Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ......

32
Technical review Catalogue of reduction technologies This technical review is the appendix 2 to the report “Grøn Profil for Kommunale Færger” (Green Profile for Municipal Ferries). It considers air emission technologies and their applicability to Danish ferries. It reviews abatement technologies and presents cost calculations for installment, operation and the associated reduction potential for the respective technologies. Danish Environmental Protection Agency Picture: Kai W. Mosgaard

Transcript of Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ......

Page 1: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

 

 

 

Technical  review  –  Catalogue  of  reduction  technologies  This  technical  review  is  the  appendix  2  to  the  report  “Grøn  Profil  for  Kommunale  Færger”  (Green  Profile  for  Municipal  Ferries).  It  considers  air  emission  technologies  and  their  applicability  to  Danish  ferries.  It  reviews  abatement  technologies  and  presents  cost  calculations  for  installment,  operation  and  the  associated  reduction  potential  for  the  respective  technologies.  

 Danish  Environmental  Protection  Agency  

 

Picture:  Kai  W.  Mosgaard  

Page 2: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

1   LITEHAUZ   September  2013  

  ABBREVIATIONS  ........................................................................................................  2  1   INTRODUCTION  ................................................................................................  3  2   LONG  LIST  .........................................................................................................  4  3   SHORT  LIST  CRITERIA  ........................................................................................  6  3.1   Existing  Regulation  on  Air  Emissions  for  Ships  Trading  in  Danish  Waters  .............  6  3.1.1  Regulation  of  NOx  .................................................................................................  6  3.1.2  Regulation  of  SOx  ..................................................................................................  7  3.1.3  Ozone  Depleting  Substances  .................................................................................  7  3.1.4  CO2  emissions  ........................................................................................................  7  3.2   Technology  Availability  ..........................................................................................  8  3.3   Short  List  of  Technologies  .....................................................................................  8  3.3.1  NOx  Reduction  Technologies  ................................................................................  9  3.3.2   SOx  Reduction  Technologies  .................................................................................  9  3.3.3  CO2  reduction  technologies  .................................................................................  10  3.3.4  Other  emission  parameters  .................................................................................  10  3.3.5  Operational  measures  .........................................................................................  10  4   TECHNOLOGY  DESCRIPTION  AND  COST  ...........................................................  11  4.1   Selective  Catalytic  Reduction  (SCR)  .....................................................................  11  4.2   Exhaust  Gas  Recirculation  (EGR)  .........................................................................  12  4.3   Scrubbers  .............................................................................................................  13  4.4   Biofuel  .................................................................................................................  13  4.5   Liqified  Natural  Gas  (LNG)  ...................................................................................  15  4.6   Slow  steaming  .....................................................................................................  16  5   EXAMPLES  OF  TECHNOLOGY  APPLICATION  .....................................................  18  5.1   Choice  of  ferries  ..................................................................................................  18  5.2   Feasibility  of  technologies  for  example  ferries  ...................................................  19  5.3   Cost  Calculations  .................................................................................................  20  5.4   Reduction  reductions  ..........................................................................................  21  6   REFERENCES  ....................................................................................................  23     APPENDIX  A  -­‐  LONG  LIST  .................................................................................  27     APPENDIX  B  –  PLOT  OF  FERRIES  ......................................................................  31    

Page 3: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

2   LITEHAUZ   September  2013  

  Abbreviations  BC   Black  carbon  B20   Conventional  fuel  blended  with  20%  biofuel  B100   100%  biofuel  CAPEX   Capital  expenditures  CASS   Combustion  Air  Saturation  System  CO2   Carbon  dioxide  DME   Dimethyl  ether  DWI   Direct  Water  Injection  DPF   Diesel  particulate  filters  ECA   Emission  control  area  EEDI   Energy  Efficiency  Design  Index  EGR   Exhaust  Gas  Recirculation  FBC   Fluidized  Bed  Combustion  GHG   Green  House  Gases  HAM   Humid  Air  Motors  HFC   Hydrofluorocarbons  HFO   Heavy  fuel  oil  ICR   Intercooler  Recuperative  gas  turbine  IEM-­‐ADV   Internal  engine  Modifications  -­‐  Advanced  IEM-­‐SV   Internal  engine  Modifications  -­‐  Slide  Valves  IMO   International  Maritime  Organization  LNG   Liquefied  Natural  Gas  MARPOL   International  Convention  for  the  Prevention  of  Pollution  From  Ships  MDO   Marine  distillate  oil  MEPC   Marine  Environment  Protection  Committee  MCR   Maximum  Capacity  Rating  MW   Megawatt  NA   Not  available  NECA   Nitrogen  oxides  Emission  Control  Area  NOx   Nitrogen  oxides  NR   Not  reported  ODS   Ozone  Depleting  Substances  OPEX   Operating  expenditures  PACR   Plasma  assisted  Catalytic  Reduction  PM   Particulate  matter  REFS   Renewable  Energy  from  Shore  SCR   Selective  catalytic  reduction  SECA   Sulphur  Oxide  Emission  Control  Area  SEEMP   Ship  Energy  Efficiency  Management  Plan  SFOC   Specific  fuel  oil  consumption  SHS   Scrubber  High  Sulphur  SLS   Scrubber  Low  Sulphur  SOx   Mono-­‐sulphur  oxides  SNCR   Selective  Non  Catalytic  Reduction  SSDR   Slow-­‐steaming  de-­‐rating  ULSD   Ultra-­‐low  sulphur  diesel  VOC   Volatile  organic  compound  WIF   Water  in  Fuel  systems  or  Water  in  Fuel  Emulsions    

Page 4: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

3   LITEHAUZ   September  2013  

  1 Introduction  This   technical   report   is   the   appendix   2   to   the   report   “Grøn   Profil   for   Kommunale  Færger”   (Green   Profile   for  Municipal   Ferries).   It   considers   air   emission   technologies  and   their   applicability   to   Danish   ferries.   It   reviews   abatement   technologies   and  presents   cost   calculations   for   installment,   operation   and   the   associated   reduction  potential  for  the  respective  technologies.  

Page 5: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

4   LITEHAUZ   September  2013  

  2 Long  List  A  number  of  scientific  articles  and  reviews  have  been  investigated  to  produce  a   long  list   of   abatement   technologies   for   reducing  emissions   to   air   in   ships.   The   long   list   is  presented   in   Table   2.   The   technologies   on   the   Long   List   are   given   colour   codes  according   their   ability   to   generate   reductions   beyond   the   current   compliance   level,  see  Table  1.  A  full  long  list  with  references  are  given  in  the  Appendix.      

    Cat  1     Cat  2   Cat  3   Cat  4  

NOx  ≥80%  (comply  with  Tier  III)  

50-­‐80%  (comply  with  Tier  II)  

20-­‐50%  (comply  with  Tier  II)  

>0-­‐20%  (does  not  comply  with  Tier  II)  

SOx   >90  %     60-­‐90  %     40-­‐60%   >0-­‐40  %    

CO2   >30%   20-­‐30%   10-­‐20%   >0-­‐10%  

PM   >80%   60-­‐80%   25-­‐60%   >0-­‐25%  

BC   >80%   60-­‐80%   30-­‐60%   >0-­‐30%  

VOC   >80%   60-­‐80%   30-­‐60%   >0-­‐30%  

GHG   >50%   30-­‐50%   10-­‐30%   >0-­‐10%  

 For  all  emissions,  red  indicates  an  increase  in  emissions  or  no  change.  

 

Table  1   Color  codes  for  long  list  

technologies  

Page 6: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

5   LITEHAUZ   September  2013  

   

   

Technology  Fuel  

savings  (%)  

VOC  (%)  

NOx  (%)  

SOx   CO2    (%)  

GHG  (%)  

PM  (%)  

BC    (%)  

Available  <5  years  

Retofit/  

newbuild  

Post  engine  technologies  

Diesel  Particle  filter  (DPF)   -­‐   -­‐   0   0   -­‐3.5   -­‐   85   85-­‐99   No   R  &  N  

Exhaust  Gas  Recirculation  (EGR)   -­‐4   -­‐   35  -­‐80   0-­‐19   NR   -­‐   40  -­‐  58   0   Yes   N  

Plasma  Assisted  Catalytic  Reduction  (PACR)   -­‐   -­‐   80-­‐97   -­‐   -­‐   -­‐   -­‐   -­‐   No    

Scrubber  Low  Sulfur  (SLS)     -­‐   -­‐   Y,  No   90-­‐95(a)   -­‐3   -­‐   75(a)-­‐80   37.5   Yes   R  &  N  

Scrubber  High  Sulfur  (SHS)   -­‐   -­‐   Y,  No   90-­‐95(a)   -­‐3   -­‐   75(a)-­‐80   60   Yes    

Selective  Catalytic  Reduction  (SCR)     -­‐   -­‐   <  95   0   NR   -­‐   25  -­‐  45   >35   Yes   R  &  N  

Selective  Non  Catalytic  Reduction  (SNCR)     -­‐   -­‐   50   -­‐   -­‐   -­‐   -­‐   -­‐   Yes   R  &  N  

Fuel  switching  

Biofuel   -­‐   -­‐  -­‐47.1  to  

-­‐1.6    20  -­‐  100   40-­‐85(b)   -­‐   25   -­‐   Yes    

Dimethyl  Ether  (DME)   -­‐   -­‐   35   -­‐   95(b)   -­‐   97   -­‐   No    

Fuel  cells/Hydrogen   -­‐    

<  100   100   20  -­‐  100   -­‐   100   100   No    

Liquefied  Natural  Gas  (LNG)   -­‐   50   60-­‐90   90-­‐100   22.5   0-­‐25   <  99   93.5   Yes    

Renewable  energy  from  shore  (REFS)     -­‐   94   97   -­‐   -­‐   -­‐   94   -­‐   NR   R  &  N  

Solar  energy   Few  %   -­‐   -­‐   -­‐   1-­‐2   -­‐   -­‐   -­‐   NR    

Ultra  Low  Sulfur  Diesel  Fuel  (ULSDF)     -­‐   -­‐   -­‐   90   -­‐   -­‐   -­‐   -­‐   NR   R  &  N  

Wind  power   5  -­‐20   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   NR   R  &  N  

Wave  power   Limited   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   NR    

Combustion  modification  

Combustion  Air  Saturation  System  (CASS)   -­‐   -­‐   30-­‐60   -­‐   -­‐   -­‐   -­‐   -­‐   No    

Direct  Water  Injection  (DWI)     -­‐   -­‐   42-­‐60   -­‐   -­‐2-­‐0   -­‐   <  50   -­‐   Yes   R  &  N  

Fluidized  Bed  Combustion  (FBC)   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   No    

Humid  Air  Motors  (HAM)     -­‐   -­‐   30  -­‐  70   -­‐   -­‐   -­‐   <  50   -­‐   NR   R  &  N  

Internal  Engine  Modifications  -­‐  Slide  Valves     -­‐   50   30   -­‐   0   -­‐   80   25   Yes   R  &  N  

Intercooler  Recuperative  gas  turbine  (ICR)   25-­‐30   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   NR   N  

Limestone         50-­‐60           NR    

Water  in  Fuel  (WIF)   -­‐   -­‐   20-­‐55   Yes   0   -­‐   30   70   Yes   R  &  N  

Operational  measures  

Slow  steaming(c)  (no  derating/re-­‐tuning)   7-­‐25         7-­‐25       -­‐30  -­‐  0   Yes    

Slow  steaming(c)  (with  derating/re-­‐tuning)   8-­‐29         8-­‐29       0-­‐30   Yes    (a)  Only  stated  for  scrubber  in  general,    (b)  If  produced  from  biomass,  (c)  engine  load  from  100%  to  40%,  (d)  100%  biofuel  (B100)  

Table  2    Long  List  of  reduction  technologies    (R=  retrofit,  N=  newbuild),  simplified  version.  The  full  long  list  with  references  is  

presented  in  Appendix  A.  NR  =  not  reported  

Page 7: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

6   LITEHAUZ   September  2013  

  3 Short  List  Criteria  The   technologies   on   the   long   list   are   evaluated  with   regards   to   reduction   potential,  maturity  and  uptake  time.  In  order  to  be  shortlisted:      

• The  reduction  potential  will  have  to  exceed  the  required  compliance   levels  in  existing  regulation  (and  near  future  compliance  requirements,   i.e.  SOx  in  2015,  Tier  III  NOx  reduction  in  2016  and  CO2  reduction  in  2015)  

 • The   technology   needs   to   be   commercially   available   and   implementable  

within  a  five-­‐year  timeframe.  

3.1 Existing  Regulation  on  Air  Emissions  for  Ships  Trading  in  Danish  Waters  

The   existing   and   planned   regulations   on   air   emissions,   for   ships   trading   in   Danish  waters,   are   governed   by   the   IMO   International   Convention   for   the   Prevention   of  Pollution  from  Ship  (MARPOL  73/78),  which  entered  into  force  in  May  2005.  MARPOL  comprises   six   Annexes   with   Annex   VI   covering   the   prevention   of   air   pollution   from  ships.  There  is  a  number  of  specific  provisions  in  MARPOL  relating  to  the  area  to  which  the  regulation  applies  (e.g.  within  or  outside  of  12  nm,  in  special  areas,   in  ports  with  reception  facilities)  and  to  the  timing  of  the   implementation  as  governed  e.g.  by  the  ship’s  year  of  build  and  size  class.      The   emission   parameters,   which   are   regulated   comprise:   nitrogen   oxides   (NOx),  sulphuric  oxides  (SOx),  ozone  depleting  substances  ODS  and  CO2.  There  is  currently  no  direct   regulation   in   Denmark   concerning   particulate  matter   (PM)1  in   emissions   from  ships  or  volatile  organic  compounds  (VOC)2  as  well  as  green  house  gasses  (GHG)  apart  from  those  covered  under  ODS,  SEEMP  and  EEDI  (see  section  3.1.4).      

3.1.1 Regulation  of  NOx    

NOx  reduction  from  shipping  is  addressed  in  Regulation  13  under  MARPOL  Annex  VI.  The   regulation   applies   a   three-­‐levelled   tiered   approach,   where   compliance  requirements  with  Tier  I  and  Tier  II  are  already  in  force.  Tier  III  requirements  will  enter  into  force  in  2016,  however  the  compliance  date  is  subject  to  a  technical  review  (to  be  concluded   2013)   and   could   be   delayed.   Tier   III   applies   for   ships   operating   in   NOx  Emission  Control  Areas  (NECAs)  that  fall  under  the  following  categories:  1)  built  on  or  after  the  1st  of  January  2016,  2)  of  400  gross  tonnage  or  above  and  3)  with  an  engine  power  output  of  more  than  130  kW.    The  Danish  waters   comprise  parts  of   the  OSPAR  and  HELCOM  areas   (North   Sea  and  Baltic  Sea3).  The  OSPAR  and  HELCOM  areas  do  not  have  NECA  status,  though  work  is  beeing  undertaken  to  apply  for  such  in  both  areas.  There  is  at  this  point  no  affirmative  information  on  when  and   if   the  status   for  these  areas  will  change   in  the  near   future  following  the  discussion  of  NECAs  at  MEPC  65  in  May  2013.  

 1  PMs  are  indirectly  addressed  under  SOx  regulation.  2  Except  for  tankers  under  MARPOL  Annex  VI    3  Baltic  Sea  are  in  the  context  of  HELCOM  understood  as  also  comprising  Kattegat  and  Belt  Sea    

Page 8: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

7   LITEHAUZ   September  2013  

  In   2009,   MEPC   approved   an   application   from   USA   and   Canada   to   designate   North  American  waters  as  SECA  and  NECA  from  2016.    

3.1.2 Regulation  of  SOx  

SOx   reduction   is   addressed   in  Regulation  14  under  MARPOL  Annex  VI.   The  emission  requirements   are   linked   to   the   sulphur   content   in   fuels.   From   2012   is   the   sulphur  content  limit  in  fuels  globally  <3.5%  and  from  2010  <1%  in  SOx  Emission  Control  Areas  (SECAs).  Both   the  North  Sea  and   the  Baltic   Sea  have   status  as   SECA   (from  2007  and  2006,  respectively  (IMO,  2013b)).    Specifically,   ships   at   berth   in   EU   harbours   and   in   canals   have   been   regulated   since  2010  and  must  comply  with  a  0.1%  sulfur   limit   (EU  directive  2005/33/EC,  2005).  The  same  sulfur  content  limit  of  0.1%  will  apply  also  for  SECA  waters  in  2015.    

3.1.3 Ozone  Depleting  Substances  

The  use  of  ODS  is  addressed  in  Regulation  12  under  MARPOL  Annex  VI  and  applies  to  all   equipment   not   permanently   sealed.   Installation   of   equipment   containing   ODS  (except  HCFCs)  on  ships  constructed  on  or  after  May  19th  2005   is  prohibited.  HCFCs  will  be  prohibited  on  ships  constructed  on  or  after  2020.    Coming  EU   legislation  will   from  2014  strengthen  ODS  regulation  on  EU  flagged  ships  prohibiting  service  on  equipment  containing  ODS,  though  still  allowing  the  equipment  to  stay  on  board.    

3.1.4 CO2  emissions  

Regulation   of   CO2   emissions   is   included   in   MARPOL   Annex   VI   under   the   Energy  Efficiency   Design   Index   (EEDI)   and   the   Ship   energy   Efficiency   Management   Plan  (SEEMP).  The  regulation  applies  to  all  new  ships  constructed  on  or  after  1st  of  January  2013  as  well  as  for  existing  ships,  which  undergo  a  major  conversion.    EEDI   regulates  new  ships   to  be  more  energy  efficient   (less  polluting)  with  regards   to  design,  equipment  and  engines.    The  EEDI  provides  a  specific   figure  for  an   individual  ship   design,   expressed   in   grams   of   carbon   dioxide   (CO2)   per   ship’s   capacity-­‐mile.  (IMOc,  2011).  The  EEDI   requires   step-­‐wise   improvements   to   the  energy  efficiency  of  new  build  ships,  starting  at  10%  reduction  in  CO2  per  tonne-­‐mile  from  2015,  increasing  to  20%  and  30%  from  2020  and  2025,  respectively.    The  Ship  energy  Efficiency  Management  Plan  (SEEMP)  is  mandatory  for  all  existing  and  new   ships   over   400   GT   from   January   2013   (MEPC.203(62),   2011).   The   SEEMP   is   an  operational  measure  that  establishes  a  mechanism  to  improve  the  energy  efficiency  of  a   ship   in   a   cost-­‐effective   manner;   however,   it   does   not   apply   any   reductions  requirements.          

Page 9: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

8   LITEHAUZ   September  2013  

 

*HFCs:  Hydrofluorocarbons  

3.2 Technology  Availability  

The   technologies   are   assessed   with   regards   to   commercial   availability   and   with   an  implementation  horizon  within  five  years.  Prior  use  as  abatement  technologies  in  the  maritime  sector  is  also  a  necessity,  as  maritime  applications  need  to  be  type  approved  prior  to  use.    

3.3 Short  List  of  Technologies    

The  following  technologies   listed  below  are  chosen  for  further  assessment,  based  on  the  Short  List  criteria  described  in  section  3.  The  shortlisted  technologies  are  all  suited  for   being   installed   as   either   newbuilds   or   retrofits,   except   EGR,   which   is   integrated  into  the  engine  and  is  therefore  only  installed  on  new  engines.  Though  slow  steaming  is   not   a   technology   but   an   operational   measure,   it   is   also   included   as   a   significant  reduction   of   emissions   is   obtained   as   a   consequence   of   less   use   of   fuel.   Engine  modifications   are   not   addressed   as   separate   abatement   measures,   as   none   of   the  modifications  can  reach  or  exceed  emission  compliance  levels  for  NOx,  SOx  or  CO2  by  themself.4  In   the  cases  where  an  abatement   technology  on   the  short   list   results   in  a  rise   in   other   emissions,   potential   mitigating   engine  modifications   are  mentioned.   A  description  o  the  selected  technologies  are  given  in  section  4.    

• SCR  • ERG  • Scrubber  

 4  Pers.  Com.  Man  Diesel  

Emission     Applicable   1/1/2013   1/1/2015   1/1/2016   1/1/2020   1/1/2025  

NOx   NECA   Tier  II,  20%  reduction   -­‐  

Tier  III,  80%  reduction  

-­‐   -­‐  

  Global   Tier  II,  20%  reduction   -­‐   -­‐   -­‐   -­‐  

SOx   SECA  –  berth/  canals  

<0.1%  sulfur  content  in  fuel    

 

-­‐   -­‐   -­‐  

  SECA  –    open  waters  

<1%  sulfur  content  in  fuel    

<0.1%  sulfur  content  in  fuel    

-­‐   -­‐   -­‐  

ODS   Global   ODS  prohibited  except  HFCs*  

-­‐   -­‐  

HFCs*  prohibited  

-­‐  

  Denmark   All  ODS  prohibited      

   

CO2     SEEMP   EEDI:  10%  reduction  

-­‐  EEDI:  20%  reduction  

EEDI:  30%  reduction  

PM   No  specific  regulation  (indirectly  regulated  under  SOx)  VOC   No  regulation  GHG   No  further  regulation,  follow  EEDI  and  SEEMP  

Table  3    

Existing  regulation  on  air  emissions  for  

trading  in  Danish  waters.  

Page 10: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

9   LITEHAUZ   September  2013  

  • LNG  • Biofuel  • Slow  steaming  

 It  should  be  noted  that  a  couple  of  current  projects  also  consider  or  are  in  the  process  of   installing   of   battery   packs.   These  will   be   charged  with   surplus   energy   during   the  voyage   and   used   as   required.   The   routes   include   Spodsbjerg-­‐Tårs,   where   a  combination   of   LNG   and   battery   use   is   investigated   and   the   international   routes  Rødby-­‐Puttgarten   and   Helsingør-­‐Helsingborg.   Smaller   ferries   may   be   particularly  adapted   for   using   land-­‐based   power   for   this   purpose,   but   this   application   is   not  exempted   from   tax   and   levies,   as  is  bunker   oil.  The  batteries  must  work  with  diesel-­‐electric  engines  and   this   limits   the  applicability   for   the  current   ferries  and  since  only  very   limited   information   is   available   on   investment   and   operational   costs   no  calculations   have   been   made   in   present   report.   The   technology   may   present   a  promising  way  forward  for  new  ferries  or  retrofit.      

3.3.1 NOx  Reduction  Technologies  

The   short   listed   NOx   reducing   technologies   are   presented   in   Table   4.   Though   EGR  currently  does  not  exceed  the  compliance  requirements  of  an  80%  reduction  (Tier  III)  an  initial  assessment  is   included,  as  it   is  uncertain  when  (and  if)  the  waters,   in  which  the   Danish   ferries   trade,   are   assigned   status   as   NECA.   The   technology   will   in   the  meantime  reduce  NOx  more  than  required  (-­‐20%)  and  at  the  same  time  be  sufficient  to   comply  with   Tier   III.   The   technology   can,   however,   not   be   retrofitted   and   is   only  considered  applicable  when  a  new  engine  is  installed.  Newer  two  stroke  engines  may  have  EGR  integrated.  No  calculations  are  therefore  included  with  regards  to  EGR.      

Technology   NOx  reduction  potential   Available  <5  years  

EGR   35-­‐80%   Yes  SCR   Up  to  95%   Yes  

LNG   60-­‐90%   Yes  

 

3.3.2 SOx  Reduction  Technologies  

The  Baltic  Sea  and  the  North  Sea  have  status  as  SECAs  and  the  current  sulphur  content  limit  in  fuels  is  limited  to  1%  when  sailing  in  open  waters.  As  the  sulphur  limit  of  0.1%  applies   from   January   1st   2015   only   the   technologies   that   performs   better   than   the  2015   requirement   are   included.   The   shortlisted   SOx   reduction   technologies   are  presented  in  Table  5.    

Technology   SOx  reduction  potential   Available  <5  years  

Scrubbers   90-­‐95%   Yes  

Biofuel   20-­‐  100%   Yes  

LNG   90-­‐100%   Yes  

 

Table  5    

Short  listed  SOx  reduction  technologies.  

Table  4    

Short  listed  NOx  reduction  technologies.  

Page 11: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

10   LITEHAUZ   September  2013  

  3.3.3 CO2  reduction  technologies  

The  EEDI  requires  a  10%  reduction  of  CO2  by  2015,  which  will  increase  to  30%  by  2025.  All   the  CO2  reduction  abatement  technologies,  which   live  up  to  the  short   list  criteria  could  be  included,  however,  the  requirements  do  only  apply  for  new  ships.  In  order  to  include  CO2  reducing  technologies  that  comply  with  the  2020  target  are  chosen  for  the  short  list.  These  are  presented  in  Table  6.    DME,  which  is  not  included,  is  a  new  promising  technology  currently  under  testing.  It  has   been   assessed   that   it  will   not   be   available   in   commercial   form   in   less   than   five  years.  It  may,  however,  be  available  for  pilot  tests.      

Technology   CO2  reduction  potential   Available  <5  years  

Biofuel   40-­‐85%   Yes  

LNG   22.5%   Yes  

 

3.3.4 Other  emission  parameters  

Particulate  matter  (PM)  is  also  an  emission  of  concern  and  PM  is  briefly  covered  here  as   it   is   addressed   indirectly   under   MARPOL   SOx   regulation.   SOx   constitute   a   large  fraction  of   the  PM  emission  and   can   therefore  be   reduced  by  use  of   scrubbers   (see  technology   description   on   scrubbers   in   section   4.3)   and   with   a   more   general  technology,  the  diesel  particulate  filters  (DPFs).  DPF  systems  are  very  efficient  at  the  removal   of   PM   as   well   as   BC   and   the   use   has   been   successful   on   inland   waterway  vessels  and  on  highway  trucks  (LITEHAUZ,  2012).  However,  commercial  use  of  DPFs  on  the  open  water  fleet  has  yet  to  be  seen.  Reductions  of  PM  emissions  are  not  assessed  further  as  a  separate  emission  parameter  in  the  present  report  since  it  is  not  regulated  for  ships.  DPF  may  reduce  PMs  up  to  85%  and  up  to  80%  may  be  achieved  when  using  scrubbers.    

3.3.5 Operational  measures  

Slow  steaming  is  not  a  technology  as  such,  but  it  should  be  considered  a  “low  hanging  fruit”  with  regards  to  reduction  of  emissions,  as  even  a  small  reduction   in  speed  will  contribute   positively   to  most   of   the   emissions,   hereunder   specifically   SOx,  NOx   and  CO2.   However,   the   options   for   slow   steaming   are   heavily   influenced   by   the   actual  engine,  its  condition  and  the  load  during  operations.      

Technology   NOx   SOx   CO2  reduction  potential  

Available  <5  years  

Slow  steaming*   Follow  fuel  reduction**  

Follow  fuel  reduction  

Follow  fuel  reduction   Yes  

*With  a  5%  reduction  in  speed    **  Can  result  in  a  slight  increase  due  to  incomplete  combustion,  however  this  is  dependent  on  level  of  reduction  and  specific  engine.    

Table  6    

Short  listed  CO2  reduction  technologies.  

Table  7  

Reduction  potentials  from  slow  

steaming    

Page 12: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

11   LITEHAUZ   September  2013  

  4 Technology  Description  and  Cost  The  technology  descriptions  were  compiled   from  a  host  of  pier  reviewed   and   official   reports,   as   well   as   information   from  manufacturers.   The   website   retro-­‐fitting.dk   has   also   been  consulted.   Once   installed,   the   abatement   measures   do   not  require  additional  crew  competencies,  except  LNG  for  which  an  estimated   10%   additional   crewing   cost   is   required   due   to   the  complexity  and  safety  requirements  of  the  systems.  

4.1 Selective  Catalytic  Reduction  (SCR)  

Selective   catalytic   reduction   (SCR)   is   a   NOx   reduction   technology   that   treats   the  exhaust  gas  with  an  additive.  The  additive  is  ammonia  or  urea,  which  is  fed  through  a  catalytic   converter   at   a   temperature   of   300   to   400   oC.   The   chemical   reaction   is  selective  and  reduces  the  NOx  with  more  than  the  required  80%.  The  side  effects  such  as  oxidation  of  sulphur  dioxide  to  sulphur  trioxide  will  be  suppressed   in  the  catalytic  process   (MAN  Diesel  &  Turbo,  2013).  About   fifteen  gram  of  urea   is  needed  per  kWh  energy  from  the  engine  to  obtain  a  90%  NOx  reduction  (EEB  et  al.,  2004;  Andreoni  et  al.,   2008).   The   catalyst  will   also   reduce   noise  with   up   to   10   –   35   dBA   (Lövblad   and  Fridell,  2006).  The  equipment  comprises  a  catalyst  reactor  and  a  urea  storage  tank  as  well   as   premixing   and   injection   systems,   with   a   footprint   of   around   50   –   100   m3  (Lövblad  and  Fridell,  2006),  though  primarily  associated  with  the  urea  tank.    The   lifetime  of   the   SCR   catalyst   depends  on   the   sulphur   content  of   the   fuel.     SO3   is  formed   during   combustion,   which   combined   with   ammonia   creates   ammonium  bisulphate  that  sticks  to  the  surface  of  the  catalyst  and  air  heater.  This  causes  major  clogging   problems   of   the   catalyst   (Gutberlet   et   al.,   no   date)   greatly   affecting   the  lifetime  of  the  technology.  In  general  the  case  is  that  the  higher  the  sulphur  content,  the   shorter   the   lifetime   of   the   catalyst.   SCR   Systems   treating   exhaust   gasses,   from  engines   running   on   heavy   fuel   oil,   may   need   replacement   of   the   catalyst   after  approximately   40,000   hours   of   operation   (4.5   years)   (Andreoni   et   al.,   2008).   Even  systems  treating  exhaust  gas  from  fuel  containing  1.5%  sulphur  could  require  catalyst  replacement   every   five   years   (Lövblad   &   Fridell   2006).   Low   sulphur   systems   (max  0.2%)  may  run  for  a  considerably  longer  time  without  replacement  of  the  catalyst;  e.g.  the   ship   Aurora   of   Helsingborg   in   Sweden   operated   with   the   same   SCR   catalyst  installed   in  1992  using   fuel  with   sulfur   content  of  <0.1%   (SMA,  2006).   SCR  catalysts,  which   operate   with   high   sulphur   content,   are   in   the   development   phase.   The  estimated   lifetime  of   other   components   than   the   catalyst   itself   ranges   from   to   12.5  years  (Entec,  2005),  up  to  15-­‐25  years  (Wärtsilla  in  Kali  et  al.,  2010).  Usually  more  than  20,000  hours  of  SCR  operation  are  guarantied  (Lövblad  and  Fridell,  2006).    For   a   retrofit,   the   capital   expenditures   are   estimated   to   range   between   60   to   100  EUR/kW   (Lövblad   and   Fridell,   2006).   The   highest   cost   burden   lies   within   the  operational  cost,  which   is  around  3.5  to  4.2  EUR/MWh.  The  cost   is  mainly  related  to  the   procurement   of   urea.   Urea   is   a   common   commodity   and   therefore   easily  

Page 13: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

12   LITEHAUZ   September  2013  

  obtainable.   The   specific   Fuel   Oil   Consumption   (SFOC)   penalty   is   1-­‐2   g/kWh   (MST,  2012).  See  table  below  for  an  overview  of  costs.        

  Cost  SCR  (4stroke)  Medium  rpm  range   Unit  

Capital  expenditure  (retrofit)   60-­‐100   EUR/kW  Operational  expenditure     3.5-­‐4.2   EUR/kWh  SFOC  penalty     1-­‐2   g/kWh  

 

4.2 Exhaust  Gas  Recirculation  (EGR)  

Exhaust  gas  recirculation  (EGR)  is  an  after-­‐treatment  of  emissions  that  recirculates  the  exhaust  gas  into  the  charge  air.  The  process  lowers  the  oxygen  content  in  the  cylinder  and  increases  the  specific  heat  capacity  of  the  air,  which  results  in  a  reduction  of  the  amount   of   NOx   generated   during   combustion   (MAN  Diesel  &   Turbo   2013).   There   is  certain  limitations  associated  with  the  technology:  EGR  is  only  available  for  ships  using  0.2%   sulphur  marine   distillate   (Andreoni   et   al.,   2008),   unless   a   SOx   scrubber   is   also  installed  before   the  EGR,  but  most   important  with   regards   to  applicability   to  Danish  ferries,  the  EGR  cannot  in  practice  be  retrofitted  and  may  be  installed  with  a  new  EGR  fitted   engine.   It   should   be   noted   that   in   the   case  were   a   new   engine   is   installed   it  should  following  MARPOL  Annex  VI  and  comply  with  the  NOx  emission  requirements  which   is   applicable   at   the   time   of   installation.   There   is   a   minor   increase   in   fuel  consumption  associated  with  the  technology.      The  lifetime  is  estimated  to  30  years  (interview  with  MAN  Diesel  and  Turbo5,  CIMAC,  2012;  Khalilarya  et  al.,  2012).    The   cost   of   the   EGR   equipment   ranges   from   32-­‐39   EUR/kW   (for   use   on   a   4-­‐stroke  engine   at   400-­‐1,600   rpm)   and   an   installation   cost   of   10   EUR/kW.   This   gives   a   total  capital  expenditure  of  46-­‐55  EUR/kW.  Operational  expenditures  are  estimated  to  5-­‐8%  of  the  fuel  cost,  which  comes  from  the  SFOC  penalty  (MST,  2012).        

EGR   Amount   Unit  

Capital  expenditure     46-­‐55   EUR/kW  

Equipment   36-­‐45   EUR/kW  

Installation   10   EUR/kW  

Operational  expenditure     5-­‐8   %  of  fuel  costs  

SFOC  penalty     See  operational  expenditures  

 

 5  Interview  with  Fahimi,  Sulai,  cited  in  icct  (2012).  

Table  8    

Cost  of  selective  catalytic  reduction  as  

abatement  technology.  

Table  9  

Cost  of  EGR  as  abatement  technology.  

Page 14: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

13   LITEHAUZ   September  2013  

  4.3 Scrubbers  

Scrubbing   is   an   after-­‐treatment  of   emissions,   reducing   SOx  by  washing   it   out   of   the  exhaust   gas.   Several   types   of   scrubbers   exist,   hereunder   seawater   scrubbers   and  freshwater   scrubbers   in   different   constellations;   open   loop   systems,   closed   loop  systems,  hybrids  (both  closed  and  open).    Seawater  water  scrubbers  use  no  additives  when   in  open   loop  mode,  but  utilize   the  alkalinity  (HCO3

-­‐)   in  the  seawater  to  neutralise  the  sulphur  oxides  in  the  exhaust  gas.  The   chemical   reactions   between   SO2   and   the   bicarbonate   result   in   formation   of  sulphates,  which   are   re-­‐circulated  back   into   the   sea  with   the   scrubber  water.  When  trading   in   low   alkaline  water   or   in   freshwater,   a   closed   loop   scrubber  may   be   used  adding  a  caustic  soda  (NaOH)  solution  to  aid  the  neutralization  of  the  sulphur  (CNSS,  2011).      Sludge   is   generated   during   the   operation   of   the   scrubber,   which   will   need   to   be  handled,  i.e.  delivered  to  a  port  reception  facility.    The  SOx  reduction  is  almost  proportional  to  the  SO2  content  of  the  fuel  used  (Hansen,  2012)   and   up   to   a   95%   reduction   can   be   obtained.   Reductions   of   PMs   are   also  obtained  (up  to  80%)  as  well  as  reduction  of  black  carbon  of  over  30%.  According  to  Hansen  (2012):  “The  CO2  content  in  the  exhaust  gas  is  almost  constant  (4.3%),  though  a  slight  increase  (+3%)  has  been  seen  (Litehauz,  2012).      The  cost  of  installing  a  scrubber  is  highly  dependent  on  ship  and  engine  type  and  type  of  scrubber.  Scrubber  cost  for  a  retrofit  case  is  estimated  to  280  EUR/kW  for  a  retrofit  case   incl.  offhire  and  drydocking  (MST,  2012).  Operational  costs  are  estimated  to  3%  of  newbuild  cost  for  small  ships  (<6000kW),  2%  for  medium  ships  (≥6,000  to  <15,000  kW)  and  1%  for  large  ships  (≥15,000  kW)  (Entec,  2005).      

Scrubber   Amount   Unit  

Scrubber  cost  (newbuild)   250   EUR/kW  

Scrubber  cost  (retrofit)   280   EUR/kW  

Operational  costs  –  ships  <6000kW   3   %  of  newbuild  

Operational  costs  –  ships  ≥6,000  to  <15,000  kW  

2   %  of  newbuild  

Operational  costs  –  ships  ≥15,000  kW   1   %  of  newbuild  

 

4.4 Biofuel  

Biofuel  can  be  used  as  a  fuel  switch  option.  There  are  basically  two  types  of  biofuels  on  the  market,  “first  generation”  biofuels  and  “second  generation”  biofuels.  The  first  generation   biofuels   are   produced   from   vegetable,   sugar   starch,   or   animal   fats.   The  second  generation  biofuels  are  made  from   lignocellulosic  biomass   (dry  biomass  such  residual  non-­‐food  crops,  non-­‐food  parts  of  current  crops  (leaves,  stems),  and  industry  waste.  First-­‐generation  biofuels  have  been  criticized  for  being  unsustainable  because  

Table  10    

Cost  of  scrubber  as  abatement  

technology.  

Page 15: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

14   LITEHAUZ   September  2013  

  the  production  threatens  food  supply,  water  resources  and  biodiversity  (IMO,  2009).  A  “third-­‐  generation”  biofuel  is  under  way  using  algae  as  basis  but  this  technology  is  still  in  the  development  phase  (IMO,  2009).    Biofuels   can   be   used   as   fuel   in   ships  with   no   or  minimal   adjustment   of   the   engine.  However,  biodiesel  and  crude  vegetable  oil  seem  to  be  the  most  promising.  Potential  alternatives  could  be  pyrolysis  oil,  rape  oil,  soya  oil,  residual  oils,  palm  oil  or  sunflower  oil.   For   replacing   marine   distillates,   biodiesel   is   most   suitable,   while   for   replacing  residual   fuels   (e.g.   HFO)   vegetable   oil   is   most   suitable   (Opdal   and   Hojem,   2007).  Thorough  cleaning  and  gas  freeing  of  fuel  tanks  is  necessary  when  using  blends  of  5%  biofuel  or  more.      100%   biofuel   (B100)   require   special   handling   and   fuel   management   and   potentially  also  additional  equipment  and  modifications  to  the  engine,  such  as  the  use  of  heaters  and  new  seals  and  gaskets  that  come  in  contact  with  the  fuel.  One  of  the  drawbacks  of  B100   is   that   it   gels   at   lower   temperatures   than  most   diesel   fuels,  meaning   a   rise   in  viscosity,  which  can   lead  to  clogging  of   the   filters  or  eventually  cause  problems  with  the  pumping  of  fuel  from  the  tank  to  the  engine  (Nayyar,  2010).  It  is  estimated  that  it  is  not  economically  realistic  to  substitute  conventional  fuels  with  100%  biofuel  within  a  timeframe  of  5  years.  It   is  considered  more  realistic  that  a  20%  (B20)  biofuel  blend  with  conventional  fuel  (MDO)  may  be  used  at  present  time.    Biofuels  are  classified  to  be  carbon-­‐free   in  the  EU  emissions  trading  scheme  and  the  use   of   B20   will   therefore   act   to   comply   with   requirements   under   the   EEDI   scheme  (10%   reduction   of   CO2   for   new   ships   in   2015).   In   2020   where   a   20%   reduction   is  needed   it  may  be  possible  to  raise  the  biofuel  content  further  to  exceed  compliance  with  2020  requirements.  A  B20  mix  will  not  comply  with  the  coming  SOx  limits  (<0.1%)  when  mixed  with  HFO  but  may  be  used  in  combination  with  a  fuel  that  complies  with  the   existing   regulations   to   exceed   compliance   levels.   The   use   of   biofuels   has   been  reported   to   lead   to   an   increase   in  NOx   emissions;   however,  NOx   generation   can   be  reduced  with  engine  optimisation  such  as  fuel  injection  rate  and  timing,  (IMO,  2009),  split   injection   (Hajbabaei   et   al.,   2012),   and   EGR,   though   the   latter   will   require   a  instalment  of  new  engine.  According  to  Nayyar  (2010)  the  effect  of  biodiesel  on  NOx  emissions  can  vary  with  engine  design,  calibration  and  test  cycle.  At  present  time  the  data   available   indicates   that   a   rise   in   NOx   emissions   are   between   1.5%-­‐6.9%  (Hajbabaei  et  al.,  2012)  when  using  B20.    The   capital   expenditures   related   to   biofuels   are   limited   and   comprise   an   initial  cleaning   of   the   tank.   “The   Washington   State   Ferries   Biodiesel   Research   and  Demonstration  Project”  has   tested  cleaning  by  wiping   the   tank  walls  with  B100.  The  costs   reported   were   160   EUR/m3   of   tank   capacity   (WST,   2004).   For   a   B20   mix,  instalment   of   heaters   and   change   of   seals   and   gaskets   is   not   considered   to   be   a  requisite.      Microbial   growth   leading   to   formation   of   sludge,   clogging   the   filtration   system,  was  experienced   on  B20   blend   trials   of   three   ferries.   The   sludge   problem  was   solved   by  application  of  a  biocide  in  the  fuel  (WST,  2004).    

Page 16: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

15   LITEHAUZ   September  2013  

  The   added   operational   expenditures   from   the   B20   biofuel   compared   to  MDO   are   6  EUR/tonnes.6  In   addition   are   maintenance   costs,   as   well   as   the   potential   adding   of  biocides,  however  there  is  not  sufficient  data  available  to  quantify  maintenance  costs.  It  is,  though,  expected  that  maintenance  costs  will  increase  significantly  in  commercial  marine  applications  where  biofuels  are  used  (Nayyar,  2010).  B100  biodiesel  contains  8  –  11%  less  energy  than  conventional  diesel  (Petzold  et  al.,  2011;  Wue  et  al.,  2011,  US-­‐EPA,  2002,  Jayaram  et  al.,  2011)  and  fuel  consumption  will  therefore  increase  by  the  same  amount.          

Biofuel   Amount   Unit  

MDO   818   EUR/tonnes  Biodiesel  (B20)   824   EUR/tonnes  

Price  difference  from  MDO   6   EUR/tonnes  

Tank  cleaning   160   EUR/m3  tank  capacity  SFOC  penalty  (B100)   8  -­‐  11   %  

 

4.5 Liqified  Natural  Gas  (LNG)  

Liquefied  natural  gas  (LNG)  is  an  alternative  fuel,  which  MAINLY  REDUCES  emission  of  NOx,   SOx   and   CO2.   As   a   natural   gas,   it   is   comprised   of   methane   (predominant  component),   ethane   and   small   amounts   of   heavy   hydrocarbons.   LNG   is   stored   as   a  liquid  at  -­‐162°C.  The  LNG  engines  for  ships  are  either  mono-­‐type  engines,  which  solely  use  LNG  as  fuel,  or  dual  fuel-­‐type  engines  that  can  switch  between  conventional  fuel  and   LNG.   LNG   dual   fuel   systems,   with   diesel   electric   propulsion   units   for   better  efficiency,   are   used   on   vessels   with   short   journey   times   such   as   e.g.   ferries,   cruise  liners,   and   supply   vessels.   LNG   tankers   commonly   use   dual   fuel   system   on   4-­‐stroke  engines.   Two-­‐stroke   engines   are   a   recent   contribution  where   both  MAN  Diesel   and  Wartsila  have  announced   that   they  have   LNG-­‐powered   two-­‐stroke  engines   available  for  marine  propulsion  (Litehauz,  2012).      SOx  can  be  reduced  by  up  to  100%,  NOx  by  90%  and  CO2  by  approximately  20%.  Other  emission   parameters   include   reduction   of   PM,   black   Carbon   (BC),   VOC   and   other  GHGs.   There   is   however   the   potential   risk   of  methane   slip,   a   GHG   that   is   20   times  more  potent  than  CO2  (Litehauz,  2012).  Risk  of  release  of  uncombusted  methane  can  be  mitigated  with  technical  measures,  e.g.,  better  design  of  combustion  chamber.  It  is  expected   that   requirements   for   methane   leakage   from   new   LNG   engines   will   be  included  in  future  regulation.    MAN  Diesel  advises  that  an  LNG  retrofit  is  not  possible  on  a  two-­‐stroke,  mechanically  controlled  fuel  system  and  that  a  conversion  to  an  electro-­‐hydraulic  common  rail  fuel  system   (ME-­‐B)   is   required.7     Though   LNG   has   higher   energy   content   than  MDO   and  less  fuel  is  needed,  it  requires  close  to  double  the  fuel  tank  volume  compared  to  fuel  oils  due  to  pressure,   insulation  and  gas  handling  equipment,  which   is  a  challenge  for  

 6  Pers.  Com.  Peter  Christoffersen,  Head  of  Sales,  Q8,  Includes,  blending  and  delivery  7  The  CAPEX  can  be  reduced  by  20%  if  the  vessel  has  an  electrohydraulic  common  rail  fuel  system  (ME-­‐B,  ME-­‐C  or  RT-­‐Flex)  already  installed.  

Table  11   Cost  of  switching  to  biofuel  

Page 17: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

16   LITEHAUZ   September  2013  

  vessels   with   limited   or   no   deck   space.   Furthermore,   the   availability   of   fuel   in   ports  limits  the  use  of  LNG  (CNSS,  2011).  Cost  estimates  for  LNG  fuel  tanks  range  from  USD  1,000/m3   -­‐   USD   5,000/m3   (Litehauz,   2012).   Additional   crew   competencies   are   also  needed  due  to  the  complexity  and  safety  requirements  of  the  systems.  10%  additional  crewing  cost  is  assumed.    

LNG   Amount   Unit  

Cryogenic  plant   1,140,000   EUR  LNG  tank  cost   760   EUR/m3  

LNG  tank  capacity   2,000   m3  

LNG  machinery  conversion   32   EUR/kW  

NORD  Butterfly  ME-­‐B  conversion*   9,480   kW  

CAPEX*   610,000   EUR  

ME-­‐B  conversion  cost*   64   EUR/kW  

Total  Engine  LNG  conversion  cost  (excl.  inst.)   96   EUR/kW  

Total  Engine  LNG  conversion  cost  (incl.  inst.)   347   EUR/kW  

Pilot  fuel  consumption  penalty   2.0%   kg/kWh  

Cryogenic  pump  fuel  penalty   1.2%   kg/kWh  

Total  penalty   3.2%   kg/kWh  

 

4.6 Slow  steaming  

Slow  steaming   is   a   reduction   from   full   ship   speed   to  a   lower   speed.  This  option   is   a  operational   emission   reduction   option   as   fuel   consumption   increases   as   a   cubic  function   of   vessel   speed   (Harvald,   S.,   1977).   A   slower   vessel   speed   will   therefore  naturally  have  a  significant  reducing  effect  on  emissions.      Figure   1   shows   the   connection   between  MCR   and   fuel   consumption   for  mechanical  and   electronically   controlled   two-­‐stroke   engines   (MEPC   61/INF.18,   2010).   For   four-­‐stroke  engines  the  curve  lies  approximately  5%  higher.        

 

 

Table  12  Cost  of  switching  to  LNG  

Figure  1  

Specific  Fuel  Consumption  of  mechanically  

controlled  and  electronically  controlled  

diesel  engines  

Page 18: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

17   LITEHAUZ   September  2013  

  It   is  possible   to   just   reduce  speed  without  adjusting   the  engine   to   the  new   load   (re-­‐tuning/derating),   however   the   emission   reductions  will   not   be   as   high   as   when   the  engine  is  tuned  correctly  to  the  new  operating  load.  In  addition,  low  load  operation  on  conventional  engines  may  lead  to  problems  with  e.g.  loss  of  main  engine  turbocharger  and  propeller  efficiency,  hull  fouling,  and  economizer  soot  build  up.  According  to  MAN  Diesel  it  is  not  possible  to  reach  compliance  levels  with  tuning/derating  alone.    Electronic   engines   (ME,   ME-­‐B   and   RT-­‐FLEX)   are   flexible   with   regards   to   low   load  operation  and   thus  more   suitable   for   slow   steaming.   It   is   therefor   recommended   to  convert   all   mechanical   injection   main   engines   to   electronically   controlled   engines  (Litehauz,  2012).    An   increase   in   the   voyage   time,   may   lead   to   a   reduced   capacity   to   move   goods,  passengers   and   to   maintain   delivery   schedules.   However,   in   case   of   ferries,   an  increased  voyage  time  may  be  counterbalanced  by  a  shorter  turnaround  time,   if   it   is  possible   to   optimize   the   transfer   of   goods   and   passengers.   If   a   lost   capacity   is  remedied  by  the  operation  of  additional  ships,  the  added  cost  reduces  or  completely  removes  the  benefit  of  slow  steaming.   In  practice,   it   is  seen  that  a  10%  reduction   in  speed   results   in   a  net  20%   reduction   in   fuel   consumption  overall  when  adjusted   for  loss  of  capacity  (Maersk,  2010).    The  capital  expenditures  comprise  the  conversion  cost  to  ME-­‐B,  which  is  estimated  to  64  EUR/kW8  (Litehauz,  2012).  If  a  vessel  already  has  an  electronic  engine  installed,  the  CAPEX  will  be  reduced  by  approximately  45-­‐50%.    

 

  Amount   Unit  

Capital  expenditures  (incl.  conversion)   610,000   EUR  

Capital  expenditures  (ex.  conversion)   274,000-­‐305,000   EUR  

Cost  for  ME-­‐B  conversion   64   EUR/kW  

SFOC  penalty*   -­‐5%   %  

*  With  a  10%  speed  reduction  and  adjusted  for  loss  of  capacity.  

 

 8  Conversion  was  done  from  a  6S50MC-­‐C  (9,480  kW)  motor  to  a  6S50ME-­‐B  motor  with  the  same  effective  power  

Table  13    

Cost  of  changing  to  slow  steaming.  

Page 19: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

18   LITEHAUZ   September  2013  

  5 Examples  of  technology  application  

5.1 Choice  of  ferries  

The   list  of  considered  ferries   includes  39  vessels.  Ferries  are  often  bought  or  built  to  the  specific  route  and  ports  and  the  hull  is  kept  shipshape  for  much  longer  than  is  the  case  for  other  commercial  vessels.  However,  the  wear  and  tear  of  the  engine  can  only  be  kept  at  bay  for  so  long,  and  it   is  also  found  that  approx.  one  third  (12)  of  the  +30  year  ferries  in  Denmark  has  had  new  engine(s)  installed  at  some  point  (and  sometimes  more  than  once  –  e.g.  M/F  Egense).  Whereas  it  would  be  a  very  serious  concern  in  the  merchant   fleet   if   a  particular   abatement   technology   required   substantial   changes   to  the  engine  or  even  a  new  engine  this  may  not  necessarily  be  the  case  for  all  ferries.      Examples  of  ferries  more  than  30  years  with  the  same  engine  include  M/F  Ida  (Bogø-­‐Stubbekøbing),   M/F   Næssund   (Mors-­‐Thy),   Sønderho   (Esbjerg   –   Fabø),   and   M/F  Strynboen   (Strynø  –  Rudkøbing).   Installed  effect  on   these   smaller   ferries   range   from  150  to  250  kW,  which  is  typical  for  inshore  ferries.      In   order   to   select   two   ferries   for   example   calculations   an   analysis   of   the  aforementioned   list   of   Danish   ferries   where   conducted.   The   analysis   comprised  making  plots  of   installed  effect  vs.  numbers  of   ferries,   travel  distance  vs.  number  of  ferries   etc.   From   these   plots,   the   ferries  were   divided   into   two   distinct   groups,   see  Appendix  B.      The   first   group  comprises   ships   that  have  an   installed  power   smaller   than  5000  kW,  with   a   travel   distance   shorter   than   30   km  and  built   before   1995.   The   second   group  comprises   ships   that   have   an   installed   power   larger   than   5000   kW,   with   a   travel  distance   longer   than   30   km  and  built   after   the   1995.   The   groups   are   termed   “small  ferries”  and  “large  ferries”  respectively.    Average   values   for   travel   distance   and   installed   power   were   assessed   within   each  group  and  used  to  single  out  two  ferries,  one  for  each  group,  that  best  represent  the  groups.    For   small   ferries  Odin   Sydfyen  where   chosen,  which   operates   the   Bøjden   -­‐   Fynshav  route  and  for  large  ferries,  Kattegat,9  which  operates  the  Århus  –  Kalundborg  route.      The  base  data  used  in  calculations  for  the  ferry  Odin  Sydfyen  is  presented  in  Table  14.    The  specific  fuel  oil  consumption  (SFOC)  for  four-­‐stroke  diesel  engines  is  based  on  Friis  et  al.  (2002)  and  represents  the  lower  SFOC  value  (range  175-­‐195  at  80%  MCR).  SFOC  may  therefore  potentially  be  larger  than  the  used  175  g/kWh  for  smaller  engines.  If  a  higher   SFOC   is   applied   changes   in   the   emission   pattern   will   be   proportional.   The  capital   investments  will  be  the  same,  but  operational  expenditures  will  be  higher,  as  the  fuel  consumption  is  higher.    

 9  During  the  finalisation  of  this  report  it  was  announced  that  the  route  on  which  the  ferry  Kattegat  is  operating  will  be  terminated  on  the  12th  October  2013.      

Page 20: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

19   LITEHAUZ   September  2013  

   Odin  Sydfyen  (Small  ferry)   Amount   Unit  

Year   1982   -­‐  

Engine   2  x  B&W  Alpha   -­‐  

Max  power  output     1280   kW  

Assumed  operating  power   896   kW  

Travel  distance  (back  and  forth)   14.3   NM  

Travel  distance  (back  and  forth)   26.5   km  

Travel  time  in  a  year   613.33   hours  

Assumed  SFOC   175   g/kWh  

Fuel  capacity   20   m3  

   The  data  for  the  ferry  Kattegat  is  presented  in  Table  15.    

Kattegat  (Large  ferry)   Amount   Unit  

Year   1996   -­‐  

Engine   2  x  B&W/MAN   -­‐  

Max  power  output  [kW]   11700   kW  

Assumed  operating  power   8190   kW  

Travel  distance  (back  and  forth)   84.7   NM  

Travel  distance  (back  and  forth)   156.9   km  

Travel  time  in  a  year   4160   hours  

Assumed  SFOC   175   g/kWh  

Fuel  capacity   500   m3  

 

5.2 Feasibility  of  technologies  for  example  ferries  

The  short  listed  technologies  described  in  section  3  and  4  where  assessed  with  regards  to  applicability  on   the  example   ferries,   as  well   as   if   combinations  of   the   short   listed  technologies  where  feasible.  This   led  to  the  inclusion  of  an  SCR/Biofuel  combination.  All   other   combinations   were   deemed   to   be   unsuitable   or   excessive.   EGR   is   not  considered  as  this  technology  only  are  relevant  when  installing  a  new  engine.        

Table  14    

Data  for  Odin  Sydfyen.  

Table  15    

Data  for  Kattegat.  

Page 21: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

20   LITEHAUZ   September  2013  

  5.3 Cost  Calculations  

An  overview  of  installation  and  operational  costs  for  the  respective  ferries  are  given  in  Table   16   and   Table   17.   It   is   seen   that   the   use   of   biodiesel   (B20)   and   slow   steaming  (with  no  engine  modifications)  do  not   result   in  any  significant   investments,  however  there   is  OPEX   associated  with   biodiesel   and   savings  with   slow   steaming.   The  CAPEX  ranges   from   approx.   DKK   600.000   to   DKK   3.3   mill.   for   Odin   Sydfyen   and   from   DKK  600.000  to  DKK  30  mill.  for  Kattegat.  LNG  is  the  most  expensive  investment,  however  considerable   saving  may  be  gained   from  the  use  of   the  alternative   fuel.  The  missing  infrastructure   is,   however,   not   considered   and   should   be   taken   into   account.   The  Danish   Maritime   Authority   has   estimated   the   costs   of   installing   a   relative   small  bunkering   station   to   15  mill.   €   (yearly   capacity   52.000  m3),   and   OPEX   of   3   mill.   €.  Though   this   estimate   relates   to   a   LNG   bunker   station,   which   are   far  more   capacity  than  needed  for  both  example  ferries  (approx.  220  m3  and  15.000  m3  respectively  for  Odin   Sydfyen   and   Kattegat),   considerable   additional   investments   have   to   be  considered  if  LNG  is  to  be  used.  This  will  have  a  large  impact  on  the  individual  business  case.   For   all   other   technologies,   except   slow   steaming   and   LNG,   the  OPEX   is   higher  than  when  MDO  is  used.  For  the  slow  steaming  scenarios  a  5%  reduction  in  speed  will  result   in   loss   of   turn-­‐around   time   in   the  order   of   2-­‐3  minutes   for  Odin   Sydfyen   and  approx.  20  minutes  for  Kattegat.  Change  of  time  schedule  has  not  been  considered  in  the  calculations.    Apart  from  the  specific  cost  profile  of  and  the  reduction  potential  of  the  technologies,  also   combinations   have   been   investigated.   E.g.   SCR   biodiesel,   seem   to   be   a   good  combination   due   to   reduction   of   NOx   which   may   rise   from   the   use   of   biodiesel.  Obviously  slow  steaming  can  be  combined  with  all  the  other  shortlisted  technologies,  and  also  SCR/scrubber  combination  may  be  feasible,  however,  these  combinations  are  not  investigated  further.      

Odin  Sydfyen  CAPEX    [DKK]  

Low                                  High  

OPEX    [DKK/year]  

Low                                  High  SCR   570.000   960.000   16.000   20.000  Slow  steaming  (excl.)*   0   -­‐65.000  

Slow  steaming  (incl.)*   610.000   -­‐65.000  Scrubber   2.700.000   70.000  Biodiesel   25.000   145.000   150.000  

LNG  (incl.  inst.)**   3.300.000   -­‐216.000  SCR/  Biodiesel   600.000   980.000   160.000   170.000  *  5%  reduction  in  speed.  “excl.”  No  modification  of  motor.  “incl.”  includes  modification  of  engine.  **Investments  in  infrastructure  is  not  included  

 

Table  16    

Cost  associated  with  installment  of  

technologies  for  Odin  Sydfyen  

Page 22: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

21   LITEHAUZ   September  2013  

   

Kattegat  CAPEX    [DKK]  

Low                                  High  

OPEX    [DKK/year]  

Low                                  High  SCR   5.200.000   8.700.000   1.100.000   1.300.000  Slow  steaming  (excl.)*   0   -­‐2.200.000  Slow  steaming  (incl.)*   5.600.000   -­‐2.200.000  

Scrubber   24.400.000   440.000  Biodiesel   595.000   1.100.000   1,300.000  LNG  (incl.  inst.)**   30.300.000   -­‐14.700.000  

SCR/  Biodiesel   5.800.000   9.300.000   2.200.000   2.700.000  *  5%  reduction  in  speed.  “excl.”  No  modification  of  motor.  “incl.”  includes  modification  of  engine.  **Investments  in  infrastructure  is  not  included  

 

5.4 Emission  reductions  

The  yearly  reduction  profiles  of  CO2,  NOX  and  SOX  of  the  respective  ferries  are  given  in   Table   18   and   Table   19.   The   largest   CO2   reductions   are   obtained   from   LNG,   slow  steaming  and  biodiesel,  as  well  as  from  the  combination  of  SCR  and  biodiesel.  For  SCR  and  scrubbers  can  be  seen  a  rise  in  CO2  emissions,  due  to  energy  consumption  from  the  use  of  the  technologies  which  only  addresses  NOx  and  SOX  emissions.  Obviously,  the  highest  NOx  reductions  are  found  from  the  use  of  SCR,  as  well  as  LNG,  as  LNG  has  higher  energy  content  than  MDO10  and  less  fuel  is  needed.  A  smaller  rise  in  emissions  is   seen   from   biodiesel   for   the   reversed   reason   as   it   has   lower   energy   content.   The  largest   SOx   reduction   comes   from   use   of   scrubber   and   LNG,   as   well   as   a   smaller  reduction   from   use   of   biodiesel   and   combination   technologies,   which   comprise  biodiesel.  The  scrubber  washes  the  SOx  from  the  exhaust  whereas  the  reduction  seen  from   LNG   and   biodiesel   is   due   to   no   SOx   content   in   these   alternative   fuels.   The  reduction   from  use  of  biodiesel  may  therefore  be   larger   if  e.g.  B30  or  higher   is  used  instead.   The   emission   scenario   from   use   of   MDO   is   presented   in   Table   18   for  comparison.    

Emissions  from  use  of  MDO  CO2  

[tones/year]  NOx    

[tonnes/year]  SOx  

[tonnes/year]  

Odin  Sydfyen   357   6,5   0,2  Kattegat   24.000   440   15,7    

 10  MDO  44  MJ/kg  compared  to  50  MJ/kg  for  LNG.    

Table  18    

Estimated  emissions  from  use  of  MDO  

operating  the  two  example  ferries  

Table  17    

Costs  associated  with  installment  of  

technologies  on  Kattegat  

Page 23: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

22   LITEHAUZ   September  2013  

   

Odin  Sydfyen  CO2  [kg/year]  Low                  High  

NOx    [kg/year]  Low                    High  

SOx  [kg/year]  Low                    High  

SCR   -­‐2   -­‐4   6,2   6,2   0   0  Slow  steaming*     34,8   0,6   0  Scrubber   -­‐7,1   -­‐10,7   -­‐0,1   -­‐0,2   0,2  Biodiesel   23,3   54,2   -­‐0,2   0  LNG   80,4   3,9   5,8   0,2  SCR/  Biodiesel   23,3   54,2   6,0   0  *  5%  reduction  in  speed.  The  given  reductions  for  slow  steaming  relates  to  fuel  consumption  and  an  eventual  impure  combustion  is  not  considered  her,  which  may  give  a  lesser  reduction.  This  is,  however,  linked  to  some  degree  of  uncertainty  as  it  is  marginal  reduction  of  speed  and  it  is  an  assessment,  which  should  be  done  on  a  case  by  case.  The  reduction  potential  may  be  used  fully  with  re-­‐tuning  and  modification  of  engine.  

     

Kattegat  CO2  [kg/year]  Low                  High  

NOx    [kg/year]  Low                    High  

SOx  [kg/year]  Low                    High  

SCR   -­‐138   -­‐277   420.000   0  Slow  steaming*   1.100.000   21.000   0,7  Scrubber   -­‐485.000   -­‐725.000   -­‐8.800   -­‐13.200   14.400   15.300  Biodiesel   1.600.000   3.600.000   -­‐16.000   -­‐18.600   2.900  LNG   5.400.000   264.000   396.000   14.100   15.700  SCR/  Biodiesel   1.600.000   3.600.000   405.000   2.800   2.700  *  5%  reduction  in  speed.  The  given  reductions  for  slow  steaming  relates  to  fuel  consumption  and  an  eventual  impure  combustion  is  not  considered  her,  which  may  give  a  lesser  reduction.  This  is,  however,  linked  to  some  degree  of  uncertainty  as  it  is  marginal  reduction  of  speed  and  it  is  an  assessment,  which  should  be  done  on  a  case  by  case.  The  reduction  potential  may  be  used  fully  with  re-­‐tuning  and  modification  of  engine.  

   

Table  19    

Yearly  emission  reductions  for  Odin  

Sydfyen  

Table  20    

Yearly  emission  reductions  for  Kattegat  

Page 24: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

23   LITEHAUZ   September  2013  

  6 References  Alfa  Laval,  2011,  Reduktion  af  NOx  og  svovl  -­‐  Sådan  håndterer  vi  luftforurening  i  skibsfarten,  presentation  at  Danish  Shipowner  Association:  available  at.  http://www.tinv.dk/public/dokumenter/tinv/Konferencer%20og%20arrangementer/Afholdte%20arrangementer/A6%20CSR/111122%20-­‐%20Reduktion%20af%20NOx%20og%20SOx/13%2015%20%20%20Alfa%20Laval%20Aalborg_Jens%20Peter%20Hansen.pdf    Andreoni,  V.,  Miola,  A.,  Perujo,  A.,  2008,  Cost  Effectiveness  Analysis  of  the  Emission  Abatement  in  the  Shipping  Sector  Emissions,  European  Commission,  viewed  17/1/2013,  http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/7978/1/reqno_jrc49334_eur_report_cost_effectiviness.pdf%5B1%5D.pdf    CNSS,  2011,  Air  pollution  Technologies,  viewed  8/1/2013,  http://cleantech.cnss.no/air-­‐pollutant-­‐tech/    Corbett,  J.  J.,  Winebrake,  J.  J.  and  Green,  E.  H.,  2010,  An  Assessment  of  Technologies  for  Reducing  Regional  Short-­‐Lived  Climate  Forcers  Emitted  by  Ships  with  Implications  for  Arctic  Shipping,  Carbon  Management  1(2):  207-­‐225  10.4155/cmt.10.27      Dieselnet,  2008,  IMO  adopts  Tier  II/III  emission  standadrs  and  fuel  requirements  for  ships,  dieselnet,  viewed  8/1/2013,  http://www.dieselnet.com/news/2008/10imo.php    Entec,  2005,  Service  Contract  on  Ship  Emissions:  Assignment,  Abatement  and  Market-­‐based  Instruments,  Task  2c  –  SO2  Abatement,  European  Commission  Directorate  General  Environment,  Entec  UK  Limited      EU  directive  2005/33/EC,  2005,  Directive  2005/33/EC  of  the  European  Parliament  and  of  the  Council  of  6  July  2005  amending  Directive  1999/32/EC    EU,  no  date,  Abatement  Technology,  viewed  1/8/2013,  http://www.google.dk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDcQFjAA&url=http%3A%2F%2Fec.europa.eu%2Fenvironment%2Fair%2Ftransport%2Fpdf%2FAbatement%2520technology.xls&ei=JEH5UN76G-­‐eD4ATr4YDQCA&usg=AFQjCNEbf_QFVR1fpHjXM2xfFQG0zvrvvg&bvm=bv.41248874,d.bGE      Faber,  J.,  Nelissen,  D.,  Hon,  G.,  Wang,  H.  and  Tsimplis,  M.,  2012,  Regulated  Slow  Steaming  in  Maritime  Transport:  An  Assessment  of  Options,  Costs  and  Benefits    Fellowship,  n.d.,  Technology,  viewed  17/1/2013,  http://vikinglady.no/technology/      Friis  A.  M.,  Andersen  P.,  og  Jensen  J.  J.,  2002,  Ship  Design  Part  1,  Technical  University  of  Denmark,  Department  of  Mechanical  Engineering,  Coarsta,  Martitime  and  Structural  Engineering,  ISBN  978-­‐87-­‐707-­‐800-­‐49    Gutber  H.  Schlüter  A.,  and  Licata  A.,  nd,  Deactivation  of  SCR  catalyst.  Availbale  at:  

Page 25: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

24   LITEHAUZ   September  2013  

 http://www.netl.doe.gov/publications/proceedings/00/scr00/LICATA.PDF  

Hansen  J.  P.,  2011,  Svovlreduktion  med  havvands-­‐  og  ferskvandsscrubbere                      -­‐  Udfordringer  og  erfaringer  fra  DFDS  skibet  Ficaria  Seaways,  presentation  at  the  conference  “Reduktion  af  NOx  og  svovl  -­‐  Sådan  håndterer  vi  luftforurening  i  skibsfarten”,  Alfa  Laval,  Aalborg,  at  the  Danish  Shipowner  Association,  22nd  of  November  2011.    Hansen,  J.,  P.,  2012,  Exhaust  Gas  Scrubber  Installed  Onboard  MV  Ficaria  Seaways,  Public  Test  Report,  Environmental  Project  No.  1429,  2012,  Danish  Ministry  of  the  Environment.    Harvald,  S.,  1977,  Prediction  of  Power  of  Ships,  Lyngby,  Denmark:  Department  of  Ocean  Engineering,  Technical  University  of  Denmark.    icct,  2012,  Marine  Black  Carbon  Emissions  Reduction  Strategies  and  Technologies,  The  International  Council  on  Clean  Transportation,  access:  http://www.theicct.org/blogs/staff/edit-­‐blog-­‐post-­‐arctic-­‐maritime-­‐shipping-­‐and-­‐black-­‐carbon    IMO,  2009,  Second  IMO  Greenhouse  Study  2009,  viewed  8/1/2013,  http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf      IMO,  2011a,  MARPOL  2011,  fifth  edition,  IMO  publication,  London    IMO,  2011b,  Air  Pollution  and  Greenhouse  Gas  Emissions,  IMO,  viewed  7/1/2013,  http://www.imo.org/OurWork/Environment/PollutionPrevention/AirPollution/Pages/GHG-­‐Emissions.aspx      IMO,  2013a,  International  Convention  for  the  Prevention  of  Pollution  from  Ships  (MARPOL),  Adoption:  1973  (Convention),  1978  (1978  Protocol),  1997  (Protocol  -­‐  Annex  VI);  Entry  into  force:  2  October  1983  (Annexes  I  and  II).,  online  the  15th  of  May  2013.  http://www.imo.org/About/Conventions/ListOfConventions/Pages/International-­‐Convention-­‐for-­‐the-­‐Prevention-­‐of-­‐Pollution-­‐from-­‐Ships-­‐(MARPOL).aspx  

 IMO,  2013b,  Special  Areas  under  MARPOL,  viewed  24/7/2013,  http://www.imo.org/ourwork/environment/pollutionprevention/specialareasundermarpol/Pages/Default.aspx    Jayaram,  V.,  Agrawal,  H.,  Welch,  W.  A.,  Miller,  J.  W.  and  Cocker,  D.  R.,  2011,  Real-­‐Time  Gaseous,  PM  and  Ultrafine  Particle  Emissions  from  a  Modern  Marine  Engine  Operating  on  Biodiesel,  Environmental  Science  &  Technology  45(6):  2286-­‐2292  10.1021/es1026954.    Kristensen  H.  O.,  2012,  Energy  Demand  And  Exhaust  Gas  Emissions  Of  Marine  Engines,  Technical  University  of  Denmark,  Project  no.  2010-­‐56,  Emissionsbeslutningsstøttesystem  Work  Package  2,  Report  no.  05  September  2012  

Page 26: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

25   LITEHAUZ   September  2013  

  LITEHAUZ,  2012,  Investigation  of  appropriate  control  measures  (abatement  technologies)  to  reduce  Black  Carbon  emissions  from  international  shipping,  IMO,  viewed  June  18th  2013,  http://www.imo.org/ourwork/environment/pollutionprevention/airpollution/documents/air%20pollution/report%20imo%20black%20carbon%20final%20report%2020%20november%202012.pdf      Lloyds,  2010,  Maersk  and  Lloyd’s  Register  team  up  for  marine  engine  bio-­‐fuel  tests,  http://www.lr.org/news_and_events/press-­‐releases/181528-­‐maersk-­‐and-­‐lloyds-­‐register-­‐team-­‐up-­‐for-­‐marine-­‐engine-­‐biofuel-­‐tests.aspx    Lövblad,  G.,  Fridell,  E.,  2006,  Experiences  from  use  of  some  techniques  to  reduce  emissions  from  ships,  Göteborg:  Swedish  Maritime  Administration  and  Region  Västra  Götaland.    Maersk,  2010,  Slow  Steaming  Here  to  Stay    MAN  Diesel  &  Turbo,  2013,  Secondary  Measures,  viewed  17/1/2013,  http://www.mandieselturbo-­‐greentechnology.com/0000489/Technology/Secondary-­‐Measures.html        MEPC.203(62)add.1,  2011,  Amendments  To  The  Annex  Of  The  Protocol  Of  1997  To  Amend  The  International  Convention  For  The  Prevention  Of  Pollution  From  Ships,  1973,  As  Modified  By  The  Protocol  Of  1978  Relating  Thereto  (Inclusion  of  regulations  on  energy  efficiency  for  ships  in  MARPOL  Annex  Vi,  Annex  19,  The  Marine  Environment  Protection  Committee,  IMO  

MST,  2012,  Economic  Impact  Assessment  of  a  NOx  Emission  Control  Area  in  the  North  Sea,  Environmental  Project  no.  1427,  2012,  Incentive  Partners  and  Litehauz,  published  by  Danish  Ministry  of  Environment.  ISBN:  978-­‐87-­‐92903-­‐20-­‐4    Nayyar,  2010,  The  use  of  biodiesel  fuels  in  the  U.S:  Marine  Industry    Opdal  O.  A.  and  Hojem  J.  F.,  2007,  Biofuels  in  ships,  ZERO-­‐REPORT  -­‐  December  2007  ZERO  –  Zero  Emission  Resource  Organisation.    Petzold,  A.,  Lauer,  P.,  Fritsche,  U.,  Hasselbach,  J.,  Lichtenstern,  M.,  Schlager,  H.  and  Fleischer,  F.,  2011,  Operation  of  Marine  Diesel  Engines  on  Biogenic  Fuels:  Modification  of  Emissions  and  Resulting  Climate  Effects,  Environ.  Sci.  Technol.  45(24):  10394  -­‐  10400  10.1021/es2021439    Swedish  Maritime  Administration  (SMA),  2006,  Certified  NOx  Measures  in  Ships,  Sweden  (cited  in  icct,  2007,  Air  Pollution  and  Greenhouse  Gas  Emissions  from  Ocean-­‐going  Ships:  Impacts,  Mitigation  Options  and  Opportunities  for  Managing  Growth)      U.S.  Department  of  Energy,  2013,  Clean  Cities  Alternative  Fuel  Price  Report,  viewed  June  17th  2013,  http://www.afdc.energy.gov/uploads/publication/alternative_fuel_price_report_jan_2013.pdf    

Page 27: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

26   LITEHAUZ   September  2013  

   US-­‐EPA,  2002,  A  Comprehensive  Analysis  of  Biodiesel  Impacts  on  Exhaust  Emissions  -­‐  Draft  Technical  Report.  EPA420-­‐P-­‐02-­‐001,    http://www.epa.gov/oms/models/analysis/biodsl/p02001.pdf    Xue,  J.,  Grift,  T.  E.  and  Hansen,  A.  C.,  2011,  Effect  of  biodiesel  on  engine  performances  and  emissions,  Renewable  and  Sustainable  Energy  Reviews  15(2):  1098-­‐1116  10.1016/j.rser.2010.11.016    Scrubbers  for  the  Baltic  Sea  –  B-­‐M  Kullas-­‐Nyman,  Wärtsilä  p.  6.  Viewed  16/08/13    IACCSEA  White  Paper  Dec.  2012  –  viewed  20/08/13    

Page 28: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

27   LITEHAUZ   September  2013  

  Appendix  A  -­‐  Long  list  

Technology   Fuel  savings   VOC   NOx     SOx   CO2   GHG   PM   BC  

Post  engine  technologies  

Diesel  Particle  filter*           No2   No2   -­‐3.5%2       85%2   85%2  95-­‐99%13(28,23,27,32)  

Exhaust  Gas  Recirculation   -­‐4%7      80%1  

35%6,7  No2  

NR2       40-­‐58%13(20)   No/  NR2  >  70%7   19%13(20)  

Plasma  Assisted  Catalytic  Reduction           97%8,  80-­‐907                      

Scrubber  Low  Sulphur*           Y2,  No8   90-­‐95%3**,7   -­‐3%2       75%2**   37.5%2  80%7  

Scrubber  High  Sulphur*           Y2,  No8   90-­‐95%3**,7   -­‐3%2      75%2**  

60%2  80%7  

Selective  Catalytic  Reduction*           Up  to  95%1,7   No2   NR2       25-­‐40%3,  30-­‐45%7   >35%13(3)  

Selective  Non  Catalytic  Reduction*           50%8                      

Fuel  switching  

Biofuel*           Increase  7-­‐10%4  100%12b  

Now  limited4,  biodiesel,  85%13(13,26,29)       25%13(13,26,29)      

20%12b   40-­‐45%8  Dimethyl  Ether  (DME)       35%   100%15   95%(b)     97%    Fuel  cells/Hydrogen           90%12   100%12   Up  to  20%12       100%12   100%13(9,40)  

100%13(9,40)   100%13(9,40)  Liquefied  Natural  Gas       50%7   80-­‐90%1   60%7   90-­‐100%3,7   22.5%2   0-­‐25  %3***   72%3,7   99%13   93.5%2  Renewable  Energy  from  Shore*       94%7   97%7               94%      

Solar  energy*  Few  %  energy  saving4  

            1-­‐2%7              

Ultra  low  suphur  diesel  fuel         90%          

Wind  power*  5%  (15  k)  20%  (10  k)4  

                           

Wave  power   Limited4                

Combustion  modification  

Combustion  Air  Saturation  System3           30-­‐60%3,  50-­‐60%7                      

Direct  Water  Injection  (DWI)*          

Up  to  50-­‐60%1       -­‐2-­‐0%3       Negli-­‐

gible6  Up  to  50%7      

42-­‐60%7  Fluidised  Bed  Combustion   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐   -­‐  

Humid  Air  Motors*          >50%5,7   Typical  

<30%5               Up  to  50%7      >70%1,7  

Internal  Engine  Modifications  -­‐  Slide  Valves       50%7   20%3,7,  30%  in  test7       0%2       80%7   10-­‐

50%13(45)   25%2  

Intercooler  Recuperative  gas  turbine   25-­‐30%8                              

Limestone         50-­‐60%          

Water  in  Fuel*           >55%1   20-­‐50%7   Y2   No2       30%2   70%2  

Operational  measures  

Slow  steaming(c)  (no  derating/re-­‐tuning)   7-­‐25     Follow  fuel  

consumption  

Follow  fuel  consumption  

7-­‐25        

Slow  steaming(c)  (with  derating/re-­‐tuning)   8-­‐29     Follow  fuel  

consumption  

Follow  fuel  consumption  

8-­‐29        

*)  Can  be  applied  on  both  new  build  and  existing  ships  **)  Only  stated  for  scrubber  in  general  ***)  Risk  of  methane  slip  (a)  Only  stated  for  scrubber  in  general,    (b)  If  produced  from  biomass,  (c)  engine  load  from  100%  to  40%.    

Page 29: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

28   LITEHAUZ   September  2013  

  The   references   used   for   the   long-­‐list   are   given   below.   Reference   number   13   is   an  overview   of   reduction   technologies   made   by   the   International   Council   for   Clean  Transportation  (icct).  Whenever  information  from  this  reference  is  used  it  is  indicated  by   “13”   followed   by   brackets   where   the   original   references   are   stated.   These  references  can  be  found  in  the  table  below  reference  number  13.        References:    1.  Incentive  Partners  and  LITEHAUZ,  2012,  Economic  Impact  Assessment  of  a  NOx  Control  Area  in  the  North  Sea,  Danish  EPA  2.  LITEHAUZ,  2012,  Investigation  of  appropriate  control  measures  (abatement  technologies)  to  reduce  Black  Carbon  emissions  from  international  shipping,  IMO  3.  CNSS,  2011,  Air  pollution  Technologies,  viewed  8/1/2013,  http://cleantech.cnss.no/air-­‐pollutant-­‐tech/  4.  IMO,  2009,  Second  IMO  Greenhouse  Study  2009,  viewed  8/1/2013,  http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf  5.  DNV,  2012,  Shipping  2020,  viewed  8/1/2013,  http://www.dnv.nl/binaries/shipping%202020%20-­‐%20final%20report_tcm141-­‐530559.pdf    6.  European  Commission,  2005,  Service  Contract  on  Ship  Emissions:  Assignment,  Abatement  and  Market-­‐based  Instruments,  viewed  9/1/2013,  http://ec.europa.eu/environment/air/pdf/task2_shoreside.pdf    7.  EU,  Factsheet  Abatement  Technology,  viewed  1/8/2013    8.  Andreoni,  V.,  Miola,  A.,  Perujo,  A.,  2008,  Cost  Effectiveness  Analysis  of  the  Emission  Abatement  in  the  Shipping  Sector  Emissions,  European  Commission,  viewed  17/1/2013,  http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/7978/1/reqno_jrc49334_eur_report_cost_effectiviness.pdf%5B1%5D.pdf    9.  MAN  Diesel  &  Turbo,  2013,  Secondary  Measures,  viewed  17/1/2013,  http://www.mandieselturbo-­‐greentechnology.com/0000489/Technology/Secondary-­‐Measures.html          10.  DNV,  2012,  Fuel  cells  for  ships,  viewed  17/1/2013,  http://www.dnv.com/binaries/fuel%20cell%20pospaper%20final_tcm4-­‐525872.pdf  11.  Fellowship,  n.d.,  Technology,  viewed  17/1/2013,  http://vikinglady.no/technology/  12.  Biello,  D.,  2009,  Worlds  First  Fuel  Cell  Ship  Docks  in  Copenhagen,  Scientific  American,  viewed  17/1/2013,  http://www.scientificamerican.com/article.cfm?id=worlds-­‐first-­‐fuel-­‐cell-­‐ship      12b.  EMSA,  2012,  Potential  of  biofuel  for  shipping,  viewed  17/6/2013,  http://emsa.europa.eu/main/air-­‐pollution/items/id/1376.html?cid=149    13.  icct,  Emissions  Reductions  Strategies  and  Technologies,  viewed  18th  of  June,  2013,    http://www.google.dk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2F%2Fwww.theicct.org%2Fsites%2Fdefault%2Ffiles%2FICCT_Emissions_Control_Strategies.xlsx&ei=TmjAUZH0NOSh4gTfkYHwDw&usg=AFQjCNFu1lINS91tTGcFbz8d_BSgtuHxkQ&sig2=VO0glwtN7TmnjxOypNRGmA&bvm=bv.47883778,d.bGE    15.  HALDOR  TOPSØE:  Spireth:  Methanol  fuelled  Diesel  engine  using  the  OBATETM  technology,  Christophe  Duwig,  R&D  Division      

Page 30: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

29   LITEHAUZ   September  2013  

  1  Alfa  Laval.  PureSOx  Exhaust  Gas  Cleaning.  Alfa  Laval  Corporate  AB,  EMD00281EN  1107.  

2  API  Technology  Issues  Work  Group.  Technical  Consideration  of  Fuel  Switching  (2009).  

3   CARB.  Effect  of  SCR  Unit  on  Emissions  from  Auxiliary  Engines,  April  2009.  

4  Caterpillar  Marine  Power  Systems.  Cat  Common  Rail:  Less  Fuel  and  Reduced  Emissions  Mean  More  Environmental  Care.  Leaflet  No.  245  ·∙  12.11  ·∙  e  ·∙  L+S  ·∙  VM3  (2011).  

5  

CIMAC.  "Background  information  on  black  carbon  emissions  from  large  marine  and  stationary  diesel  engines-­‐  definition,  measurement  methods,  emissions  factors  and  abatement  technologies".  The  International  Council  on  Combustion  Engines  (2012).  

6   Clean  Marine.  Integrated  Multistream  Exhaust  Gas  Cleaning.  

7   Confurto,  Nick.  Belco-­‐DuPont  Interview.  

8  Corbett  et  al.  “An  assessment  of  technologies  for  reducing  regional  short-­‐lived  climate  forcers  emitted  by  ships  with  implications  for  Arctic  shipping”.  Carbon  Management  1(2),  207-­‐225,  2010.  

9   DNV.  “Fuel  Cells  for  Ships”.  Research  &  Innovation,  Position  Paper  13.  2012.  

10   Fahimi,  Sulai.  MAN  Diesel  &  Turbo  Interview.  

11   Flanagan,  Jim.  "Maersk  Pilot  Fuel  Switch  Initiative".  Maersk,  16  May  2008.  

12  Germanischer  Lloyd  SE  &  MAN.  Costs  and  benefits  of  LNG  as  ship  fuel  container  vessels:  Key  results  from  a  GL  and  MAN  joint  study  (2012).  

13  Ghosh,  Sujit  and  Tom  Risley.  Alternative  Fuel  for  Marine  Application  Final  Report.  US  MARAD  29  February  2012.  

14  GL.    Measurement  of  particulate  emissions  before  and  after  COUPLE  SYSTEMS  DryEGCS  on  MV  "TIMBUS".    GL-­‐Reg.-­‐No.90577.  CL-­‐T-­‐SC  (2012)  

15  Hafkemeyer,  Jan  and  Olaf  Knueppel.  "The  very  new  exhaust  gas  cleaning  systems".  Couple  Systems  

16  

Jayaram,  Varalakshmi,  J.  Wayne  Miller,  Abhilash  Nigam,  William  Welch,  David  Cocker.  "Effects  of  Selective  Catalytic  Reduction  Unit  on  Emissions  from  an  Auxiliary  Engine  on  an  Ocean-­‐Going  Vessel".  California  Air  Resources  Board,  April  2009  

17  Juliussen,  Lars  R.,  Michael  J.  Kryger  and  Anders  Andreasen.  "MAN  B&W  ME-­‐GI  Engines.  Recent  Research  and  Results."  Proceedings  of  the  International  Symposium  on  Marine  Engineering,  17-­‐21  October  2011,  Kobe,  Japan.  

18   Jurgens,  Ralf.  Couple  Systems  Interview.  

19  Karlsson,  Sören,  Mathias  Jansson,  Jens  Norrgård,  Jens  Häggblom.  "LNG  Conversion  for  Marine  Installations".  Wartsila  Technical  Journal  01.2012.  

20  Khalilarya  et  al.  “Simultaneously  Reduction  of  NOx  and  Soot  Emissions  in  a  DI  Heavy  Duty  diesel  Engine  Operating  at  High  Cool  EGR  Rates.”  International  Journal  of  Aerospace  and  Mechanical  Engineering  6:1  2012.  

21  Khan,  M.  Yusuf,  et  al.  "Benefits  of  Two  Mitigation  Strategies  for  Container  Vessels:  Cleaner  Engines  and  Cleaner  Fuels".  Environ.  Sci.  Technol.  46,  5049-­‐5056,  2012.  

22  Lack  &  Corbett.  "Black  carbon  from  ships:  a  review  of  the  effects  of  ship  speed,  fuel  quality  and  exhaust  gas  scrubbing."  Atmos.  Chem.  Phys.  12,  3985-­‐4000,  2012.  

Page 31: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

30   LITEHAUZ   September  2013  

 23  

Lack  et  al.  “Impact  of  Fuel  Quality  Regulation  and  Speed  Reduction  on  Shipping  Emissions:  Implications  for  Climate  and  Air  Quality.”  Environmental  Science  &  Technology  45(20):  9052-­‐9060,  2011.  

24  Lauer,  P.  "First  DPF  at  a  Medium  Speed  4-­‐Stroke  Diesel  Engine  on  Board  of  an  Ocean  Going  Vessel".  MAN  Diesel  &  Turbo  SE,  Augsburg,  Germany.  

25  MAN  Diesel  and  Turbo.  Diesel-­‐Electric  Drives:  Lower  emissions,  greater  reliability.  

26   MARAD.  Alternative  Fuel  for  Marine  Application  Final  Report  (April  2012).  

27  Meng  Lee,  YAP  ,  Silvia  HENG,  BOO  Puay  Yang.  "Excellent  verified  results  of  CSNOx  by  ABS  on  11MW  main  engine,  a  world's  first".  Ecospec  Global  Technology  Pte  Ltd,  25  Feb  2010.  

28   Mitsui  O.S.K.  Line  <http://www.mol.co.jp/pr-­‐e/2012/e-­‐pr_1209.html>  

29  Nayyar,  Pradeep.  "The  Use  of  Biodiesel  Fuels  in  US  Marine  Industry".  MARAD  April  2010  

30   Nils,  Tove.  Clean  Marine  Interview.  

31  Posada,  F.  CNG  Bus  Emissions  Roadmap:  from  Euro  III  to  Euro  VI.  icct,  December  2009.  

32   Rosatom  <http://wwwrosatom.ru/en/>  

33   Rypos,  Inc.  <http://www.rypos.com/products/adpfc-­‐for-­‐rtg-­‐cranes/>  

34  Sames  et  al.  "Costs  and  benefits  of  LNG  as  ship  fuel  for  container  vessels"  MAN  Diesel  &  Turbo,  May  2012.  

35  Sember,  William  J.  "The  Trade-­‐Off  Between  LNG  and  CNG  Shipping".  ABS  Europe,  Marseille  Maritime  2008:  The  Mediterranean  Basin  Shipping  Future,  16  September  2008.  

36   Slettevoll,  Hollvard.  STADT  Interview.  

37   STADT.  "STADT  has  introduced  Sustainable  Electric  Propulsion".  2012.  

38  Verbeek  et  al.  "Environmental  and  Economic  aspects  of  using  LNG  as  a  fuel  for  shipping  in  The  Netherlands".  TNO-­‐RPT-­‐2011-­‐00166,  2011.  

39  Verbeek,  Ruud  ,  Mark  Bolech  and  Herman  den  Uil.  "Alternative  fuels  for  sea  shipping".  TNO-­‐060-­‐DTM-­‐2011-­‐04219.  2011.  

40  Wallenius  Marine  <http://www.walleniuslines.com/News/News-­‐archive/2010/Unique-­‐Fuel-­‐cell-­‐onboard-­‐mv-­‐UNDINE/>  

41   Wartsila.  "Shipping  in  the  Gas  Age".  2010.  

42   Wartsila.  "Wartsila  SOx  Scrubber  System".  2012.  

43  Winebrake,  J.J.,  J.J.  Corbett  and  E.H.  Green.  Black  Carbon  Control  Costs  in  Shipping.  ClimateWorks  Foundation,  31  January  2009.  

44   Yuska,  Dan.  MARAD  Interview  

 

Page 32: Technical)review) Catalogue) of#redu · PDF fileTechnical)review) –!Catalogue) ... Exhaust!Gas!Recirculation!(EGR)! ‘4! ‘! 35‘80! 0‘19! ... Slow!steaming(c)

     

 

Miljøstyrelsen   TECHNICAL  REVIEW  –  CATALOGUE  OF  REDUCTION  TECHNOLOGIES  

31   LITEHAUZ   September  2013  

  Appendix  B  –  Plot  of  ferries