Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William...

15
Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess

Transcript of Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William...

Page 1: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Team Scribacious RabbleDesign Constraint Analysis

Paul RosswurmMitch Erdbruegger

Ben KobinWilliam Hess

Page 2: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Project Description

Adaptation of the board game SCRABBLE® Maintains the traditional physical tile interface... augmented by ..

Sensing tile location and value Automatically calculating and displaying scores Maintaining player profiles Validating words in the event of a 'challenge' Exposing game stats over an external interface

Page 3: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Computational Constraints

Not much, just pushing data around Store player info

– Very Small

– Can be slow

– Simple metrics Search dictionary for a word

– 1 MByte of data

– ~200-300 lookups for a binary search

– Can be slow (external EEPROM speed is fine)

Page 4: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Computational Constraints (cont.)

USB Communications

– USB module or UART w/ external USB logic

– Response latency is not critical

– Not hosting

– Libraries exist (48MHZ, 256 bytes RAM min.) Game logic

– Large state machine

– Can be slow (but preferably not)

Page 5: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Computational Constraints (cont.)

Board sensor data

– Scanning row/column logic

– Time response to a voltage change

– Calibration – simple arithmetic with parameters

– Upper bound 1 second to scan entire board

Page 6: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

External I/O

USB connection

– Published libraries use 2 dedicated pins• Must have USB module on-board

– UART to USB chip (e.g. FT232R)• 3.3V – 5.0V I/O

• Internally clocked

Page 7: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Internal I/O : User Input

Rotary Pulse Generator

– 2 digital inputs Challenge buttons

– 4 digital inputs

Page 8: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Internal I/O : Displays

4 LCD Screens (probably TG12864H3-05A)

– At least 128x64 for required text

– 3.3V max voltage @ max 1mA

– SPI interface

– Minimum 6 pins (for all 4)

– Maximum 16 pins (for all 4)

– 1 KByte of RAM to fully buffer RGB LED backlights

– Voltages of B:2.0V, R,G:3.1V @ 18mA

– Need 12 PWM channels!

– Will need an external chip

Page 9: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Internal I/O : Capacitive Sensors

Measure the time constant of a circuit

– Drive pin and input pin on a timer module Logic to isolate the correct circuit

– Minimum 1 pin (clock with external logic)

– Ideally 8 pins (4 each for row and column select)

Page 10: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Internal I/O : Memory

I2C EEPROM

– At least 1MB

– e.g. CAT24M01XI-T2

– 3.3V logic levels

– 400KHz max

– I2C communications

Page 11: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Peripherals: On-Chip

1 – USB Module OR UART 1-2 – I2C (PWM / EEPROM) 1-4 – SPI (Displays) 1 – Input Capture Timer Module 6 – Digital Inputs 9-16 – Digital Outputs

Page 12: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Potential Microcontrollers

Freescale MC9S08JE128CMB Minimal Little bloat Cheaper

Microchip PIC24EP256GU810 Fulfills maximum requirements and more More expensive

Page 13: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Peripherals: Off-Chip

External LED Driver

– e.g. MAX6965

– Open drain outputs – set correct voltages

– 3.3V input logic

– I2C interface

– 8 bit PWM outputs UART to USB bridge (if not a module)

– e.g. FT232R Level translator / Optical isolation

– Sensor package and micro

Page 14: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Power Constraints

• ICs are all 3.3V

• Sensors may be better with higher voltage

• Can use unregulated AC->DC wall wart

• Reduce to 3.3V for ICs

• Plenty of room in packaging, low risk of overheating

Page 15: Team Scribacious Rabble Design Constraint Analysis Paul Rosswurm Mitch Erdbruegger Ben Kobin William Hess.

Costs

• Competition

– Most expensive physical board - $175

– Electronic hand-held units - $30

• Target MSRP of $200