Technologies+for+LFG+Abatement,+ Extrac9onandUlizaon · 2014. 9. 25. ·...

22
Technologies for LFG Abatement, Extrac9on and U9liza9on Philippine Landfill Forum February 21 22, 2012 Manila, Philippines Presented by Bryce Lloyd

Transcript of Technologies+for+LFG+Abatement,+ Extrac9onandUlizaon · 2014. 9. 25. ·...

  • Technologies  for  LFG  Abatement,  Extrac9on  and  U9liza9on  

     

    Philippine  Landfill  Forum  February  21  -‐  22,  2012  Manila,  Philippines  

                 

    Presented  by  Bryce  Lloyd  

       

  • 2

    Presenta(on  Outline  

    § What  is  landfill  biogas  (LFG)?  §  Proper(es  of  LFG  § How  to  collect  and  control  LFG?  §  Typical  LFG  collec(on  system  components  § How  to  beneficially  use  the  LFG?  §  Conver(ng  the  LFG  to  electrical  power  or  process  heat  §  Examples  of    the  technologies  that  have  been  used  to    convert  LFG  to  Power  and/or  Heat  

    §  Poten(al    benefits  and  revenue  from  LFG  recovery  and  u(liza(on  

      2

  • 3

    Background  §  Even  aKer  the  3R’s  (reduce,  reuse,  recycle)  and  with  the  

    employment  of  other  waste  management  op(ons  (incinera(on,  compos(ng,  anaerobic  diges(on),  some  waste  will  con(nue  to  be  landfilled)  

    §  Landfills  will  con(nue  to  produce  some  landfill  biogas  (  LFG),  which  can  and  should  be  controlled,  collected  and  u(lized  

    §  Benefits  of  controlling  and  u(lizing  LFG  include:  §  elimina(ng  odor  nuisance  and  safety  hazards  §  improving  local  and  regional  air  quality  §  reducing  greenhouse  gas  emissions,  and    §  harves(ng  a  renewable  energy  resource  

    3

  • 4

    What  is  LFG?  

    §  Formed  during  anaerobic  decomposi(on  of  organic  materials  in  landfills  § Amount  &  composi(on  dependent  on  solid  waste  characteris(cs  § Increase  in  organics  equals  an  increase  in  gas  genera(on  § Gas  produc(on  ends  with  end  of  decomposi(on  § Collec(on  efficiency  can  vary  from  20%  to  80%  § Landfill  fires  destroy  organics  and  reduce  the  amount  of  LFG  generated  

    4

  • 5

    Characteris(cs  of  LFG  §  Methane  (CH4)  -‐  50%  to  65%  §  Carbon  Dioxide  (CO2)  -‐  35%  to  50%  §  Vola(le  Organic  Compounds  (VOCs)  –  trace    §  Ammonia,  H2S,  Mercaptans,  etc.  §  Explosive  and  asphyxia(on  danger  §  Health  hazards  associated  with  trace  gases  (VOCs;  HAPs)  

    §  Groundwater  contamina(on  (in  some  areas  this  means  drinking  water!)  

    §  Methane  is  a  potent  greenhouse  gas    (CH4  GWP  –  23  (mes  CO2)    

    5

  • 6

    §  Local,  Available  Fuel  Source  §  Rela(vely  Easy  to  Capture  and  Use  §  Source  of  Energy  that  Otherwise  would  have  been  Wasted    

    §  Con(nuous  Supply  -‐  24  Hours  a  Day  &  7  Days  a  Week  

    §  Reliable  Technologies  Exist  for  Using  LFG  §  >95%  On  Line  Availability  

    §  Improves  the  Environment  by  Reducing  Uncontrolled  Emissions  of  LFG  

    Why  Use  LFG?  

    6

  • 7

    LFGE  Project  Benefits  §  Improves  air  quality  and  reduces  greenhouse  gas    

    §  Offsets  non-‐renewable  resource  use  §  Each  1  MW  Of  Genera(on  Capacity:  

    §  Annual  environmental  equivalent  to  plan(ng  4,900  hectare  of  trees  or  removing  the  CO2  emissions  of  9,000  cars  

    §  Annual  energy  equivalent  to  preven(ng  the  use  of  99,000  barrels  of  oil,  offselng  the  use  of  200  railcars  of  coal,  or  powering  more  than  650  homes  

    7

  • 8

    Conver(ng  LFG  to  U(lizable  Energy  

    §  Energy  Recovery  Poten(al  (~18  MJ/m3)  §  Approx.  amount  of  electrical  energy  that  can  be  produced  by  LFG  from  a  small,  medium,  large  LFGE:  §  Small:    25kW  to  1MW  § Medium:  1~  3MW  §  Large:  3  ~  30MW  

    §  A  moderate  frac(on  of  landfills  in  Asia  have  LFGE  

    8

  • 9

    LFGE  System  Design  

    §  Array  of  ver(cal  or  horizontal  extrac(on  wells  §  Main  header  and  lateral  piping  network  with  control  valves  and  monitoring  ports  

    §  Moisture  (condensate)  removal  (  KOP  and  sumps)    

    §  Gas  extrac(on  blowers  

    §  Flares  §  LFG  Pretreatment  equipment    §  LFGE  equipment

    9

  • 10

    Ver(cal  Wells  

    10

  • Horizontal  Collectors  

    11

  • 12

    LFG  Well  Field  

    12

  • 13

    Blowers  吹风机类别….

    13

  • 14

    Flare  and  Pre-‐treatment  Unit  

    14

  • 15

    LFGE  Technology  Op(ons  

    §  Electrical  Power  Genera(on  §  On-‐site  Use  §  Connec(on  to  Grid  

    §  Gas  Purifica(on  §  Direct  Thermal  Applica(ons   §  Combined  Heat  and  Power              (CHP)

    15

  • 16

    Electrical  Power  Genera(on

    Available  Technologies  

    §  Reciproca(ng  internal  combus(on  engine  §  ~80  %  of  LFGE  projects  worldwide    

    §  Gas  turbine §  Steam  turbine  § Microturbine  §  Cogenera(on

    16

  • 17

    Electricity  Genera(on §  Most  prevalent  type  of  LFG  u(liza(on  

    §  In  US,  1100  MW  of  capacity  from  over  250  opera(onal  projects  

    Advantages  §  Electricity  can  be  used  on-‐site,  or  sold  to  nearby  customer,  coopera(ve  or  u(lity  

    Disadvantages  §  LFG  will  require  pre-‐treatment  §  Connec(ng  to  the  grid  could  be  expensive  §  Capital  cost  typically  higher  than  for  direct  use,  but  less  than  for  purifica(on/high  BTU  

    17

  • 18

    LFG  Electricity  Genera(on  ProjectsTechnology No.  of  Projects  in  

    USA*

    Internal  Combus(on  (55kW-‐3MW) 279  

    Gas  Turbine  (1-‐10MW) 28  

    Cogenera(on 26  

    Steam  Turbine  (1-‐10MW) 14  

    Microturbine  (30-‐200kW) 13  

    Combined  Cycle  (1-‐10MW) 6  

    S(rling  Engine  (25-‐55kW) 2  

    *Source:  LMOP  (2010) 18

  • 19

    Example –  Electricity  Genera(on  Kam  Phaeng  Saen  Landfill,  Thailand  

    §  Design  Electricity  Power  Genera9on  Capacity  (16  MW)  §  Connected  to  electrical  grid  

    Landfill  Capacity:    26  Million  tonnes  Landfilling  began:  2005  (10  years  design  life)  Waste  In  place:  12  Million  tonnes  Waste  Intake:  ~ 5000  tpd  LFG  Recovery:  ~ 6000  m3/hr  

    19

  • 20

    Example –  Electricity  Genera(on  Xiaping  Landfill,  Shenzhen  

    §  Design  Electricity  Power  Genera9on  Capacity  (7.5MW+)  §  Tied  into  electrical  grid  

    Landfill  Capacity:    47  Million  m3  Landfilling  began:  1997  (30  years  design  life)  Waste  In  place:  13  Million  tonnes  Waste  Intake:    3000~3500  tpd  LFG  Recovery:  >9000  m3/hr  

    20

  • 21

    Example –  Electricity  Genera(on  Gaoantun  Landfill,  Beijing  

    §  Design  Electricity  Power  Genera9on  Capacity  (2.5MW+)  §  Provides  electricity  to  on-‐site  leachate  treatment  plant  and  offices  

    Landfill  Capacity:    8.92  Million  m3  Landfilling  began:  2002  (20  years  design  life)  Waste  In  place:  6.5  Million  tonnes  Waste  Intake:    ~1000  tpd  (upto  3200  tpd)  LFG  Recovery:  2500  m3/hr  

    Flaring  System  and  Generator  House  

  • 22

    Example –  Electricity  Genera(on  Bantar  Gebang  Landfill,  Indonesia  

    §  Design  Electricity  Power  Genera9on  Capacity  (14  MW+)  §  Connected  to  electrical  grid  

    Landfill  Capacity:    35  Million  tonnes  Landfilling  began:  1989  (~30  years  design  life)  Waste  In  place:  ~26  Million  tonnes  Waste  Intake:    ~5000  tpd  LFG  Recovery:  >3000  m3/hr  

    22