Tara*Cook 1,*Victoria*Paup1,*Curtis*Merrick1,*Carolyn*F ...

1
Optimization of Non-Saccharomyces Yeasts for Production of Lower Ethanol Red Wines Tara Cook 1 , Victoria Paup 1 , Curtis Merrick 1 , Carolyn F. Ross 1 and Charles G. Edwards 1 1 School of Food Science, Washington State University, Pullman, WA ACKNOWLEDGEMENTS The authors thank the Washington State Grape & Wine Research Program, Ste. Michelle Wine Estates, and the School of Food Science for financial and material support. REFERENCES Aplin, J.J., Cook, T.L., Edwards, C.G. Evaluation of nonFSaccharomyces yeasts isolated from Washington vineyards to reduce final alcohol contents of Merlot wines. Am. J. Enol. Vitic. (Submitted 2020). Aplin, J.J., White, K.P., Edwards, C.G., 2019. Growth and metabolism of nonFSaccharomyces yeasts isolated from Washington state vineyards in media and high sugar grape musts. Food Microbiol. 77, 158–165. Baker, A.K., Castura, J.C., Ross, C.F., 2016. Temporal Check FAllFThatFApply Characterization of Syrah Wine. J. Food Sci. 81, 1521–1529. Contreras, A., Hidalgo, C., Henschke, P.A., Chambers, P.J., Curtin, C., Varela, C., 2014. Evaluation of nonFSaccharomyces yeasts for the reduction of alcohol content in wine. Appl. Environ. Microbiol. 80, 1670–1678. De Deken, R.H., 1966. The Crabtree effect: A regulatory system in yeast. J. Gen. Microbiol. 44, 149–156. Erten, H., 2002. Relations between elevated temperatures and fermentation behaviour of Kloeckera apiculata and Saccharomyces cerevisiae associated with winemaking in mixed cultures. World J. Microbiol. Biotechnol. 18, 377–382. Gao, C., Fleet, G.H., 1988. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. J. Appl. Bacteriol. 65, 405–409. Godden, P., Wilkes, E., Johnson, D., 2015. Trends in the composition of Australian wine 1984F2014. Aust. J. Grape Wine Res. 21, 741–753. Goldner, M.C., Zamora, M.C., Lira, P.D.L., Gianninoto, H., Bandoni, A., 2009. Effect of ethanol level in the perception of aroma attributes and the detection of volatile compounds in red wine. J. Sens. Stud. 24, 243–257. Gonzalez, R., Quirós, M., Morales, P., 2013. Yeast respiration of sugars by nonFSaccharomyces yeast species: A promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci. Technol. 29, 55–61. King, E.S., Dunn, R.L., Heymann, H., 2013. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 28, 235–243. Mira de Orduña, R., 2010. Climate change associated effects on grape and wine quality and production. Food Res. Int. 43, 1844–1855. Villamor, R.R., Ross, C.F., 2013. Wine matrix compounds affect perception of wine aromas. Annu. Rev. Food Sci. Technol. 4, 1–20. RESULTS/DISCUSSION The most important finding in this work was the use of nonFSaccharomyces yeasts resulted in significant reductions of ethanol in largeFscale (120kg) fermentations (Table 1). This was a result of temperature optimization, which extended nonFSaccharomyces survival during fermentation, and thus increased fermentable sugars utilized by these yeasts. Total nonFSaccharomyces yeast populations quickly declined in fermentations inoculated with S. cerevisiae alone (undetectable by day 9), while fermentations inoculated with Mt. pulcherrima and My. guilliermondii displayed nonFSaccharomyces populations until day 13 and 19 (Figure 1). An increase in ethanol tolerance of nonF Saccharomyces yeasts at low temperatures has been previously reported (Erten, 2002; Gao and Fleet, 1988). Previous work in our laboratory has shown the use of Mt. pulcherrima and My. guilliermondii do not lead to reductions in wine quality (Aplin et al., 2019, 2020). This was also observed in the present study as sensory panel data revealed that wines with the highest ethanol reduction (Mt. pulcherrima following temperature regime B) were lower in attributes of ‘bitter’ (taste), ‘ethanol’ (flavor), and ‘hot/ethanol’ (mouthfeel) as shown in Figure 2. ABSTRACT Viticultural systems that yield ‘rich’, ‘fullFbodied’ red wines often involve extended vine ripening periods to achieve phenolic maturity. However, these practices result in increased concentrations of sugar which subsequently leads to higher amounts of ethanol. As a means to reduce the ethanol contents of wines, selected nonFSaccharomyces yeasts have been studied to metabolize glucose and fructose in grape must prior to initiation of alcoholic fermentation by S. cerevisiae. However, little work has been performed to optimize fermentation temperatures to encourage these nonFSaccharomyces yeasts. In 2018, Merlot grapes were crushed/destemmed with 120 kg distributed into temperature controlled 300 L fermentation tanks. Musts were then inoculated with either Metschnikiowa pulcherrima or Meyerozyma guilliermondii at 10 6 CFU/mL prior to adding S. cerevisiae D254. While control tanks, inoculated with S. cerevisiae alone, were set to a maximum of 25°C, treatments were set to a maximum of either 15°C (temperature regime A) or 17.5°C (temperature regime B) before adding S. cerevisiae on day 3. At this time, temperature maximums were changed to 25°C. Once fermentations achieved dryness (<2 g/L residual sugar), wines were bottled and stored for 6 months at 7°C prior to sensory analysis. The inoculation of nonFSaccharomyces yeasts into initially lower temperature musts was effective in extending culturability of nonF Saccharomyces yeasts during fermentation and led to reductions in final ethanol contents. Here, wines inoculated with Mt. pulcherrima following temperature regime B prior to inoculation of S. cerevisiae achieved the greatest reduction in ethanol, approximately 0.7% v/v. Additionally, panelists found this treatment to express lower sensory scores for ‘hotness’, ‘bitterness’, and ‘ethanol flavor’. In agreement with past studies conducted by our laboratory, inoculation of either Mt. pulcherrima or My. guilliermondii into musts followed by S. cerevisiae led to reductions in alcohol contents without reductions in quality. INTRODUCTION Average alcohol concentrations of wines have risen due to extended vine hangFtime to achieve phenolic maturity and thus higher sugar concentrations at harvest (Godden et al., 2015; Goldner et al., 2009). Increases in alcohol content can negatively affect wine quality and sensory attributes. With increases in ethanol, attributes of bitterness, astringency, and ethanol burn tend to be intensified (Baker et al., 2016; Villamor and Ross, 2013) while fruity attributes tend to be masked (Goldner et al., 2009; King et al., 2013). In addition, higher alcohol wines risk rejection by health conscious consumers and may incur additional taxation (Gonzalez et al., 2013; Mira de Orduña, 2010). Gonzalez et al. (2013) suggested the use of nonFSaccharomyces yeasts in conjunction with S. cerevisiae for ethanol reduction. The Crabtree effect is not observed in many nonFSaccharomyces species (De Deken, 1966); therefore, these yeasts would partially consume fermentable sugars to metabolites other than ethanol. While ethanol reductions of up to 1.6 % (v/v) have been reported in small scale laboratory fermentations (Contreras et al., 2014), few have reported the largeFscale use of nonFSaccharomyces yeasts. Additionally, optimization of fermentation temperature for ethanol reduction has not been reported. Previous work in our laboratory has shown the potential for ethanol reduction without negatively influencing wine quality using selected nonF Saccharomyces strains (Aplin et al., 2020, 2019). The aim of this work was to optimize fermentation temperature for use of selected nonFSaccharomyces yeasts to reduce final ethanol concentration in red wines without affecting wine quality. EXPERIMENTAL DESIGN Table 1. Composition of Merlot wines inoculated with S. cerevisiae and fermented at 25°C or with selected nonFSaccharomyces yeasts following temperature regime A or B prior to inoculation of S. cerevisiae on day 3 aFc Mean values within columns with different superscripts are significantly different (p≤0.05) nd: not detected (below limit of detection <0.07 g/L ) Merlot Grape Must (145 g/L glucose, 142 g/L fructose) 120 kg must per fermenter Control Temperature Regime A Temperature Regime B Set to maximum 25°C Set to maximum 15°C for 3 days, then 25°C for remainder Set to maximum 17.5°C for 3 days, then 25°C for remainder ! Inoculated in duplicate with Metschnikiowa pulcherrima P01A016 or Meyerozyma guilliermondii P40D002 at 10 6 CFU/mL on day 0 ! Inoculated with Saccharomyces cerevisiae D254 on day 3 ! Inoculated in duplicate with Saccharomyces cerevisiae D254 on day 0 Wines sterile filtered (0.45 μm) 750 mL nitrogen flushed bottles filled Stored 6 months at 7°C Trained Sensory Analysis Panel High Performance Liquid Chromatography 10 Panelists 12 hours of training 44 total aroma, taste, mouthfeel, and flavor attributes assessed Wines evaluated in triplicate Glucose Fructose Organic Acids Ethanol RESULTS Figure 1. Culturable populations of S. cerevisiae ( ), total nonFSaccharomyces yeasts ( ), and temperatures ( ) of Merlot fermentations inoculated on day 0 with S. cerevisiae and set to 25°C(A), or with Mt. pulcherrima (B,D) or My. guilliermondii (C,E) following temperature regime A (B,C) or temperature regime B (D,E) until sequentially inoculated with S. cerevisiae on day 3. *Asterisk denotes wines pressed at 0°Brix and kept at 21°C. < 600 10 3 10 5 10 7 10 9 0 5 10 15 20 25 30 * 0 4 8 12 16 20 24 Time (days) * < 600 10 3 10 5 10 7 10 9 * < 600 10 3 10 5 10 7 10 9 Populations (CFU/mL) Temperature (°C) 0 5 10 15 20 25 30 * 0 4 8 12 16 20 24 0 5 10 15 20 25 30 * A B C D E Figure 2. Spider chart of mean values for attributes found to be significant (*p0.05, **p0.01, ***p0.001) by trained panel (n=10) evaluation of 2018 Merlot wines inoculated with S. cerevisiae and fermented at 25°C or with selected nonFSaccharomyces yeasts following temperature regime A or B prior to inoculation of S. cerevisiae on day 3. + Denotes replicates could not be pooled. 5.5 6.5 7.5 A-Dried Fruit* A-Sulfur* A-Woody* A-Herbaceous* A-Spicy*** A-Yeasty** T-Sweet* T-Bitter** T-Sour** M-Tingle** M-Hot/Ethanol** M-Roughness*** M-Astringent** M-Drying*** M-Puckering*** M-Sharp*** M-Mouthcoat* M-Round** F-Berry* F-Sweaty* F-Dried Fruit** F-Ethanol*** F-Sulfur** F-Solvent* F-Animal* F-Herbaceous** My. guilliermondii A-1 + S. cerevisiae My. guilliermondii B My. guilliermondii A-2 + Mt. pulcherrima A Mt. pulcherrima B 3.5 4.5 FUTURE RESEARCH Fermentations from the same Merlot vineyard block have been conducted in fall of 2019. Optimization for timing of sequential inoculation of S. cerevisiae with Mt. pulcherrima was studied. Wines are currently undergoing analysis.

Transcript of Tara*Cook 1,*Victoria*Paup1,*Curtis*Merrick1,*Carolyn*F ...

Page 1: Tara*Cook 1,*Victoria*Paup1,*Curtis*Merrick1,*Carolyn*F ...

Optimization*of*Non-Saccharomyces Yeasts*for*Production*of*Lower*Ethanol*Red*WinesTara*Cook1,*Victoria*Paup1,*Curtis*Merrick1,*Carolyn*F.*Ross1 and*Charles*G.*Edwards1

1School*of*Food*Science,*Washington*State*University,*Pullman,*WA

ACKNOWLEDGEMENTSThe$authors$thank$the$Washington$State$Grape$&$Wine$Research$Program,$Ste.$Michelle$Wine$Estates,$and$the$School$of$Food$Science$for$financial$and$material$support.

REFERENCESAplin,$J.J.,$Cook,$T.L.,$Edwards,$C.G.$Evaluation$of$nonFSaccharomyces yeasts$isolated$from$Washington$vineyards$to$reduce$final$alcohol$contents$

of$Merlot$wines.$Am.$J.$Enol.$Vitic.$(Submitted$2020).Aplin,$J.J.,$White,$K.P.,$Edwards,$C.G.,$2019.$Growth$and$metabolism$of$nonFSaccharomyces yeasts$isolated$from$Washington$state$vineyards$in$

media$and$high$sugar$grape$musts.$Food$Microbiol.$77,$158–165.Baker,$A.K.,$Castura,$J.C.,$Ross,$C.F.,$2016.$Temporal$CheckFAllFThatFApply$Characterization$of$Syrah$Wine.$J.$Food$Sci.$81,$1521–1529.$Contreras,$A.,$Hidalgo,$C.,$Henschke,$P.A.,$Chambers,$P.J.,$Curtin,$C.,$Varela,$C.,$2014.$Evaluation$of$nonFSaccharomyces$yeasts for$the$reduction$

of$alcohol$content$in$wine.$Appl.$Environ.$Microbiol.$80,$1670–1678.$De$Deken,$R.H.,$1966.$The$Crabtree$effect:$A$regulatory$system$in$yeast.$J.$Gen.$Microbiol.$44,$149–156.$Erten,$H.,$2002.$Relations$between$elevated$temperatures$and$fermentation$behaviour$of$Kloeckera.apiculata.and$Saccharomyces.cerevisiae.

associated$with$winemaking$in$mixed$cultures.$World$J.$Microbiol.$Biotechnol.$18,$377–382.Gao,$C.,$Fleet,$G.H.,$1988.$The$effects$of$temperature$and$pH$on$the$ethanol$tolerance$of$the$wine$yeasts,$Saccharomyces.cerevisiae,.Candida.

stellata and$Kloeckera.apiculata.$J.$Appl.$Bacteriol.$65,$405–409.Godden,$P.,$Wilkes,$E.,$Johnson,$D.,$2015.$Trends$in$the$composition$of$Australian$wine$1984F2014.$Aust.$J.$Grape$Wine$Res.$21,$741–753.$Goldner,$M.C.,$Zamora,$M.C.,$Lira,$P.D.L.,$Gianninoto,$H.,$Bandoni,$A.,$2009.$Effect$of$ethanol$level$in$the$perception$of$aroma attributes$and$the$

detection$of$volatile$compounds$in$red$wine.$J.$Sens.$Stud.$24,$243–257.Gonzalez,$R.,$Quirós,$M.,$Morales,$P.,$2013.$Yeast$respiration$of$sugars$by$nonFSaccharomyces yeast$species:$A$promising$and$barely$explored$

approach$to$lowering$alcohol$content$of$wines.$Trends$Food$Sci.$Technol.$29,$55–61.$King,$E.S.,$Dunn,$R.L.,$Heymann,$H.,$2013.$The$influence$of$alcohol$on$the$sensory$perception$of$red$wines.$Food$Qual.$Prefer.$28,$235–243.$Mira$de$Orduña,$R.,$2010.$Climate$change$associated$effects$on$grape$and$wine$quality$and$production.$Food$Res.$Int.$43,$1844–1855.Villamor,$R.R.,$Ross,$C.F.,$2013.$Wine$matrix$compounds$affect$perception$of$wine$aromas.$Annu.$Rev.$Food$Sci.$Technol.$4,$1–20.

RESULTS/DISCUSSIONThe$most$important$finding$in$this$work$was$the$use$of$nonFSaccharomyces

yeasts$resulted$in$significant$reductions$of$ethanol$in$largeFscale$(120kg)$fermentations$(Table$1).$This$was$a$result$of$temperature$optimization,$which$extended$nonFSaccharomyces survival$during$fermentation,$and$thus$increased$fermentable$sugars$utilized$by$these$yeasts.$Total$nonFSaccharomyces yeast$populations$quickly$declined$in$fermentations$inoculated$with$S..cerevisiae.alone$(undetectable$by$day$9),$while$fermentations$inoculated$with$Mt..pulcherrima and$My..guilliermondii displayed$nonFSaccharomyces$populations$until$day$13$and$19$(Figure$1).$An$increase$in$ethanol$tolerance$of$nonFSaccharomyces yeasts$at$low$temperatures$has$been$previously$reported$(Erten,$2002;$Gao$and$Fleet,$1988).$

Previous$work$in$our$laboratory$has$shown$the$use$of.Mt..pulcherrima.and$My..guilliermondii.do$not$lead$to$reductions$in$wine$quality$(Aplin$et$al.,$2019,$2020).$This$was$also$observed$in$the$present$study$as$sensory$panel$data$revealed$that$wines$with$the$highest$ethanol$reduction$(Mt..pulcherrimafollowing$temperature$regime$B)$were$lower$in$attributes$of$‘bitter’$(taste),$‘ethanol’$(flavor),$and$‘hot/ethanol’$(mouthfeel)$as$shown$in$Figure$2.$

ABSTRACTViticultural$systems$that$yield$‘rich’,$‘fullFbodied’$red$wines$often$involve$

extended$vine$ripening$periods$to$achieve$phenolic$maturity.$However,$these$practices$result$in$increased$concentrations$of$sugar$which$subsequently$leads$to$higher$amounts$of$ethanol.$As$a$means$to$reduce$the$ethanol$contents$of$wines,$selected$nonFSaccharomyces yeasts$have$been$studied$to$metabolize$glucose$and$fructose$in$grape$must$prior$to$initiation$of$alcoholic$fermentation$by$S..cerevisiae.$However,$little$work$has$been$performed$to$optimize$fermentation$temperatures$to$encourage$these$nonFSaccharomyces yeasts.$In$2018,$Merlot$grapes$were$crushed/destemmed$with$120$kg$distributed$into$temperature$controlled$300$L$fermentation$tanks.$Musts$were$then$inoculated$with$either$Metschnikiowa.pulcherrima or$Meyerozyma.guilliermondii at$106CFU/mL$prior$to$adding$S..cerevisiae D254.$While$control$tanks,$inoculated$with$S..cerevisiae alone,$were$set$to$a$maximum$of$25°C,$treatments$were$set$to$a$maximum$of$either$15°C$(temperature$regime$A)$or$17.5°C$(temperature$regime$B)$before$adding$S..cerevisiae.on$day$3.$At$this$time,$temperature$maximums$were$changed$to$25°C.$Once$fermentations$achieved$dryness$(<2$g/L$residual$sugar),$wines$were$bottled$and$stored$for$6$months$at$7°C$prior$to$sensory$analysis.$The$inoculation$of$nonFSaccharomyces yeasts$into$initially$lower$temperature$musts$was$effective$in$extending$culturability$of$nonFSaccharomyces yeasts$during$fermentation$and$led$to$reductions$in$final$ethanol$contents.$Here,$wines$inoculated$with$Mt..pulcherrima.following$temperature$regime$B$prior$to$inoculation$of$S..cerevisiae.achieved$the$greatest$reduction$in$ethanol,$approximately$0.7%$v/v.$Additionally,$panelists$found$this$treatment$to$express$lower$sensory$scores$for$‘hotness’,$‘bitterness’,$and$‘ethanol$flavor’.$In$agreement$with$past$studies$conducted$by$our$laboratory,$inoculation$of$either$Mt..pulcherrima.or$My..guilliermondii.into$musts$followed$by$S..cerevisiae.led$to$reductions$in$alcohol$contents$without$reductions$in$quality.

INTRODUCTIONAverage$alcohol$concentrations$of$wines$have$risen$due$to$extended$vine$

hangFtime$to$achieve$phenolic$maturity$and$thus$higher$sugar$concentrations$at$harvest$(Godden$et$al.,$2015;$Goldner$et$al.,$2009).$Increases$in$alcohol$content$can$negatively$affect$wine$quality$and$sensory$attributes.$With$increases$in$ethanol,$attributes$of$bitterness,$astringency,$and$ethanol$burn$tend$to$be$intensified$(Baker$et$al.,$2016;$Villamor$and$Ross,$2013)$while$fruity$attributes$tend$to$be$masked$(Goldner$et$al.,$2009;$King$et$al.,$2013).$In$addition,$higher$alcohol$wines$risk$rejection$by$health$conscious$consumers$and$may$incur$additional$taxation$(Gonzalez$et$al.,$2013;$Mira$de$Orduña,$2010).

Gonzalez$et$al.$(2013)$suggested$the$use$of$nonFSaccharomyces yeasts$in$conjunction$with$S..cerevisiae for$ethanol$reduction.$The$Crabtree$effect$is$not$observed$in$many$nonFSaccharomyces species$(De$Deken,$1966);$therefore,$these$yeasts$would$partially$consume$fermentable$sugars$to$metabolites$other$than$ethanol.$While$ethanol$reductions$of$up$to$1.6$%$(v/v)$have$been$reported$in$small$scale$laboratory$fermentations$(Contreras$et$al.,$2014),$few$have$reported$the$largeFscale$use$of$nonFSaccharomyces yeasts.$Additionally,$optimization$of$fermentation$temperature$for$ethanol$reduction$has$not$been$reported.$Previous$work$in$our$laboratory$has$shown$the$potential$for$ethanol$reduction$without$negatively$influencing$wine$quality$using$selected$nonFSaccharomyces.strains$(Aplin$et$al.,$2020,$2019).$The$aim$of$this$work$was$to$optimize$fermentation$temperature$for$use$of$selected$nonFSaccharomycesyeasts$to$reduce$final$ethanol$concentration$in$red$wines$without$affecting$wine$quality.$

EXPERIMENTAL*DESIGN Table*1.*Composition$of$Merlot$wines$inoculated$with$S..cerevisiae.and$fermented$at$25°C$or$with$selected$nonFSaccharomyces yeasts$following$temperature$regime$A$or$B$prior$to$inoculation$of$S..cerevisiae on$day$3

aFc$Mean$values$within$columns$with$different$superscripts$are$significantly$different$(p≤0.05)$$nd:$not$detected$(below$limit$of$detection$<0.07$g/L$)

Merlot$Grape$Must$(145$g/L$glucose,$142$g/L$fructose)120$kg$must$per$fermenter

Control Temperature*Regime*A

Temperature*Regime*B

Set$to$maximum$

25°C

Set$to$maximum$15°C$for$3$days,$then$25°C$for$

remainder

Set$to$maximum$17.5°C$for$3$days,$then$25°C$for$

remainder

! Inoculated$in$duplicate$with$Metschnikiowa.pulcherrima.P01A016$orMeyerozyma.guilliermondii P40D002$at$106 CFU/mL$on$day$0

! Inoculated$with$Saccharomyces.cerevisiae.D254$on$day$3

! Inoculated$in$duplicate$with$Saccharomyces.cerevisiae D254$on$day$0

Wines$sterile$filtered$(0.45$μm)750$mL$nitrogen$flushed$bottles$filled

Stored$6$months$at$7°C

Trained$Sensory$Analysis$Panel High$Performance$Liquid$Chromatography

• 10$Panelists• 12$hours$of$training• 44$total$aroma,$taste,$

mouthfeel,$and$flavor$attributes$assessed

• Wines$evaluated$in$triplicate

• Glucose• Fructose• Organic$

Acids• Ethanol

RESULTS

Figure*1.*Culturable$populations$of$S..cerevisiae.($$$),$total$nonFSaccharomyces yeasts$($$$),$and$temperatures$($$)$of$Merlot$fermentations$inoculated$on$day$0$with$S..cerevisiae.and$set$to$25°C$(A),$or$with$Mt..pulcherrima.(B,D)$or$My..guilliermondii.(C,E)$$following$temperature$regime$A$(B,C)$or$temperature$regime$B$(D,E)$until$sequentially$inoculated$with$S..cerevisiae.on$day$3.$*Asterisk$denotes$wines$pressed$at$0°Brix$and$kept$at$21°C.$

< 600

103

105

107

109

0

5

10

15

20

25

30

*

0 4 8 12 16 20 24

Time (days)

*

< 600

103

105

107

109

*

< 600

103

105

107

109

Popu

latio

ns (C

FU/m

L)Tem

perature (°C)

0

5

10

15

20

25

30

*

0 4 8 12 16 20 240

5

10

15

20

25

30

*

A

B C

D E

Figure*2.*Spider$chart$of$mean$values$for$attributes$found$to$be$significant$(*p≤0.05,$**p≤0.01,$***p≤0.001)$by$trained$panel$(n=10)$evaluation$of$2018$Merlot$wines$inoculated$with S..cerevisiae and$fermented$at$25°C$or$with$selected$nonFSaccharomyces yeasts$following$temperature$regime$A$or$B$prior$to$inoculation$of$S..cerevisiae on$day$3.$+Denotes$replicates$could$not$be$pooled.$

5.5

6.5

7.5A-Dried Fruit*

A-Sulfur*

A-Woody*

A-Herbaceous*

A-Spicy***

A-Yeasty**

T-Sweet*

T-Bitter**

T-Sour**

M-Tingle**

M-Hot/Ethanol**

M-Roughness***

M-Astringent**M-Drying***M-Puckering***

M-Sharp***

M-Mouthcoat*

M-Round**

F-Berry*

F-Sweaty*

F-Dried Fruit**

F-Ethanol***

F-Sulfur**

F-Solvent*

F-Animal*

F-Herbaceous**

My. guilliermondii A-1+

S. cerevisiae

My. guilliermondii BMy. guilliermondii A-2+Mt. pulcherrima A Mt. pulcherrima B

3.5

4.5

FUTURE*RESEARCHFermentations$from$the$same$Merlot$vineyard$block$have$been$conducted$in$

fall$of$2019.$Optimization$for$timing$of$sequential$inoculation$of$S..cerevisiaewith$Mt..pulcherrima.was$studied.$Wines$are$currently$undergoing$analysis.$