TAM PVE OBI Peru Ecuador Colombia Venezuela Madeira Solimoes Marañon Huallaga Ucayali Amazonas Napo...

1
TAM PVE OBI Peru Ecuador Colombia Venezuela Madeira Solimoes Marañon Huallaga Uc aya li Amazonas Napo Brasil Bolivia GUA CAE REQ SRE BOR Beni M a m o FIGURE 1 HYDROCLIMATIC VARIABILITY IN THE ANDEAN REGION OF THE AMAZON BASIN ESPINOZA VILLAR Jhan Carlo 1,2,3 , GUYOT Jean Loup 1,2 , RONCHAIL Josyane 1,3,4 , CHAVARRI Eduardo 1,2 , FRAIZY Pascal 1,2 , GUYOMARD Marine 1,5 , NORIEGA Luis 1,6 , de OLIVEIRA Eurides 1,9 , ORDÓÑEZ Juan Julio 1,7 , POMBOSA Rodrigo 1,8 , VAUCHEL Philippe 1,2,6 . The Amazon Basin (AB) is the major hydrological basin in the world (6.10 6 Km 2 , Molinier et al., 1996). Discharge variability has been studied in the main stream (Richey et al., 1989; Costa and Foley, 1999) and a strong variability since the 1970’s has been put in evidence by Callède et al. (2004) and Labat et al. (2005). Few studies analyzed the regional hydroclimatic variability (Rocha et al., 1989; Marengo et al., 1998; Ronchail et al., 2006; Espinoza et al., 2006), though strong runoff events occurred lately, as the dramatic low flow in the western basins in 2005 (Zeng et al., 2007). Nevertheless, what is the main runoff variability in the Andean rivers of the AB? Is the evolution of mean values the same than for extreme values? STATIO N r ρ T r ρ T r ρ T Q m ax Qm Qm in Am p OBI 0.01 0.00 -0.01 -0.10 -0.07 -0.05 -0.33 -0.24 -0.17 0.02-0.10 -0.56 0.43 PVE -0.25 -0.25 -0.17 -0.44 -0.43 -0.28 -0.55 -0.59 -0.38 -0.34 -0.68 -1.41 -0.22 GUA -0.34 -0.50 -0.37 -0.63 -0.68 -0.51 -0.32 -0.45 -0.30 -1.13 -1.91 -3.87 -1.49 CAE 0.45 0.11 0.11 -0.37 -0.18 -0.16 -0.11 -0.20 -0.11 0.95 0.05 -0.47 0.17 TAM -0.18 -0.16 -0.11 -0.49 -0.46 -0.32 -0.56 -0.48 -0.35 -0.22 -0.60 -1.31 0.34 REQ -0.51 -0.56 -0.48 -0.58 -0.55 -0.43 -0.72 -0.66 -0.50 -1.29 -2.09 -5.39 -0.40 BOR 0.11 0.24 0.18 0.39 0.39 0.25-0.46-0.33-0.19 0.31 1.04 -1.34 0.50 SRE 0.57 0.52 0.40 0.62 0.64 0.45 0.14 0.03 0.07 2.06 2.18 0.87 2.65 SRE* 0.55 0.49 0.35 0.65 0.67 0.43 2.09 2.72 N egative trend atthe 99% significance level and index trend less that-1 N egative trend atthe 90% significance level N o trend Positive trend atthe 90% significance level Positive trend atthe 99% significance level and index trend m ore that1 Q m ax Q m Q min TREND INDEX TABLE 2 RESULTS AND DISCUTIONS TAM PVE OBI TAM PVE OBI TAM PVE OBI Qmax Qmean Qmin GUA CAE REQ SRE BOR GUA CAE REQ SRE BOR GUA CAE REQ SRE BOR - + A B C D E F FIGURE 5 The rainfall and runoff annual cycle in TAM, PVE and OBI show a strong seasonality in the tropical PVE basin, but is more regular in TAM and OBI because they drain tropical and equatorial regions (Fig. 3A, B and C). INTRODUCTION DATA Trend tests (parametric Pearson and non-parametric and rank based Spearman and Kendall coefficients) are applied. The interannual rainfall and runoff evolutions reveal a strong diminution in TAM and PVE and no trend in OBI, during the 1974 – 2004 period (Fig. 4A B and C). A Qmean and Qmin diminution in TAM and PVE (significant at the 99% level), and no trend in Qmax is observed for the 1974 – 2004 period (Figure 5 A, B and C, and Table 2). OBI do not display any significant trend during this period. In Andean rivers sub basins, strong trends are detected for the 1990 – 2005 period (Figures 5 D, E and F and Table 2). Inside PVE, trends are negative, strong in GUA and weak in CAE. Toward north, a strong diminution is observed in REQ, but trend is positive and strong in SRE (in Qmax and Qmean principally). In BOR no significant trend is observed. CONCLUSIONS AND PERSPECTIVES The resultant runoff diminution in the Andean rivers of the AB and the absence of trend in the mean stream at Obidos, suggest that the Andean rivers of AB cause extreme low stage values in OBI and that increasing high flow values should be registered in other basins. So, what is the trend in the other Amazon sub basins (Espinoza et al., 2007b)? Any way, what is the origin of these trends: regional and/or global climate changes or human impacts as deforestation? •Callède, J., Guyot, J.L., Ronchail, J., L’Hôte, Y., Niel, H., de Oliveira, E., 2004. Evolution du débit de l’Amazone à Óbidos de 1902 à 1999. Hydrological Sciences journal 49, 85-97. •Espinoza, J.C, Fraizy, P., Guyot, J.L., Ordoñez, J.J., Pombosa, R., Ronchail, J., 2006. La variabilité des débits du Rio Amazonas au Pérou. Climate Variability and Change-Hydrological impacts. IAHS Publ. 308: 424 – 429. •Espinoza, J.C., Ronchail, J., Guyot, J.L., Filizola, N., Noriega, L., Ordonez, J.J., Pombosa, R., Romero, H., 2007a. Spatio – Temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). International Journal of Clinatology. Submitted 2007. •Espinoza, J.C., Ronchail, J., Guyot, J.L., Filizola, N., Noriega, L., Ordonez, J.J.,Vauchel, P., Fraizy P. 2007b. Main rivers discharge trend in the Amazon Basin. In Preparation. •Marengo, J., Tomasella, J., Uvo, C., 1998. Long-term stream flow and rainfall fluctuation in tropical South America: Amazonia, eastern Brazil, and northwest Peru. Journal of Geophysical Research 103, 1775 – 1783. •Molinier, M., Guyot, J.L., de Oliveira, E., Guimarães, V., 1996. Les régimes hydrologiques de l’Amazone et de ses affluents. L’hydrologie tropicale: géoscience et outil pour le développement, Paris, Mai 1995. IAHS Publ. 238: 209 – 222. •Labat, D., Ronchail, J., Guyot, J.L., 2005. Recent advances in wavelet analyses: Part 2 – Amazon, Parana, Orinoco and Congo discharges time scale variability. Journal of Hydrology 314, 289 – 311. •Richey, J.E., Nobre, C., Deser, C., 1989. Amazon river discharge and climate variability. Science 246, 101 – 103. •Rocha, H.R., Nobre, C.A., Barros, M.C., 1989. Variabilidade natural de longo prazo no ciclo hidrológico da Amazônia. Climanálise 4(12), 36 – 42. •Ronchail, J., Guyo,t J.L, Espinoza, J.C, Callède, J., Cochonneau, G., de Oliveira, E., Ordeñez, J.J., Filizola, N., 2006. Impact of the Amazon tributaries on flooding in Obidos. Climate variability and Change – Hydrological Impacts (Procceedings of the Fifth FRIEND World Conference held at Havanna, Cuba, November 2006), IAHS Publ. 308, 2006, 220-225. •Zeng, N., J. Yoon, J. Marengo, A. Subramaniam, C. Nobre, and C. Birkett, 2007: Causes and impact of the 2005 Amazon drought. Science (submitted). REFERENCES 0 100 200 300 1 2 3 4 5 6 7 8 9 10 11 12 PP Q 0 100 200 300 1 2 3 4 5 6 7 8 9 10 11 12 PP Q 0 100 200 300 1 2 3 4 5 6 7 8 9 10 11 12 PP Q FIGURE 3 A B C TAMSHIYACU PORTO VELHO OBIDOS Strong runoff trends are noticed in the Andean rivers of the AB during the 1974 – 2004 period. An opposition is put in evidence between a negative trend in many shouthern tropical basins specially in Qmin and Qmean and a positive trend in a small northern equatorial basin, especially in Qmax. These trends are consistent with rainfall variability (Espinoza et al., 2007a). 1 HYBAM. 2 IRD/UNALM-PERU. 3 LOCEAN/IPSL-FRANCE. 4 UNIVERSITÉ PARIS 7-FRANCE. 5 ENS-FRANCE. 6 SENAMHI BOLIVIA. 7 SENAMHI PERU. 8 INAMHI ECUADOR. 9 ANA BRAZIL. Correspondence to: ESPINOZA VILLAR J.C. LOCEAN. Boite 100, 4 Place Jussieu, 75252. Paris Cedex 05, France. [email protected]. TABLE 1 STATIO N PO RTO VELHO (PVE) GUAYARAMERIN (G UA) CHAOELA ESPERANZA (CAE) TAMSHIYACU (TAM ) REQUENA (REQ ) BO R JA (BO R) SAN REG IS (SER ) O BIDO S (O BI) R IVER M ADEIRA MAMORE BENI AMAZONAS UCAYALI MARAÑON MARAÑON AMAZON SU R FA C E (K m 2 ) 945400 532800 259800 726400 350000 117000 245000 4754500 % SURFACE IN ANDEAN REG ION 22.0 18 43 53.0 50 90 43 14 % SURFACE TO O BIDO S 20.0 11.2 5.6 15.3 7.4 2.5 5.2 Q m ean (m 3 /s) 19100 7600 8600 24500 13500 4700 14900 172350 % D ISC H AR G E TO O BIDO S 11.1 4.4 5.0 14.2 7.8 2.7 8.6 Qm ax(m 3 /s) 39300 14800 16000 34200 23200 14600 22200 238900 Q m in (m 3 /s) 3900 1600 2800 15140 4400 1400 6200 99390 Qm ax/Qm in 10.1 9.3 5.7 2.3 5.3 10.4 3.6 2.4 O BIDO S 0 1000 2000 3000 19 75 1 9 77 1979 1981 1 983 19 85 19 87 1989 1991 1993 199 5 1 9 97 1 9 99 2001 2003 mm Q m ean P PORTO VELHO 0 1000 2000 3000 mm Q m ean P TAMSHIYACU 0 1000 2000 3000 1975 1977 1979 1981 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 mm P Q m ean FIGURE 4 A B C -0.60%/year -0.68%/year -0.10%/year -0.32%/year -0.41%/year -0.77%/year Data is available from HYBAM program (Hydrogeodynamic of the Amazon Basin. www.ore-hybam.org) : Annual mean runoff (Qmean), maximum and minimum annual runoff (Qmax and (Qmin) in Porto Velho (PVE. Madeira River), Tamshiyacu (TAM. Anazonas River) and Obidos (OBI. Amazon River) for the 1974 – 2004 period (Figure 1 and Table 1), and in sub basins inside the TAM watershed (Requena –REQ, Ucayaly River-, San Regis –SRE, Marañon River- and Borja -BOR, Upstream Marañon River-) and inside the PVE watershed (Guayaramerin –GUA, Mamoré River- and Cachuela Esperanza -CAE, Beni River-) (Figure 1 and Table 1). Mean rainfall data is computed in TAM, PVE and OBI basins.

Transcript of TAM PVE OBI Peru Ecuador Colombia Venezuela Madeira Solimoes Marañon Huallaga Ucayali Amazonas Napo...

Page 1: TAM PVE OBI Peru Ecuador Colombia Venezuela Madeira Solimoes Marañon Huallaga Ucayali Amazonas Napo Brasil Bolivia GUA CAE REQ SRE BOR Beni Mamoré FIGURE.

TAM

PVE

OBI

Peru

Ecuador

Colombia

Venezuela

Mad

eira

SolimoesMarañon

Hu

alla

ga

Ucayali

Amazonas

Napo

Brasil

Bolivia

GUACAE

REQ

SRE

BOR

Ben

i

Mam

oré

FIGURE 1

HYDROCLIMATIC VARIABILITY IN THE ANDEAN REGION OF THE AMAZON BASIN

ESPINOZA VILLAR Jhan Carlo1,2,3, GUYOT Jean Loup1,2, RONCHAIL Josyane1,3,4, CHAVARRI Eduardo1,2, FRAIZY Pascal1,2, GUYOMARD Marine1,5, NORIEGA Luis1,6, de OLIVEIRA Eurides1,9, ORDÓÑEZ Juan Julio1,7, POMBOSA Rodrigo1,8, VAUCHEL Philippe1,2,6.

The Amazon Basin (AB) is the major hydrological basin in the world (6.106Km2, Molinier et al., 1996). Discharge variability has been studied in the main stream

(Richey et al., 1989; Costa and Foley, 1999) and a strong variability since the 1970’s has been put in evidence by Callède et al. (2004) and Labat et al. (2005). Few studies analyzed the regional hydroclimatic variability (Rocha et al., 1989; Marengo et al., 1998; Ronchail et al., 2006; Espinoza et al., 2006), though strong runoff events occurred lately, as the dramatic low flow in the western basins in 2005 (Zeng et al., 2007).

Nevertheless, what is the main runoff variability in the Andean rivers of the AB? Is the evolution of mean values the same than for extreme values?

STATION r ρ T r ρ T r ρ T Qmax Qm Qmin AmpOBI 0.01 0.00 -0.01 -0.10 -0.07 -0.05 -0.33 -0.24 -0.17 0.02 -0.10 -0.56 0.43PVE -0.25 -0.25 -0.17 -0.44 -0.43 -0.28 -0.55 -0.59 -0.38 -0.34 -0.68 -1.41 -0.22

GUA -0.34 -0.50 -0.37 -0.63 -0.68 -0.51 -0.32 -0.45 -0.30 -1.13 -1.91 -3.87 -1.49CAE 0.45 0.11 0.11 -0.37 -0.18 -0.16 -0.11 -0.20 -0.11 0.95 0.05 -0.47 0.17

TAM -0.18 -0.16 -0.11 -0.49 -0.46 -0.32 -0.56 -0.48 -0.35 -0.22 -0.60 -1.31 0.34REQ -0.51 -0.56 -0.48 -0.58 -0.55 -0.43 -0.72 -0.66 -0.50 -1.29 -2.09 -5.39 -0.40BOR 0.11 0.24 0.18 0.39 0.39 0.25 -0.46 -0.33 -0.19 0.31 1.04 -1.34 0.50SRE 0.57 0.52 0.40 0.62 0.64 0.45 0.14 0.03 0.07 2.06 2.18 0.87 2.65

SRE* 0.55 0.49 0.35 0.65 0.67 0.43 2.09 2.72

Negative trend at the 99% significance level and index trend less that -1Negative trend at the 90% significance levelNo trendPositive trend at the 90% significance levelPositive trend at the 99% significance level and index trend more that 1

Q max Q m Q min TREND INDEX

TABLE 2

RESULTS AND DISCUTIONS

TAM

PVE

OBI

TAM

PVE

OBI

TAM

PVE

OBI

Qmax Qmean Qmin

GUACAE

REQ

SREBOR

GUACAE

REQ

SREBOR

GUACAE

REQ

SREBOR

-

+

A B C

D E F

FIGURE 5

The rainfall and runoff annual cycle in TAM, PVE and OBI show a strong seasonality in the tropical PVE basin, but is more regular in TAM and OBI because they drain tropical and equatorial regions (Fig. 3A, B and C).

INTRODUCTION

DATA

Trend tests (parametric Pearson and non-parametric and rank based Spearman and Kendall coefficients) are applied. The interannual rainfall and runoff evolutions reveal a strong diminution in TAM and PVE and no trend in OBI, during the 1974 – 2004 period (Fig. 4A B and C). A Qmean and Qmin diminution in TAM and PVE (significant at the 99% level), and no trend in Qmax is observed for the 1974 – 2004 period (Figure 5 A, B and C, and Table 2). OBI do not display any significant trend during this period.

In Andean rivers sub basins, strong trends are detected for the 1990 – 2005 period (Figures 5 D, E and F and Table 2). Inside PVE, trends are negative, strong in GUA and weak in CAE. Toward north, a strong diminution is observed in REQ, but trend is positive and strong in SRE (in Qmax and Qmean principally). In BOR no significant trend is observed.

CONCLUSIONS AND PERSPECTIVES

The resultant runoff diminution in the Andean rivers of the AB and the absence of trend in the mean stream at Obidos, suggest that the Andean rivers of AB cause extreme low stage values in OBI and that increasing high flow values should be registered in other basins. So, what is the trend in the other Amazon sub basins (Espinoza et al., 2007b)? Any way, what is the origin of these trends: regional and/or global climate changes or human impacts as deforestation?

•Callède, J., Guyot, J.L., Ronchail, J., L’Hôte, Y., Niel, H., de Oliveira, E., 2004. Evolution du débit de l’Amazone à Óbidos de 1902 à 1999. Hydrological Sciences journal 49, 85-97.•Espinoza, J.C, Fraizy, P., Guyot, J.L., Ordoñez, J.J., Pombosa, R., Ronchail, J., 2006. La variabilité des débits du Rio Amazonas au Pérou. Climate Variability and Change-Hydrological impacts. IAHS Publ . 308: 424 – 429.•Espinoza, J.C., Ronchail, J., Guyot, J.L., Filizola, N., Noriega, L., Ordonez, J.J., Pombosa, R., Romero, H., 2007a. Spatio – Temporal rainfall variability in the Amazon Basin Countries (Brazil, Peru, Bolivia, Colombia and Ecuador). International Journal of Clinatology. Submitted 2007. •Espinoza, J.C., Ronchail, J., Guyot, J.L., Filizola, N., Noriega, L., Ordonez, J.J.,Vauchel, P., Fraizy P. 2007b. Main rivers discharge trend in the Amazon Basin. In Preparation.•Marengo, J., Tomasella, J., Uvo, C., 1998. Long-term stream flow and rainfall fluctuation in tropical South America: Amazonia, eastern Brazil, and northwest Peru. Journal of Geophysical Research 103, 1775 – 1783. •Molinier, M., Guyot, J.L., de Oliveira, E., Guimarães, V., 1996. Les régimes hydrologiques de l’Amazone et de ses affluents. L’hydrologie tropicale: géoscience et outil pour le développement, Paris, Mai 1995. IAHS Publ. 238: 209 – 222. •Labat, D., Ronchail, J., Guyot, J.L., 2005. Recent advances in wavelet analyses: Part 2 – Amazon, Parana, Orinoco and Congo discharges time scale variability. Journal of Hydrology 314, 289 – 311. •Richey, J.E., Nobre, C., Deser, C., 1989. Amazon river discharge and climate variability. Science 246, 101 – 103.•Rocha, H.R., Nobre, C.A., Barros, M.C., 1989. Variabilidade natural de longo prazo no ciclo hidrológico da Amazônia. Climanálise 4(12), 36 – 42.•Ronchail, J., Guyo,t J.L, Espinoza, J.C, Callède, J., Cochonneau, G., de Oliveira, E., Ordeñez, J.J., Filizola, N., 2006. Impact of the Amazon tributaries on flooding in Obidos. Climate variability and Change – Hydrological Impacts (Procceedings of the Fifth FRIEND World Conference held at Havanna, Cuba, November 2006), IAHS Publ. 308, 2006, 220-225.•Zeng, N., J. Yoon, J. Marengo, A. Subramaniam, C. Nobre, and C. Birkett, 2007: Causes and impact of the 2005 Amazon drought. Science (submitted).

REFERENCES

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12

PPQ

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12

PPQ

0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12

PP

Q

FIGURE 3

A B CTAMSHIYACU PORTO VELHO

OBIDOS

Strong runoff trends are noticed in the Andean rivers of the AB during the 1974 – 2004 period. An opposition is put in evidence between a negative trend in many shouthern tropical basins specially in Qmin and Qmean and a positive trend in a small northern equatorial basin, especially in Qmax. These trends are consistent with rainfall variability (Espinoza et al., 2007a).

1 HYBAM. 2IRD/UNALM-PERU. 3LOCEAN/IPSL-FRANCE. 4UNIVERSITÉ PARIS 7-FRANCE. 5 ENS-FRANCE. 6SENAMHI BOLIVIA. 7SENAMHI PERU. 8INAMHI ECUADOR. 9ANA BRAZIL. Correspondence to: ESPINOZA VILLAR J.C. LOCEAN. Boite 100, 4 Place Jussieu, 75252. Paris Cedex 05, France. [email protected].

TABLE 1

STATIONPORTO VELHO

(PVE)GUAYARAMERIN

(GUA)CHAOELA

ESPERANZA (CAE)TAMSHIYACU

(TAM)REQUENA

(REQ)BORJA (BOR)

SAN REGIS (SER)

OBIDOS (OBI)

RIVER MADEIRA MAMORE BENI AMAZONAS UCAYALI MARAÑON MARAÑON AMAZONSURFACE (Km2) 945400 532800 259800 726400 350000 117000 245000 4754500% SURFACE IN ANDEAN REGION 22.0 18 43 53.0 50 90 43 14% SURFACE TO OBIDOS 20.0 11.2 5.6 15.3 7.4 2.5 5.2Qmean (m3/s) 19100 7600 8600 24500 13500 4700 14900 172350% DISCHARGE TO OBIDOS 11.1 4.4 5.0 14.2 7.8 2.7 8.6Qmax(m3/s) 39300 14800 16000 34200 23200 14600 22200 238900Qmin (m3/s) 3900 1600 2800 15140 4400 1400 6200 99390Qmax/Qmin 10.1 9.3 5.7 2.3 5.3 10.4 3.6 2.4

OBIDOS

0

1000

2000

3000

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

mm

QmeanP

PORTO VELHO

0

1000

2000

3000

mm

QmeanP

TAMSHIYACU

0

1000

2000

3000

1975

1977

1979

1981

1983

1985

1987

1989

1991

1993

1995

1997

1999

2001

2003

mm

P

Qmean

FIGURE 4

A B C

-0.60%/year -0.68%/year -0.10%/year

-0.32%/year-0.41%/year-0.77%/year

Data is available from HYBAM program (Hydrogeodynamic of the Amazon Basin. www.ore-hybam.org) :

Annual mean runoff (Qmean), maximum and minimum annual runoff (Qmax and (Qmin) in Porto Velho (PVE. Madeira River), Tamshiyacu (TAM. Anazonas River) and Obidos (OBI. Amazon River) for the 1974 – 2004 period (Figure 1 and Table 1), and in sub basins inside the TAM watershed (Requena –REQ, Ucayaly River-, San Regis –SRE, Marañon River- and Borja -BOR, Upstream Marañon River-) and inside the PVE watershed (Guayaramerin –GUA, Mamoré River- and Cachuela Esperanza -CAE, Beni River-) (Figure 1 and Table 1).Mean rainfall data is computed in TAM, PVE and OBI basins.