Technical Pile Foundations Supplement 14Fjdfields.candela.io/media/pages/deep-foundation/...Pile...

10
(210–VI–NEH, August 2007) Pile Foundations Technical Supplement 14F

Transcript of Technical Pile Foundations Supplement 14Fjdfields.candela.io/media/pages/deep-foundation/...Pile...

  • (210–VI–NEH,August2007)

    Pile FoundationsTechnical Supplement 14F

  • Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    (210–VI–NEH,August2007)

    Advisory Note

    Techniquesandapproachescontainedinthishandbookarenotall-inclusive,noruniversallyapplicable.Designingstreamrestorationsrequiresappropriatetrainingandexperience,especiallytoidentifyconditionswherevariousapproaches,tools,andtechniquesaremostapplicable,aswellastheirlimitationsfordesign.Notealsothatprod-uctnamesareincludedonlytoshowtypeandavailabilityanddonotconstituteendorsementfortheirspecificuse.

    Cover photo:Pilefoundationsmaybeneededwherethebearingstrengthoftheearthmaterialsislow.

    IssuedAugust2007

  • (210–VI–NEH,August2007) TS14F–i

    Contents

    TechnicalSupplement 14F

    Pile Foundations

    Purpose TS14F–1

    Introduction TS14F–1

    Bearing capacity TS14F–1

    Lateral load capacity TS14F–4

    Tables Table TS14F–1 Prescriptivevaluesforcohesionlesssoils TS14F–2

    Table TS14F–2 Prescriptivevaluesforcohesivesoils TS14F–3

    Figures Figure TS14F–1 Schematicshowingappliedlateralforceand TS14F–5 assumedsoilreactionsforsinglerigidpile

    drivenintoacohesivesoil.Concentratedloadappliedattopofpile

    Figure TS14F–2 Schematicshowingappliedlateralforceand TS14F–5 assumedsoilreactionsforasinglerigidpile drivenintoacohesivesoil.Uniformlydecreasing loadapplied

    Figure TS14F–3 Schematicshowingappliedlateralforceand TS14F–6 assumedsoilreactionsforsinglerigidpile drivenintoacohesivesoil.Concentratedload appliedattopofpile

    Figure TS14F–4 Schematicshowingappliedlateralforceand TS14F–6 assumedsoilreactionsforsinglerigidpile drivenintoacohesivesoil.Uniformlydecreasing loadappliedasshown

  • (210–VI–NEH,August2007) TS14F–1

    TechnicalSupplement 14F

    Pile Foundations

    Purpose

    Pilesareusedtotransferfoundationforcesthroughrelativelyweaksoiltostrongerstratatominimizesettlement.Themostlikelyapplicationsforpilefoun-dationsinstreamrestorationandstabilizationprojectsareassupportforbankstabilizationstructures(retain-ingwall)andanchorsforlargewoodymaterial(LWM).Pilesmaybeusedtosupportancillarystructuressuchasculverts,structuralchannels,bridges,andpump-ingstations.Thistechnicalsupplementaddressestheanalysesrequiredtodesignpilefoundations.

    Introduction

    Foundationstructuresmaybeclassifiedintotwocategories:shallowanddeep.Thereisnospecificrulethatdefineswhenaparticularstructureisconsideredtobeshallowordeep.Ingeneral,shallowstructuresareconstructedfairlyclosetogroundsurfaceandareusuallyconstructedupwardsfromthebottomsurfaceofanexcavation.

    Traditionally,deepfoundationsrefertopilesthataredrivenintotheground.However,pilesaresometimessetintoholesthatarepreboredordrilledintotheground.Aholeboredintothegroundandfilledwithconcreteiscalledadrilledshaft.Usually,reinforcingsteelisplacedintothedrilledholejustpriortoplace-mentoftheconcrete.Othertermsfordrilledshaftsare:drilledpiers,drilledcaissons,cast-in-placepiles,cast-in-drilled-holepiles,andaugeredpiles.Anothertypeofdrilledshaftfoundationisanauger-castpile.

    Pilesarenormallyusedtoprovidefoundationcapac-itytosupportastructurewhenthebearingcapacityofthesoilisinsufficienttodoso.Ifasoil’sbearingcapac-ityislessthanthatneededtosupportastructure,ashallowfoundationmaybecomeimpracticalorexpen-sive.Bydrivingpilesintotheground,thepilestructurecantakeadvantageofthesoil’sshearstrength,aswellasitscompressive(orbearing)strength.Pilesarealsousedtotransferfoundationforcesthroughrelativelyweaksoilstratatostrongerstratatominimizesettle-ment.

    PilesmaybesteelH-sections;steelpipe;precast,prestressedconcrete;concrete-filledsteelshells;or

    timber.Pileswithsolidcrosssections,orhollowpileswithclosedends,typicallydisplacethesoilastheyaredrivenandaretermeddisplacementpiles.Pileswithopencrosssections,suchasH-sections,orpipepileswithoutclosedends,typicallycutthroughthesoil,ratherthandisplacingitastheyaredriven,sotheyaretermednondisplacement piles.Whetherapilebehavesinadisplacingornondisplacingmannerdependsheavilyonthesoilproperties.Piledrivingmaycausecohesivesoilstoremoldandcausedensitychangesincohesionlesssoils.Thesechangesmayresultingroundsurfaceelevationchanges(heavingorsettling)inthegeneralareaofthedrivingoperation.Properpiledrivingequipmentselectionandoperationcangreatlyminimizethepossibleadverseeffectsofpileinstalla-tion.

    Pilefoundationsareusedinstreamrestorationandstabilizationprojectsassupportforbankstabilization(retainingwall)structuresandanchorsforLWM.Pilesmaybeusedtosupportancillarystructuressuchasculverts,structuralchannels,bridges,andpumpingstations.

    Pilesaretypicallyinstalledusingspecializedpiledriv-ingequipment.Themotiveforcethatdrivesthepileintothegroundisappliedbyapiledrivinghammer,whichisattachedtothetopofapile.Acraneisusedtosupportthepiledrivingequipmentandhandletheindividualpiles.

    Bearing capacity

    Theallowablebearingoraxialcapacityofadrivenpilemaybedeterminedfromthefollowingequation:

    QQ

    Allowabletotal=

    factorofsafety (eq.TS14F–1)

    Q Q Q Wttotal po friction pile= + −int (eq.TS14F–2)

    where:Q

    total =ultimatecapacityofpile

    Qpoint =end-bearingcapacityofpileQ

    friction =capacityduetofrictionalong

    lengthofpileWt

    pile =weightofpile

    factorofsafety =3.0

  • Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    TS14F–2 (210–VI–NEH,August2007)

    Foracohesionlesssoil,thefollowingformulasmaybeusedtodeterminevalues(tableTS14F–1)forthecomponentsofthebearingcapacityequation:

    Q DN Apo q point int= ′ ′γ (eq.TS14F–3)

    where:γ′ = effectiveunitweightofsoilD = embeddeddepthofpileA

    point = areaofpiletip

    ′ = +′′N eq

    π φ φtan tan ( )2 452

    (eq.TS14F–3a)

    where:φ′ =tan-1(0.67tanφ)φ =angleofinternalfrictionofsoil

    Q K Dfriction average o shape= ′ ∑τ (eq.TS14F–4)

    where: ′ = ′ ′τ γ φaverage ozK tan (eq.TS14F–4a)

    where:γ′ =effectiveunitweightofsoilz =depth(alongpile)atpointofanalysisΚ

    =ratiooflateraltoverticalsoilstresson

    pileΚ

    o =0.7forpilesloadedincompression

    Κo =0.5forpilesloadedintension

    φ′ =tan-1(0.67tanφ)φ =soilangleofinternalfriction

    Σο =perimeterofpileΚ

    shape=pileshapefactor

    Κshape

    =1.000forroundperimeter =0.785forsquareperimeter

    I-beampilesareconsideredtohaveasquareperimeterwithsidelengthsequivalenttotheirrespectivedepthandwidthdimensions.

    = 0.95foroctagonperimeter = 0.84forhexagonperimeter = 0.60fortriangularperimeter

    D = depthofpile

    Table TS14F–1 Prescriptivevaluesforcohesionlesssoils

    Soil typeAngle of internal friction (°)

    Angle of friction between soil and pile (°)

    Bearing capacity coefficient Nq

    Maximum allowable capacity, Q

    Friction(tons/ft2)

    Bearing(tons/ft2)

    Cleansand 35 30 11 1.00 100

    Siltysand 30 25 7 0.85 50

    Sandysilt 25 20 5 0.70 30

    Silt 20 15 4 0.50 20

  • TS14F–3(210–VI–NEH,August2007)

    Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    Table TS14F–2 Prescriptivevaluesforcohesivesoils

    Clay Shear strength

    Normallyconsolidated c z Kz o

    = ′ −( )0 5 1. γ

    Underconsolidated c z Kz o

    = ′ −( )0 125 1. γ

    Overconsolidatedbyerosion

    Overconsolidatedbydesiccation

    c z Kz o

    = + ′ −( )600 0 5 1lb/ft2 . γ

    c z

    c z

    z

    z

    = =

    = =

    2 000 0 20

    1 200 2

    ,

    ,

    lb/ft for ftto ft

    lb/ft for

    2

    2 00 60

    3 000 60 160

    ftto ft

    lb/ft for ftto ft2c zz = =,

    Forhighlyfissuredclays,usethefollowing:′ =c 0

    ′ =φ 5 10 to and′ = ′ ′τ γ φaverage o

    z K tan

    Notes:Forpilesloadedinaxialcompression,K

    o=0.7

    Forpilesloadedinaxialtension,Ko=0.5

    Effectiveshearstrength,c´=0.67cZ=depthalongpilefromgroundsurface(ft)Z=0atgroundsurface

    Foracohesivesoil,thefollowingformulasmaybeusedtodeterminevalues(tableTS14F–2)forthecom-ponentsofthebearingcapacityequationcitedabove.

    Q A c Dpo point int .= + ′( )7 4 γ (eq.TS14F–5)where:A

    point =areaofpiletip

    c =shearstrengthofcohesivesoilatpiletip depth

    γ′ =effectiveunitweightofsoilD =depthofpile

    Q c K Dfriction average o shape= ′ ∑ (eq.TS14F–6)

    where:′caverage =averageeffectiveshearstressofsoil,

    alongwithagivenlength,orsegmentof thepileΣο =perimeterofpileΚ

    shape =pileshapefactor

    Κshape

    =1.000forroundperimeter =0.785forsquareperimeter

    I-beampilesareconsideredtohaveasquareperimeterwithsidelengthsequivalenttotheirrespectivedepthandwidthdimensions.

    =0.95foroctagonperimeter =0.84forhexagonperimeter =0.60fortriangularperimeterD =depthofpileorlengthofpilesegment

  • Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    TS14F–4 (210–VI–NEH,August2007)

    Lateral load capacity

    Anapproximatelateralcapacityofashort,rigidpiledrivenintoacohesivesoilcanbedeterminedfromthefollowingequation(figs.TS14F–1andTS14F–2):

    P

    PAllowable

    Ultimate=

    factorofsafety (eq.TS14F–7)

    where:P

    Allowable =allowablelateralloadappliedto

    exposedportionofpilefactorofsafety =3

    P B

    DH D

    DHUltimate = +

    +

    − +

    σ 42

    22

    2

    2

    (eq.TS14F–8)where:σ =allowablesoilstress,σ=9cB =widthordiameterofpileD =depthofpileembedmentH =heightofpile(aboveground)tocentroidofap-

    pliedload

    Ifadesignloadisknown,therequireddepthofem-bedmentmaybedeterminedfromthefollowingequa-tion:

    DP

    B

    P

    B

    HP

    BUltimate Ultimate Ultimate= +

    +σ σ σ

    24

    2

    (eq.TS14F–9)

    Formoststreamrestorationandstabilizationappli-cations,adrivenpilemaybeconsideredtoberigidwhen:

    H

    B≤ 12 (eq.TS14F–10)

    Anapproximateallowablelateralloadforashort,rigidpiledrivenintoacohesionlesssoilmaybedeter-minedusingthefollowingequation(figs.TS14F–3andTS14F–4.

    PP

    AllowableUltimate=

    factorofsafety (eq.TS14F–11)

    where:P

    Allowable =allowablelateralloadappliedto

    exposedportionofpilefactorofsafety =3

    PBK D

    H DUltimatep=

    ′+( )

    γ 2

    2 (eq.TS14F–12)

    where:γ′ =effectiveunitweightofsoilB =widthordiameterofpileK

    p=passivepressurecoefficient

    Kp =

    = +

    Passivepressurecoefficient

    tan2 452

    φ (eq.TS14F–13)

    φ =soilangleofinternalfrictionD =embeddeddepthofpile

    Ifadesignloadisknown,therequireddepthofem-bedmentmaybedeterminedfromthefollowingequa-tion.

    DP

    BKH DUltimate

    p

    =′

    +( )2γ (eq.TS14F–14)

    ThisequationissolvediterativelyuntilbothvaluesforDareequivalent.

  • TS14F–5(210–VI–NEH,August2007)

    Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    H

    P

    D

    B

    = 9c

    σ

    σ

    σ

    Figure TS14F–2 Schematicshowingappliedlateralforceandassumedsoilreactionsforasinglerigidpiledrivenintoacohesivesoil.Uniformlydecreasingloadapplied

    H

    P

    D

    B

    = 9c

    σ

    σ

    σ

    Figure TS14F–1 Schematicshowingappliedlateralforceandassumedsoilreactionsforsinglerigidpiledrivenintoacohesivesoil.Concentratedloadappliedattopofpile

  • Part 654 National Engineering Handbook

    Pile FoundationsTechnical Supplement 14F

    TS14F–6 (210–VI–NEH,August2007)

    Figure TS14F–4 Schematicshowingappliedlateralforceandassumedsoilreactionsforsinglerigidpiledrivenintoacohesivesoil.Uniformlydecreasingloadappliedasshown

    = 3γ ′ZKp

    = 3γ′DKp

    D

    B

    z

    D

    z

    Z

    σ

    σ

    σ

    H

    P

    H

    P

    D

    B

    z

    D

    z

    Z

    σ

    σ

    D= 3γ′DKp

    = 3γ ′ZKp

    σ

    σ

    Figure TS14F–3 Schematicshowingappliedlateralforceandassumedsoilreactionsforsinglerigidpiledrivenintoacohesivesoil.Concentratedloadappliedattopofpile

    NRCS Stream Restoration Design HandbookCONTENTSTECHNICAL SUPPLEMENTSTS 2 Use of Historic Information for DesignTS 3A Stream Corridor Inventory and Assessment TechniquesTS 3B Using Aerial Videography and GIS for Stream Channel Stabilization in the Deep Loess Region of Western IowaTS 3C Streambank Inventory and EvaluationTS 3D Overview of United States BatsTS 3E Rosgen Stream Classification Technique-Supplemental MaterialsTS 5 Developing Regional Relationships for Bankfull Discharge Using Bankfull IndicesTS 13A Guidelines for Sampling Bed MaterialTS 13B Sediment Budget ExampleTS14A Soil Properties and Special Geotechnical Problems Related to Stream Stabilization ProjectsTS 14B Scour CalculationsTS 14C Stone Sizing CriteriaTS 14D Geosynthetics in Stream RestorationTS 14E Use and Design of Soil AnchorsTS 14F Pile FoundationsTS 14G Grade Stabilization TechniquesTS 14H Flow Changing TechniquesTS 14I Streambank Soil BioengineeringTS 14J Use of Large Woody Material for Habitat and Bank ProtectionTS 14K Streambank Armor Protection with Stone StructuresTS 14L Use of Articulating Concrete Block Revetment Systems for Stream Restoration and Stabilization ProjectsTS 14M Vegetated Rock WallsTS 14N Fish Passage and Screening DesignTS 14O Stream Habitat Enhancement Using LUNKERSTS 14P Gullies and Their ControlTS 14Q Abutment Design for Small BridgesTS 14R Design and Use of Sheet Pile Walls in Stream Restoration and Stabilization ProjectsTS 14S Sizing Stream Setbacks to Help Maintain Stream Stability

    REFERENCES