Q

    QQ

    +=0

    (4)

    The Flux linkages are calculated as follows:

    d-axis:

    ( )

    ( ) ( )

    ( ) ( ) DlDrlmderlmddmdD

    Drlmdelerlmddmde

    Dmdemddmdld

    ixxxixxix

    ixxixxxix

    ixixixx

    +++++=

    +++++=

    +++=

    (5)

    q-axis, full-rotor:

    ( ) ( )( ) ( )

    QlQrlmqxrlmqqmqQ

    Qrlmqxlxrlmqqmqx

    Qmqxmqqmqlq

    ixxxixxix

    ixxixxxix

    ixixixx

    +++++=

    +++++=

    +++=

    (6)

    q-axis, salient rotor:

    ( )QlQrlmqqmqQ

    Qmqqmqlq

    ixxxix

    ixixx

    +++=

    ++=

    (7)

  • 7/25/2019 TechRef Synchronous Machine

    7/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 7 -

    Electrical torque te in [p.u.]:

    dqqde iit = (8)

    1.1.2Mechanics

    The accelerating torque is the difference between the input torque (mechanical torque) tmand the out put torque

    (electromechanic torque) te of the generator. The inertia of the generator-shaft system is then accelerated or

    decelerated, when an unbalance in the torques occurs.

    The equations of motion of the generator can then be expressed as

    ndt

    d

    ttdtdnT

    dtdn

    PpJ

    n

    ema

    rz

    n

    =

    +==2

    2

    (9)

    The inertia of the generator and the turbine can then be expressed in a normalized per unit form as the inertia

    time constant H in [s], with

    rz Pp

    JH

    2

    2

    0

    2

    1 = (10)

    where pzis the number of pole pairs of the machine.

    The inertia time constant H can be given based on the rated apparent generator power, as shown in the equation

    above, or based on the rated active generator power. The mechanical starting time or acceleration time constant

    TAin [s] is then

    HTa =2 (11)

    Both H and TAcan be entered in PowerFactory based on Sror Pr.

    1.1.3

    Equations with stator currents and rotor flux variables as used in thePowerFactory model

    Subtransient Flux:

    QQxxq

    DDeed

    kk

    kk

    +=

    +=

    ''

    ''

    (12)

  • 7/25/2019 TechRef Synchronous Machine

    8/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 8 -

    with

    2

    2

    2

    2

    xq

    xxk

    xq

    xxk

    xd

    xxk

    xdxxk

    lxmq

    Q

    lQmq

    x

    lemdD

    lDmde

    =

    =

    =

    =

    (13)

    with

    ( )( )

    ( )( )lQlxrlmqlQlx

    lDlerlmdlDle

    xxxxxxxq

    xxxxxxxd

    +++=

    +++=

    2

    2 (14)

    Using:

    ''''

    ''''

    qqqq

    dddd

    ix

    ix

    +=

    += (15)

    and

    ''

    ''

    ''

    ''

    ''

    ''

    1

    1

    d

    q

    n

    q

    qd

    n

    d

    ndt

    du

    ndt

    du

    +=

    =

    (16)

    Stator equations with stator currents and subtransient voltages:

    dt

    dixiru

    uinxdt

    dixiru

    uinxdt

    dixiru

    n

    s

    qdd

    q

    n

    q

    qsq

    dqqd

    n

    ddsd

    0000

    ''''

    ''

    ''''

    ''

    +=

    +++=

    ++=

    (17)

  • 7/25/2019 TechRef Synchronous Machine

    9/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 9 -

    1.1.4Saturation

    So far saturation effects where not included in the description of the equivalent circuits. The exact representationof saturation is very complex, but normally not necessary to obtain good results from simulations. Therefore in

    most cases saturation is represented by the saturation of the mutual reactances xmdand xmqonly.

    Consideration of saturation of magnetizing reactance in d- and q-axis:

    0

    0

    mqsatqmq

    mdsatdmd

    xkx

    xkx

    =

    = (18)

    Saturation depending on magnitude of magnetizing flux:

    ( ) ( )22 qlqdldm ixix +++= (19)

    The saturation of the mutual reactance xmqin the q- axis can not be measured. Thus the characteristic is

    assumed to be similar to the one of the d-axis. For the round rotor machine the saturation is equal in d- and q-

    axis. In the salient rotor machine the characteristic is weighted by the ratio xq/xd.

    If gm A :

    ( )

    m

    gmg

    sat

    ABc

    2

    = (20)

    else:

    0=satc (21)

    The saturation coefficient ksatin d- and q-axis are calculated as follows:

    sat

    md

    mqsatq

    sat

    satd

    cx

    xk

    ck

    0

    01

    1

    1

    1

    +

    =

    +=

    (22)

    Saturated magnetizing reactances applied to all formulas (5),(6),(7) and (12),(13),(14). Saturation in subtransient

    reactances is not considered.

    The saturation of the leakage reactance is not included in the model. This saturation is a current saturation, i.e.

    high currents after short-circuits will lead to a saturation effect of the leakage reactance xl. Here it is common

    practice to use unsaturated values only.

  • 7/25/2019 TechRef Synchronous Machine

    10/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 0 -

    Although to neglect this type of saturation may lead to an underestimation of the short-circuit currents. Hence

    there is a way to model this effect explicitly. This saturation is an effect, which influences the SC current only in

    the first milliseconds, i.e. it can be assumed to be a subtransient effect.

    For the definition of the input parameter in the PowerFactory model please refer to section 1.2.2.

    1.1.5Simplifications for RMS-Simulation

    Stator voltage equations (see Eq.(17)):

    Neglecting stator flux transients:

    ''''

    ''''

    qddqsq

    dqqdsd

    uixiru

    uixiru

    ++=

    +=

    (23)

    with:

    ''''

    ''''

    dq

    qd

    nu

    nu

    =

    =

    (24)

    Assumption that magnetizing voltage is approx. equal to magnetizing flux (for saturation):

    ( ) ( )22dlqsqqldsdmm ixiruixiruu ++++= (25)

    1.2Input Parameter Conversion

    1.2.1Reactances, Resistances and Time Constants

    The set of input parameters is specified as follows:

    d-axis:

    '''''',,,,,, ddrllddd TTxxxxx

    q-axis, round rotor:

  • 7/25/2019 TechRef Synchronous Machine

    11/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 1 -

    '''''',,,,,, qqrllqqq TTxxxxx

    q-axis, salient pole:

    '''',,,, qrllqq Txxxx

    The internal model parameters are:

    d-axis:

    DelDlerlld rrxxxxx ,,,,,,''

    q-axis, round-rotor:

    QxlQlxrllq rrxxxxx ,,,,,,''

    q-axis, salient pole:

    QlQrllq rxxxx ,,,,''

    Auxiliary variables:

    ( )

    d

    d

    d

    d

    d

    ld

    rlld

    x

    x

    x

    xxx

    x

    x

    xxxx

    xxxx

    ''

    ''

    1

    2

    3

    2

    12

    1

    1

    =

    =

    =

    (26)

    '''

    3

    '''

    2

    ''

    '''

    '

    '1 1

    dd

    dd

    d

    d

    d

    d

    d

    d

    d

    d

    TTT

    TTT

    Tx

    x

    x

    xT

    x

    xT

    =

    +=

    ++=

    (27)

  • 7/25/2019 TechRef Synchronous Machine

    12/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 2 -

    33

    23

    3

    21

    2112

    TTxx

    xb

    xx

    TxTxa

    =

    =

    (28)

    baa

    T

    baa

    T

    lD

    le

    =

    +

    =

    42

    42

    2

    2

    (29)

    Calculation of internal model parameter:

    lDn

    lDD

    len

    lee

    le

    lelDlD

    lD

    lDlele

    T

    xr

    T

    xr

    x

    T

    xx

    TT

    TTx

    x

    T

    xx

    TT

    TTx

    =

    =

    +

    =

    +

    =

    321

    21

    321

    21

    (30)

    q-axis, round rotor machine:

    - analoguous to d-axis parameter

    q-axis, salient pole machine:

    ( )( )

    ''

    ''

    ''

    ''

    qn

    lQlq

    q

    q

    Q

    qq

    lqlqlQ

    T

    xxx

    x

    xr

    xx

    xxxxx

    +=

    =

    (31)

  • 7/25/2019 TechRef Synchronous Machine

    13/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 3 -

    1.2.2Saturation

    Figure 3 shows the definition of the saturation curve of the mutual reactance. The linear line represents the air-gap line indicating the excitation current required overcoming the reluctance of the air-gap. The degree of

    saturation is the deviation of the open loop characteristic from the air-gap line.

    Figure 3: Open loop saturation

    The characteristic is given by specifying the excitation current I1.0puand I1.2puneeded to obtain 1 p.u respectively

    1.2 p.u. of the rated generator voltage under no-load conditions. With these values the parameters sg1.0

    (=csat(1.0pu) ) and sg1.2(=csat(1.2pu) ) can be calculated.

    Calculation of internal coefficients based on

    12.1

    ).2.1(

    1).0.1(

    0

    2.1

    0

    0.1

    =

    =

    i

    upis

    iupis

    eg

    eg

    (32)

    For quadratic saturation function

    ( )20.1

    0.1

    2.1

    0.1

    2.1

    1

    2.11

    2.12.1

    g

    g

    g

    g

    g

    g

    g

    g

    A

    sB

    s

    s

    s

    s

    A

    =

    =

    (33)

  • 7/25/2019 TechRef Synchronous Machine

    14/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 4 -

    1.3Input-, Output and State-Variables of the PowerFactory

    ModelPer-unit system of rotor-flux and rotor currents:

    Rotor currents:

    QmqQ

    xmqx

    DmdD

    emde

    ixi

    ixi

    ixi

    ixi

    0

    0

    0

    0

    ~

    ~

    ~

    ~

    =

    =

    =

    =

    (34)

    Rotor-flux:

    Q

    Q

    mq

    Q

    x

    x

    mq

    x

    D

    D

    mdD

    e

    e

    mde

    x

    xx

    x

    x

    x

    x

    x

    0

    0

    0

    0

    0

    0

    0

    0

    ~

    ~

    ~

    ~

    =

    =

    =

    =

    (35)

    With

    lQlrmqQ

    lxlrmqx

    lDlrmdD

    lelrmde

    xxxx

    xxxx

    xxxx

    xxxx

    ++=

    ++=

    ++=

    ++=

    00

    00

    00

    00

    (36)

    Rotor voltage equations, d-axis:

    dt

    dTi

    dt

    dTiu

    DDD

    eeee

    ~~

    0

    ~~~

    0

    0

    +=

    +=

    (37)

  • 7/25/2019 TechRef Synchronous Machine

    15/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 5 -

    Rotor voltage equations, q-axis, round rotor:

    dt

    dTi

    dtdTi

    Q

    QQ

    xxx

    0

    0

    ~0

    ~~0

    +=

    +=

    (38)

    Rotor voltage equations, q-axis, salient pole:

    dt

    dTi

    Q

    QQ

    ~~0 0+= (39)

    With

    nQ

    Q

    Q

    nx

    xx

    nD

    DD

    ne

    ee

    r

    x

    T

    r

    xT

    r

    xT

    r

    xT

    0

    0

    00

    0

    0

    00

    =

    =

    =

    =

    (40)

    1.4Rotor Angle Definition

    The actual position of the rotor d-axis with respect to the network voltages is monitored and is important for the

    behaviour of the machine and for assessing its stability. It is expressed as the rotor angle. In PowerFactory the

    rotor angle is available with several reference angles. The angles available are:

    fipol / [deg]: Rotor angle with reference to the local bus voltage of the generator (terminal voltage)

    firot / [deg]: Rotor angle with reference to the reference voltage of the network (slack bus voltage)

    firel / [deg]: Rotor angle with reference to the reference machine rotor angle (slack generator)

    dfrot / [deg]: identical to firel

    phi / [rad]: Rotor angle of the q-axis with reference to the reference voltage of the network

    (=firot-90)

    All rotor angles are shown in Figure 4.

  • 7/25/2019 TechRef Synchronous Machine

    16/21

    G e n e r a l D e s c r i p t i o n

    S y n c h r o n o u s G e n e r a t o r - 1 6 -

    Additionally there is the variable dfrotx available at each generator, which is indicating the maximum value of

    dfrot for all generators in the system. This variable can assist you to indicate, if a generator is falling out of step

    with respect to the reference machine angle.

    Figure 4: Rotor Angle Definition

  • 7/25/2019 TechRef Synchronous Machine

    17/21

    I n p u t / O u t p u t D e f i n i t i o n o f D y n a m i c M o d e l s

    S y n c h r o n o u s G e n e r a t o r - 1 7 -

    2Input/Output Definition of Dynamic Models

    2.1Stability Model (RMS)

    Figure 5: Input/Output Definition of the synchronous machine model for stability analysis (RMS-

    simulation)

    ve

    pt

    xmdm

    psie

    psix

    psiD

    psiQ

    phi

    xspeed

    fref

    pgt

    ut/utr/uti

    ie

    pgt

    outofstep

    xme

    xmt

    cur1/cur1r/cur1i

    P1

    Q1

  • 7/25/2019 TechRef Synchronous Machine

    18/21

    I n p u t / O u t p u t D e f i n i t i o n o f D y n a m i c M o d e l s

    S y n c h r o n o u s G e n e r a t o r - 1 8 -

    Table 1: Input Definition of the RMS-Model

    Parameter Description Unit

    ve Excitation Voltage p.u.

    pt Turbine Power p.u.

    xmdm Torque Input p.u.

    Table 2: Output Definition of the RMS-Model

    Parameter Description Unit

    psie Excitation Flux p.u.

    psiD Flux in Damper Winding, d-axis p.u.

    psix Flux in x-Winding p.u.

    psieQ Flux in Damper Winding, d-axis p.u.

    xspeed Speed p.u.

    phi Rotor Angle rad

    fref Reference Frequency p.u.

    ut Terminal Voltage p.u.

    pgt Electrical Power p.u.

    outofstep Out of step signal (=1 if generator is out of step, =0 otherwise)

    xme Electrical Torque p.u.

    xmt Mechanical Torque p.u.

    cur1 Positive-sequence current p.u.

    cur1r Positive-sequence current p.u.

    cur1i Positive-sequence current p.u.

    P1 Positive-sequence active power MW

    Q1 Positive-sequence reactive power Mvar

    utr Terminal Voltage, real part p.u.

    uti Terminal Voltage, imaginary part p.u.

  • 7/25/2019 TechRef Synchronous Machine

    19/21

    I n p u t / O u t p u t D e f i n i t i o n o f D y n a m i c M o d e l s

    S y n c h r o n o u s G e n e r a t o r - 1 9 -

    2.2EMT-Model

    Figure 6: Input/Output Definition of the HVDC converter model for stability analysis (EMT-

    simulation)

    Table 3: Input Definition of the EMT-Model

    Parameter Description Unit

    ve Excitation Voltage p.u.

    pt Turbine Power p.u.

    xmdm Torque Input p.u.

    ve

    pt

    xmdm

    psie

    psix

    psiD

    psiQ

    phi

    xspeed

    fref

    pgt

    ut/utr/uti

    ie

    pgt

    outofstep

    xme

    xmt

    cur1/cur1r/cur1i

    P1

    Q1

  • 7/25/2019 TechRef Synchronous Machine

    20/21

    I n p u t / O u t p u t D e f i n i t i o n o f D y n a m i c M o d e l s

    S y n c h r o n o u s G e n e r a t o r - 2 0 -

    Table 4: Output Definition of the EMT-Model

    Parameter Description Unit

    psie Excitation Flux p.u.

    psiD Flux in Damper Winding, d-axis p.u.

    psix Flux in x-Winding p.u.

    psieQ Flux in Damper Winding, d-axis p.u.

    xspeed Speed p.u.

    phi Rotor Angle rad

    fref Reference Frequency p.u.

    ut Terminal Voltage p.u.

    pgt Electrical Power p.u.

    outofstep Out of step signal (=1 if generator is out of step, =0 otherwise)

    xme Electrical Torque p.u.xmt Mechanical Torque p.u.

    cur1 Positive-sequence current p.u.

    cur1r Positive-sequence current p.u.

    cur1i Positive-sequence current p.u.

    P1 Positive-sequence active power MW

    Q1 Positive-sequence reactive power Mvar

    utr Terminal Voltage, real part p.u.

    uti Terminal Voltage, imaginary part p.u.

  • 7/25/2019 TechRef Synchronous Machine

    21/21

    R e f e r e n c e s

    S y n c h r o n o u s G e n e r a t o r - 2 1 -

    3References

    [1] P. Kundur, Power System Stability and Control, McGraw-Hill, Inc., 1994.