tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City...

21
TALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration TA and TALE TALE FD monocular spectrum TALE SD array Hybrid trigger, SD DAQ sequence Event reconstruction for real and MC data Future plan: lower energy

Transcript of tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City...

Page 1: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE hybridShoichi OGIO (Osaka City University) for the Telescope Array collaboration

• TA and TALE • TALE FD monocular spectrum • TALE SD array • Hybrid trigger, SD DAQ sequence • Event reconstruction for real and MC data • Future plan: lower energy

Page 2: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

Telescope Array collaboration

R.U. Abbasi (1), M. Abe (2), T. Abu-Zayyad (1), M. Allen (1), R. Azuma (3), E. Barcikowski (1), J.W. Belz (1), D.R. Bergman (1), S.A. Blake (1), R. Cady (1), B.G. Cheon (4), J. Chiba (5), M. Chikawa (6), A. di Matteo (7), T. Fujii (8), K. Fujita (9), R. Fujiwara (9), M. Fukushima (10,11), G. Furlich (1), W. Hanlon (1), M. Hayashi (12), Y. Hayashi (9), N. Hayashida (13), K. Hibino (13), K. Honda (14), D. Ikeda (15), T. Inadomi (16), N. Inoue (2), T. Ishii (14), R. Ishimori (3), H. Ito (17), D. Ivanov (1), H. Iwakura (16), H.M. Jeong (18), S. Jeong (18), C.C.H. Jui (1), K. Kadota (19), F. Kakimoto (3), O. Kalashev (20), K. Kasahara (21), S. Kasami (22), H. Kawai (23), S. Kawakami (9), S. Kawana (2), K. Kawata (10), E. Kido (10), H.B. Kim (4), J.H. Kim (1), J.H. Kim (24), S. Kishigami (9), V. Kuzmin (20), M. Kuznetsov (7,20), Y.J. Kwon (25), K.H. Lee (18), B. Lubsandorzhiev (20), J.P. Lundquist (1), K. Machida (14), K. Martens (11), H. Matsumiya (9), T. Matsuyama (9), J.N. Matthews (1), R. Mayta (9), M. Minamino (9), K. Mukai (14), I. Myers (1), S. Nagataki (17), K. Nakai (9), R. Nakamura (16), T. Nakamura (26), Y. Nakamura (16), T. Nonaka (10), H. Oda (9), S. Ogio (9,27), M. Ohnishi (10), H. Ohoka (10), Y. Oku (22), T. Okuda (28), Y. Omura (9), M. Ono (17), R. Onogi (9), A. Oshima (9), S. Ozawa (21), I.H. Park (18), M.S. Pshirkov (20,29), J. Remington (1), D.C. Rodriguez (1), G. Rubtsov (20), D. Ryu (24), H. Sagawa (10), R. Sahara (9), K. Saito (10), Y. Saito (16), N. Sakaki (10), T. Sako (10), N. Sakurai (9), K. Sano (16), L.M. Scott (30), T. Seki (16), K. Sekino (10), P.D. Shah (1), F. Shibata (14), T. Shibata (10), H. Shimodaira (10), B.K. Shin (9), H.S. Shin (10), J.D. Smith (1), P. Sokolsky (1), N. Sone (16), B.T. Stokes (1), S.R. Stratton (1,30), T.A. Stroman (1), T. Suzawa (2), Y. Takagi (9), Y. Takahashi (9), M. Takamura (5), M. Takeda (10), R. Takeishi (18), A. Taketa (15), M. Takita (10), Y. Tameda (22), H. Tanaka (9), K. Tanaka (31), M. Tanaka (32), Y. Tanoue (9), S.B. Thomas (1), G.B. Thomson (1), P. Tinyakov (7,20), I. Tkachev (20), H. Tokuno (3), T. Tomida (16), S. Troitsky (20), Y. Tsunesada (9,27), Y. Uchihori (33), S. Udo (13), T. Uehama (16), F. Urban (34), T. Wong (1), II. M. Yamamoto (16), H. Yamaoka (32), K. Yamazaki (13), J. Yang (35), K. Yashiro (5), M. Yosei (22), H. Yoshii (36), Y. Nakamura (16), Y. Zhezher (20), III. Z. Zundel (1)

Telescope Array Collaboration

3

Study of muons from ultrahigh energy cosmic ray air showers measuredwith the Telescope Array experiment

R. U. Abbasi,1 M. Abe,2 T. Abu-Zayyad,1 M. Allen,1 R. Azuma,3 E. Barcikowski,1 J. W. Belz,1 D. R. Bergman,1

S. A. Blake,1 R. Cady,1 B. G. Cheon,4 J. Chiba,5 M. Chikawa,6 A. Di Matteo,7 T. Fujii,8 K. Fujita,9 M. Fukushima,8,10

G. Furlich,1 T. Goto,9 W. Hanlon,1 M. Hayashi,11 Y. Hayashi,9 N. Hayashida,12 K. Hibino,12 K. Honda,13 D. Ikeda,8

N. Inoue,2 T. Ishii,13 R. Ishimori,3 H. Ito,14 D. Ivanov,1 H. M. Jeong,15 S. Jeong,15 C. C. H. Jui,1 K. Kadota,16 F. Kakimoto,3

O. Kalashev,17 K. Kasahara,18 H. Kawai,19 S. Kawakami,9 S. Kawana,2 K. Kawata,8 E. Kido,8 H. B. Kim,4 J. H. Kim,1

J. H. Kim,20 S. Kishigami,9 S. Kitamura,3 Y. Kitamura,3 V. Kuzmin,17,* M. Kuznetsov,17 Y. J. Kwon,21 K. H. Lee,15

B. Lubsandorzhiev,17 J. P. Lundquist,1 K. Machida,13 K. Martens,10 T. Matsuyama,9 J. N. Matthews,1 R. Mayta,9

M. Minamino,9 K. Mukai,13 I. Myers,1 K. Nagasawa,2 S. Nagataki,14 R. Nakamura,22 T. Nakamura,23 T. Nonaka,8 H. Oda,9

S. Ogio,9 J. Ogura,3 M. Ohnishi,8 H. Ohoka,8 T. Okuda,24 Y. Omura,9 M. Ono,14 R. Onogi,9 A. Oshima,9 S. Ozawa,18

I. H. Park,15 M. S. Pshirkov,17,25 J. Remington,1 D. C. Rodriguez,1 G. Rubtsov,17 D. Ryu,20 H. Sagawa,8 R. Sahara,9

K. Saito,8 Y. Saito,22 N. Sakaki,8 N. Sakurai,9 L. M. Scott,26 T. Seki,22 K. Sekino,8 P. D. Shah,1 F. Shibata,13 T. Shibata,8

H. Shimodaira,8 B. K. Shin,9 H. S. Shin,8 J. D. Smith,1 P. Sokolsky,1 B. T. Stokes,1 S. R. Stratton,1,26 T. A. Stroman,1

T. Suzawa,2 Y. Takagi,9 Y. Takahashi,9 M. Takamura,5 M. Takeda,8 R. Takeishi,15,† A. Taketa,27 M. Takita,8 Y. Tameda,28

H. Tanaka,9 K. Tanaka,29 M. Tanaka,30 S. B. Thomas,1 G. B. Thomson,1 P. Tinyakov,7,17 I. Tkachev,17 H. Tokuno,3

T. Tomida,22 S. Troitsky,17 Y. Tsunesada,9 K. Tsutsumi,3 Y. Uchihori,31 S. Udo,12 F. Urban,32 T. Wong,1

M. Yamamoto,22 R. Yamane,9 H. Yamaoka,30 K. Yamazaki,12 J. Yang,33 K. Yashiro,5 Y. Yoneda,9

S. Yoshida,19 H. Yoshii,34 Y. Zhezher,17 and Z. Zundel1

(Telescope Array Collaboration)

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah,Salt Lake City, Utah, USA

2The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan3Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

4Department of Physics and The Research Institute of Natural Science, Hanyang University,Seongdong-gu, Seoul, Korea

5Department of Physics, Tokyo University of Science, Noda, Chiba, Japan6Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan

7Service de Physique Theorique, Universite Libre de Bruxelles, Brussels, Belgium8Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan

9Graduate School of Science, Osaka City University, Osaka, Osaka, Japan10Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study,

the University of Tokyo, Kashiwa, Chiba, Japan11Information Engineering Graduate School of Science and Technology, Shinshu University,

Nagano, Nagano, Japan12Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

13Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi,Kofu, Yamanashi, Japan

14Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan15Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea

16Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan17Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

18Advanced Research Institute for Science and Engineering, Waseda University,Shinjuku-ku, Tokyo, Japan

19Department of Physics, Chiba University, Chiba, Chiba, Japan20Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology,

UNIST-gil, Ulsan, Korea21Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea

22Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University,Nagano, Nagano, Japan

23Faculty of Science, Kochi University, Kochi, Kochi, Japan24Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan

25Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia

PHYSICAL REVIEW D 98, 022002 (2018)

2470-0010=2018=98(2)=022002(10) 022002-1 © 2018 American Physical Society

Study of muons from ultrahigh energy cosmic ray air showers measuredwith the Telescope Array experiment

R. U. Abbasi,1 M. Abe,2 T. Abu-Zayyad,1 M. Allen,1 R. Azuma,3 E. Barcikowski,1 J. W. Belz,1 D. R. Bergman,1

S. A. Blake,1 R. Cady,1 B. G. Cheon,4 J. Chiba,5 M. Chikawa,6 A. Di Matteo,7 T. Fujii,8 K. Fujita,9 M. Fukushima,8,10

G. Furlich,1 T. Goto,9 W. Hanlon,1 M. Hayashi,11 Y. Hayashi,9 N. Hayashida,12 K. Hibino,12 K. Honda,13 D. Ikeda,8

N. Inoue,2 T. Ishii,13 R. Ishimori,3 H. Ito,14 D. Ivanov,1 H. M. Jeong,15 S. Jeong,15 C. C. H. Jui,1 K. Kadota,16 F. Kakimoto,3

O. Kalashev,17 K. Kasahara,18 H. Kawai,19 S. Kawakami,9 S. Kawana,2 K. Kawata,8 E. Kido,8 H. B. Kim,4 J. H. Kim,1

J. H. Kim,20 S. Kishigami,9 S. Kitamura,3 Y. Kitamura,3 V. Kuzmin,17,* M. Kuznetsov,17 Y. J. Kwon,21 K. H. Lee,15

B. Lubsandorzhiev,17 J. P. Lundquist,1 K. Machida,13 K. Martens,10 T. Matsuyama,9 J. N. Matthews,1 R. Mayta,9

M. Minamino,9 K. Mukai,13 I. Myers,1 K. Nagasawa,2 S. Nagataki,14 R. Nakamura,22 T. Nakamura,23 T. Nonaka,8 H. Oda,9

S. Ogio,9 J. Ogura,3 M. Ohnishi,8 H. Ohoka,8 T. Okuda,24 Y. Omura,9 M. Ono,14 R. Onogi,9 A. Oshima,9 S. Ozawa,18

I. H. Park,15 M. S. Pshirkov,17,25 J. Remington,1 D. C. Rodriguez,1 G. Rubtsov,17 D. Ryu,20 H. Sagawa,8 R. Sahara,9

K. Saito,8 Y. Saito,22 N. Sakaki,8 N. Sakurai,9 L. M. Scott,26 T. Seki,22 K. Sekino,8 P. D. Shah,1 F. Shibata,13 T. Shibata,8

H. Shimodaira,8 B. K. Shin,9 H. S. Shin,8 J. D. Smith,1 P. Sokolsky,1 B. T. Stokes,1 S. R. Stratton,1,26 T. A. Stroman,1

T. Suzawa,2 Y. Takagi,9 Y. Takahashi,9 M. Takamura,5 M. Takeda,8 R. Takeishi,15,† A. Taketa,27 M. Takita,8 Y. Tameda,28

H. Tanaka,9 K. Tanaka,29 M. Tanaka,30 S. B. Thomas,1 G. B. Thomson,1 P. Tinyakov,7,17 I. Tkachev,17 H. Tokuno,3

T. Tomida,22 S. Troitsky,17 Y. Tsunesada,9 K. Tsutsumi,3 Y. Uchihori,31 S. Udo,12 F. Urban,32 T. Wong,1

M. Yamamoto,22 R. Yamane,9 H. Yamaoka,30 K. Yamazaki,12 J. Yang,33 K. Yashiro,5 Y. Yoneda,9

S. Yoshida,19 H. Yoshii,34 Y. Zhezher,17 and Z. Zundel1

(Telescope Array Collaboration)

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah,Salt Lake City, Utah, USA

2The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan3Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

4Department of Physics and The Research Institute of Natural Science, Hanyang University,Seongdong-gu, Seoul, Korea

5Department of Physics, Tokyo University of Science, Noda, Chiba, Japan6Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan

7Service de Physique Theorique, Universite Libre de Bruxelles, Brussels, Belgium8Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan

9Graduate School of Science, Osaka City University, Osaka, Osaka, Japan10Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study,

the University of Tokyo, Kashiwa, Chiba, Japan11Information Engineering Graduate School of Science and Technology, Shinshu University,

Nagano, Nagano, Japan12Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

13Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi,Kofu, Yamanashi, Japan

14Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan15Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea

16Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan17Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

18Advanced Research Institute for Science and Engineering, Waseda University,Shinjuku-ku, Tokyo, Japan

19Department of Physics, Chiba University, Chiba, Chiba, Japan20Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology,

UNIST-gil, Ulsan, Korea21Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea

22Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University,Nagano, Nagano, Japan

23Faculty of Science, Kochi University, Kochi, Kochi, Japan24Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan

25Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia

PHYSICAL REVIEW D 98, 022002 (2018)

2470-0010=2018=98(2)=022002(10) 022002-1 © 2018 American Physical Society

Study of muons from ultrahigh energy cosmic ray air showers measuredwith the Telescope Array experiment

R. U. Abbasi,1 M. Abe,2 T. Abu-Zayyad,1 M. Allen,1 R. Azuma,3 E. Barcikowski,1 J. W. Belz,1 D. R. Bergman,1

S. A. Blake,1 R. Cady,1 B. G. Cheon,4 J. Chiba,5 M. Chikawa,6 A. Di Matteo,7 T. Fujii,8 K. Fujita,9 M. Fukushima,8,10

G. Furlich,1 T. Goto,9 W. Hanlon,1 M. Hayashi,11 Y. Hayashi,9 N. Hayashida,12 K. Hibino,12 K. Honda,13 D. Ikeda,8

N. Inoue,2 T. Ishii,13 R. Ishimori,3 H. Ito,14 D. Ivanov,1 H. M. Jeong,15 S. Jeong,15 C. C. H. Jui,1 K. Kadota,16 F. Kakimoto,3

O. Kalashev,17 K. Kasahara,18 H. Kawai,19 S. Kawakami,9 S. Kawana,2 K. Kawata,8 E. Kido,8 H. B. Kim,4 J. H. Kim,1

J. H. Kim,20 S. Kishigami,9 S. Kitamura,3 Y. Kitamura,3 V. Kuzmin,17,* M. Kuznetsov,17 Y. J. Kwon,21 K. H. Lee,15

B. Lubsandorzhiev,17 J. P. Lundquist,1 K. Machida,13 K. Martens,10 T. Matsuyama,9 J. N. Matthews,1 R. Mayta,9

M. Minamino,9 K. Mukai,13 I. Myers,1 K. Nagasawa,2 S. Nagataki,14 R. Nakamura,22 T. Nakamura,23 T. Nonaka,8 H. Oda,9

S. Ogio,9 J. Ogura,3 M. Ohnishi,8 H. Ohoka,8 T. Okuda,24 Y. Omura,9 M. Ono,14 R. Onogi,9 A. Oshima,9 S. Ozawa,18

I. H. Park,15 M. S. Pshirkov,17,25 J. Remington,1 D. C. Rodriguez,1 G. Rubtsov,17 D. Ryu,20 H. Sagawa,8 R. Sahara,9

K. Saito,8 Y. Saito,22 N. Sakaki,8 N. Sakurai,9 L. M. Scott,26 T. Seki,22 K. Sekino,8 P. D. Shah,1 F. Shibata,13 T. Shibata,8

H. Shimodaira,8 B. K. Shin,9 H. S. Shin,8 J. D. Smith,1 P. Sokolsky,1 B. T. Stokes,1 S. R. Stratton,1,26 T. A. Stroman,1

T. Suzawa,2 Y. Takagi,9 Y. Takahashi,9 M. Takamura,5 M. Takeda,8 R. Takeishi,15,† A. Taketa,27 M. Takita,8 Y. Tameda,28

H. Tanaka,9 K. Tanaka,29 M. Tanaka,30 S. B. Thomas,1 G. B. Thomson,1 P. Tinyakov,7,17 I. Tkachev,17 H. Tokuno,3

T. Tomida,22 S. Troitsky,17 Y. Tsunesada,9 K. Tsutsumi,3 Y. Uchihori,31 S. Udo,12 F. Urban,32 T. Wong,1

M. Yamamoto,22 R. Yamane,9 H. Yamaoka,30 K. Yamazaki,12 J. Yang,33 K. Yashiro,5 Y. Yoneda,9

S. Yoshida,19 H. Yoshii,34 Y. Zhezher,17 and Z. Zundel1

(Telescope Array Collaboration)

1High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah,Salt Lake City, Utah, USA

2The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan3Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

4Department of Physics and The Research Institute of Natural Science, Hanyang University,Seongdong-gu, Seoul, Korea

5Department of Physics, Tokyo University of Science, Noda, Chiba, Japan6Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan

7Service de Physique Theorique, Universite Libre de Bruxelles, Brussels, Belgium8Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan

9Graduate School of Science, Osaka City University, Osaka, Osaka, Japan10Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study,

the University of Tokyo, Kashiwa, Chiba, Japan11Information Engineering Graduate School of Science and Technology, Shinshu University,

Nagano, Nagano, Japan12Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

13Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi,Kofu, Yamanashi, Japan

14Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan15Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea

16Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan17Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia

18Advanced Research Institute for Science and Engineering, Waseda University,Shinjuku-ku, Tokyo, Japan

19Department of Physics, Chiba University, Chiba, Chiba, Japan20Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology,

UNIST-gil, Ulsan, Korea21Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea

22Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University,Nagano, Nagano, Japan

23Faculty of Science, Kochi University, Kochi, Kochi, Japan24Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan

25Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia

PHYSICAL REVIEW D 98, 022002 (2018)

2470-0010=2018=98(2)=022002(10) 022002-1 © 2018 American Physical Society

26Department of Physics and Astronomy, Rutgers University—The State University of New Jersey,Piscataway, New Jersey, USA

27Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan28Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University,

Neyagawa-shi, Osaka, Japan29Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan

30Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan31National Institute of Radiological Science, Chiba, Chiba, Japan

32CEICO, Institute of Physics, Czech Academy of Sciences Prague, Czech Republic33Department of Physics and Institute for the Early Universe, Ewha Womans University,

Seodaaemun-gu, Seoul, Korea34Department of Physics, Ehime University, Matsuyama, Ehime, Japan

(Received 12 April 2018; published 3 July 2018)

One of the uncertainties in the interpretation of ultrahigh energy cosmic ray data comes from thehadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muonsobserved at the ground from ultrahigh energy cosmic ray–induced air showers is expected to depend uponthe hadronic interaction model. One may therefore test the hadronic interaction models by comparing themeasured number of muons with the MC prediction. In this paper, we present the results of studies of muondensities in ultrahigh energy extensive air showers obtained by analyzing the signal of surface detectorstations which should have high muon purity. The muon purity of a station will depend on both theinclination of the shower and the relative position of the station. In seven years’ data from the TelescopeArray experiment, we find that the number of particles observed for signals with an expected muon purityof ∼65% at a lateral distance of 2000 m from the shower core is 1.72!0.10ðstatÞ !0.37ðsystÞ times largerthan the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similareffect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a1.67!0.10!0.36 excess. We also studied the dependence of these excesses on lateral distances and founda slower decrease of the lateral distribution of muons in the data as compared to the MC, causing largerdiscrepancy at larger lateral distances.

DOI: 10.1103/PhysRevD.98.022002

I. INTRODUCTION

The origin of ultrahigh energy cosmic rays (UHECRs)has been a long-standing mystery of astrophysics. TheTelescope Array (TA) experiment [1] in Utah, USA, is thelargest experiment in the northern hemisphere observingUHECRs. It aims to reveal the origin of UHECRs bystudying the energy spectrum, mass composition andanisotropy of cosmic rays. When a UHECR enters theatmosphere, it interacts with atmospheric nuclei and gen-erates the particle cascade, which is called an air shower.The information of primary cosmic rays is estimated fromobserved signals of air shower particles and the air showerMonte Carlo (MC) simulation.UHECR air showers are not fully understood. At

present, the maximum energy of hadronic interactions inthe target rest frame accessible at accelerators is 1017 eVat the CERN LHC. The MC for cosmic rays in the energiesabove 1018 eV uses the extrapolated values of the parameters

of hadronic interactions, such as the cross section andmultiplicity. The values of these parameters differ betweenhadronic interaction models, due to the uncertainty ofmodeling pion or kaon generation at the early age of theair shower development. Thus, inferences of UHECRcomposition from air shower measurements are modeldependent [2,3], which is important in understanding theorigin of UHECRs because cosmic rays are deflected in theGalactic and extragalactic magnetic fields.In addition to that, the HiRes/MIA experiment reported a

deficit in the number of muons from MC air showerscompared with experimental data for E≳ 1017 eV [4]. TheYakutsk experiment also indicated lower simulated muondensities than those observed for E≳ 1019 eV [5]. ThePierre Auger Observatory, which is located in Mendoza,Argentina, reported [6] a model-dependent deficit of muonsin simulations of 30%–80% relative to the data, 1019 eV.The Pierre Auger Collaboration also reported that theobserved hadronic signal in UHECR air showers is 1.61!0.21 ð1.33!0.16Þ times larger than the post-LHC MCprediction values for QGSJET II-04 [7] (EPOS-LHC [8]),including statistical and systematic errors [9]. ForE≲ 1017 eV, The KASCADE-Grande experiment [10]

*Deceased.†Corresponding author.

[email protected]

R. U. ABBASI et al. PHYS. REV. D 98, 022002 (2018)

022002-2

147 collaborators from 36 institutes in 6 countries

2

(1) High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, (2) The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, (3) Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, (4) Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, (5) Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, (6) Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan, (7) Service de Physique Thテゥorique, Universitテゥ Libre de Bruxelles, Brussels, Belgium, (8) The Hakubi Center for Advanced Research and Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan, (9) Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, (10) Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, (11) Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan, (12) Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan, (13) Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, (14) Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, (15) Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, (16) Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan, (17) Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, (18) Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea, (19) Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan, (20) Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, (21) Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan, (22) Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka, Japan, (23) Department of Physics, Chiba University, Chiba, Chiba, Japan, (24) Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea, (25) Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, (26) Faculty of Science, Kochi University, Kochi, Kochi, Japan, (27) Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka City University, Osaka, Osaka, Japan, (28) Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, (29) Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia, (30) Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA, (31) Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan, (32) Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, (33) National Institute of Radiological Science, Chiba, Chiba, Japan, (34) CEICO, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic, (35) Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, (36) Department of Physics, Ehime University, Matsuyama, Ehime, Japan

Page 3: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

Telescope Array (TA)

TA SD array

3

TA MD

Middle DrumMillard county, Utah, USA, about 1400m a.s.l.

Surface Detector (SD) array: 507 scintillation detectors, 3m2, 1.2km spacing Total coverlage ~ 700 km2 Fluorescence Detectors (FDs) in 3 stations In total, 38 telescopes observing the sky above the array Operation from 2008

5.2m2 x 14 refurbished HiRes-I

Black Rock Mesa & Long Ridge

6.8m2 x 12 x 2 newly designed for TA

Surface Detector (SD)

3 m2 plastic scintillator 2 layers

TA LR TA BRM

Page 4: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE FD

TA SD array

TALE FD

4

TA FD

30o-57o

3o-31o

114o

TALE FD

TALE FDTA FD (MD)

Middle Drum stationTALE FD station and TA MD are very close together 10 FDs in the TALE station Elevation: 30o-57o (higher elevation than MD) Azimuthal: 114o

Refurbished HiRes FDs Mirror: same as TA FD (MD) Elec.: 10 MHz 8bit FADC

Installed in Nov. 2012 Operation from Sep. 2013 Hybrid trigger out Sep. 2018

Page 5: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE-FD mono spectrum(2yrs)

E [EeV] 10

log15.5 16 16.5 17 17.5 18 18.5

/s/sr

]2

/m2J(

E) [e

V3 E

2410

2410×2

2410×3

2410×4

2410×5

TALE Energy spectrum (Monocular)

0.03±break point 17.04

0.02±break point 16.22

0.02± 0.01 -3.19 ± 0.01 -2.92 ±slope: -3.12

/ ndf = 31.6 / 392χfit

Figure 20: TALE cosmic rays energy spectrum measured with 22 months of data. A mixed primary composition given by theTXF is assumed. The gray band indicates the size of the systematic uncertainties.

show in figure 22 a comparison of the spectrum obtained with di↵erent compositions. With respect to theenergy spectrum for the case of pure iron composition assumption, note that composition measurements byother experiments, e.g. [48, 49] exclude the possibility of iron dominated flux at energies below 1016 eV. Thespectrum is included in the plot simply to demonstrate the extreme case of all heavy primaries.

Figure 23 compares the current result with some recent results from other experiments. We note thatqualitatively the spectra are in agreement. The di↵erence in normalization is within the systematics of theenergy scales of the di↵erent experiments. In particular, we note that a 6.5% downward shift in the IceTopenergy scale, results in a spectrum that lies on top of the TALE spectrum for energies below 1017 eV.

Figure 24 compares the current result with some recent results from TA Fluorescence [55] and surfacedetector [56] measurements. We note that above 1017 eV there is excellent agreement between the di↵erentresults, demonstrating that the TALE spectrum can be seen as an extension of the measurements in theultra-high energy regime down to lower energies.

18

Data: Jun. 2014 - Mar. 2016

5

Ap. J., 865, 74(2018) arXiv: 1803.01288

Page 6: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

Compared to recent measurementsAp. J., 865, 74(2018) arXiv: 1803.01288

(E/eV)10

log15 15.5 16 16.5 17 17.5 18 18.5

]-1 s

-1 sr

-2 m2

J [ e

V3 E

2310×8

2310×9

2410

2410×2

2410×3

2410×4

2410×5

TALE Monocular (2017)Yakutsk Cherenkov (2013)Tunka-55 (2013)Tunka-133 (2013)KASCADE-Grande (2012)ICETOP (2016)

TALE Spectrum compared to some recent Measurements

Figure 23: TALE cosmic rays energy spectrum plotted along with measurements by Yakutsk [50], TUNKA [51, 52], Kaskade-Grande [53], and IceTop [54]

(E/eV)10

log15 16 17 18 19 20

]-1 s

-1 sr

-2 m2

J [ e

V3 E

2310×3

2310×4

2310×5

2310×6

2410

2410×2

2410×3

2410×4

2410×5

TALE Monocular (2017)

TA BR/LR Monocular (2015)

TA SD 7 year (ICRC 2015)

Auger (2013) Rescaled +10%

TALE Spectrum with Spectra of TA-SD and Auger (Rescaled Energy)

Figure 24: TALE cosmic rays energy spectrum plotted along with measurements by TA using the FD’s at Black Rock and LongRidge sites [55], and by the TA surface detector [56], also shown is the Auger spectrum [57] with a 10% energy scaling appliedto make it agree with the TA SD flux.

20

6

Page 7: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

E [ EeV ] 10

log16.2 16.4 16.6 16.8 17 17.2 17.4 17.6 17.8 18 18.2 18.4

/s/sr

]2

/m2J(

E) [e

V3 E

2410

2410×2

2410×3

2410×4

2410×5

TALE Energy spectrum (Monocular)

CombinedCherenkovMixedFluorescence

Figure 21: TALE cosmic rays energy spectrum measured with 22 months of data. Contributions from Cherenkov, mixed, andfluorescence events shown separately. Note that only the Cherenkov subsets contributes to the spectrum below 1016.7 eV.

E ( EeV ) 10

log15.5 16 16.5 17 17.5 18 18.5

/s/sr

]2

/m2 J(

E) [e

V3 E

2410×2

2410×3

2410×4

2410×5

2410×6

2410×7

2410×8

2410×9

TALE Energy spectrum (Monocular)

blue: iron

green: H4a + HiRes/MIA

black: TXFred: proton

Figure 22: TALE cosmic rays energy spectrum composition dependence. A comparison of the spectrum calculation if we assumethat cosmic rays are pure protons (red), pure iron (blue), follow the H4a composition (green), or the TXF result (black). Thepure iron case is shown for reference only, at low energies it is excluded by previous measurements: e.g. [48, 49]

19

Exposure depends on composition

(a mixed model which reproduces TALE-FD Xmax, used for previous page)

7

Ap. J., 865, 74(2018) arXiv: 1803.01288

Page 8: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

FD monocular → FD + SD hybrid

8

SurfaceDetectorSD

FluorescenceDetectorFD

FD+SDhybrid

FDmonocular

FluorescenceDetectorFD

SDtiminginfo.

ΔXmax: FD mono : 40 g/cm2 → FD+SD hybrid : 20 g/cm2

Page 9: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE hybrid

TALE SD array

Low energy extension of TA sensitivity down to 1016eV, with FDs observing higher elevation Densely-arrayed SDs Precise measurement of the composition : FD + SD hybrid measurement

TALE-FD : 10 telescopes ( Sep. 2013 ~ ) elevation : 30°~57°, azimuthal : 114° TALE-SD array : 80 SDs ( Feb. 2018 ~ ) TALE-hybrid started running from Sep. 2018

Expected specifications of TALE hybrid Threshold energy E : logE=16.0 Event rate : ~5,000 events/year Δθ = 1.0° ( FD mono : 5.3°) ΔXmax = 20 g/cm2 (FD mono : 40 g/cm2)

TALE-FD 400m spacing 40 SDs

600m spacing 40 SDs

9

Page 10: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE SD array

TALE SD array

10

New PMT(Hamamatsu R8619) • QE~20% @500nm (TA: ~10%) • Linear range max@~50mA (TA: ~25mA) • Photo-cathode uniformity

→ reduce total length of WLSF ~33% of TA

TA実験で使用したPMT (9124SA)

2015/8/24 8

SD8台についてposition dependence測定最大20-30%程度

浜松ホトニクス(R8619)

2015/8/24 9

TA TALE

Page 11: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE SD array

TALE SD arrayTALE-FD 400m spacing 40

SDs

600m spacing 40 SDs

11

Running time/10min

# of living SDs

Event trigger/10min

Averaged hit rate/SD

# of time out error/10min

80 SDs covering 30km2 Running from Feb. 2018 # of living SD ~ 80 DAQ bug fixed at Apr. 2018

Triggering conditions: Storing waveform in SD: > 0.3 MIP (750Hz/SD) Hit: > 3 MIPs (20Hz/SD) Air shower event: 5 hit SDs in 8us window (3/10min)

Status plot (Jan. 2018 -)

Jan. 2018Jan. 2018

Jan. 2019

Page 12: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid

TALE SD array

12

�FD event trigger

TALE:Á��5Ľ�����

TALEŌƀō�Û�> Ƈ2012Y10yKdƈ�

Middle DrumśšƆřżƃ�

TALE FDśšƆřżƃ�

2013Y 4yt� 35/ĝ̹

̹��@Middle DrumƇ2013Y3yƈ�

ăĀ�Central DAQHost PC

�Request SDs

to record waveformwith FD event time info.

� request

� sendwaveform > 0.3 MIP

SD

TALE - FD

Hybrid triggering condition: DAQ installed Sep. 2018 • # of hit PMT > 5 & • Event duration > 500 ns Hybrid triggering rate ~ 0.05Hz

Hybrid DAQ installed Sep. 2018

DAQ sequence(time chart) in the host PC

Page 13: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid

13

�FD event trigger

TALE:Á��5Ľ�����

TALEŌƀō�Û�> Ƈ2012Y10yKdƈ�

Middle DrumśšƆřżƃ�

TALE FDśšƆřżƃ�

2013Y 4yt� 35/ĝ̹

̹��@Middle DrumƇ2013Y3yƈ�

ăĀ�Central DAQHost PC

�Request SDs

to record waveformwith FD event time info.

� request

� sendwaveform > 0.3 MIP

SD

TALE - FD

Hybrid triggering condition: DAQ installed Sep. 2018 • # of hit PMT > 5 & • Event duration > 500 ns Hybrid triggering rate ~ 0.05Hz

Hybrid DAQ installed Sep. 2018

SD DAQ Host PC@Tower�TALE-FD�MD091811.Y2018 �

MD091811.H2018�

y2018m09d18.hybtrig.log

Hybrid trigger information, “13fb0511” means:13f(HEX)=319(DEC) in sec,b0511(HEX)=722193(DEC) in usec, so then“13fb0511”=319.722193 s

Current hybrid trigger rate ~ 0.026 Hz

Page 14: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid

TALE SD array

14

�FD event trigger

TALE:Á��5Ľ�����

TALEŌƀō�Û�> Ƈ2012Y10yKdƈ�

Middle DrumśšƆřżƃ�

TALE FDśšƆřżƃ�

2013Y 4yt� 35/ĝ̹

̹��@Middle DrumƇ2013Y3yƈ�

ăĀ�Central DAQHost PC

�Request SDs

to record waveformwith FD event time info.

� request

� sendwaveform > 0.3 MIP

SD

TALE - FD

Hybrid triggering condition: DAQ installed Sep. 2018 • # of hit PMT > 5 & • Event duration > 500 ns Hybrid triggering rate ~ 0.05Hz

Hybrid DAQ installed Sep. 2018

DAQ sequence(time chart) in the host PC

Page 15: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid: real event sample

15

[km]9− 8− 7− 6− 5− 4− 3− 2− 1−

[km

]

13

14

15

16

17

18

19

20

21s]µtime [

TALE-FD

0

0.5

1

1.5

2

2.5

3

2018/11/07 10:01:30.122752

[km]9− 8− 7− 6− 5− 4− 3− 2− 1−

[km

]

13

14

15

16

17

18

19

20

21s]µtime [

TALE-FD

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2018/11/07 11:46:15.622352

Real hybrid event samples in Nov. 7, 2018

Page 16: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid: real event sample

16

[km]9− 8− 7− 6− 5− 4− 3− 2− 1−

[km

]

13

14

15

16

17

18

19

20

21s]µtime [

TALE-FD

0

0.5

1

1.5

2

2.5

3

2018/11/07 10:01:30.122752Real hybrid event samples in Nov. 7, 2018

Zen.[deg] Azi.[deg]

23.6 -33.5

CoreX[km] CoreY[km]

7.33 17.63

Xmax[g/cm2] E[eV]

823 1017.94rcore tcore

showeraxis

tSD

rSD

FD

showerfrontplane

!

SD

α�

α[deg]�

Page 17: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid: MC event sample

17

Results Zen.[deg] Azi.[deg] Rp[km] ! [deg] CoreX[km] CoreY[km] #↓%&' [g/cm2]

E0 [eV]

thrown 21.6 -65.8 2.33 71.6 -5.86 17.51 734 1017.89

hybrid 21.7 -66.3 2.32 71.8 -5.89 17.50 737 1017.83

mono 20.5 -68.7 2.35 73.3 -5.88 17.49 725 1017.83

Page 18: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid: MC event sample

18

Results Zen.[deg] Azi.[deg] Rp[km] ! [deg] CoreX[km] CoreY[km] #↓%&' [g/cm2]

E0 [eV]

thrown 40.7 52.7 1.78 67.3 -7.46 17.51 781 1017.94

hybrid 41.8 51.1 1.74 65.0 -7.51 17.51 789 1017.89

mono 38.2 61.4 1.85 72.6 -7.51 17.52 743 1017.85

Page 19: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE Hybrid: MC event sample

19

Results Zen.[deg] Azi.[deg] Rp[km] ! [deg] CoreX[km] CoreY[km] #↓%&' [g/cm2]

E0 [eV]

thrown 33.0 112.4 3.03 109.3 -6.66 16.46 689 1017.88

hybrid 32.1 109.1 3.14 106.9 -6.68 16.38 676 1017.82

mono 52.1 142.0 3.35 136.2 -6.35 15.04 x x

Page 20: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

TALE future plan: lower energy

TALE SD array

TALE-FD 400m spacing 40 SDs

600m spacing 40 SDs

20

TALE FD

TA SD

Additionally install 50 SDs with 200m spacing near the TALE FD station (< 2km), to archive lower the threshold energy: for SD, Emode = 1015.5 eV for FD-SD hybrid, Emode =1016.3 eV 1.5M$ for 5yrs approved by JSPS in 2019

Page 21: tale hybrid OGIO - 2019 International Cosmic Ray ConferenceTALE hybrid Shoichi OGIO (Osaka City University) for the Telescope Array collaboration •TA and TALE •TALE FD monocular

Summary

21

TALE hybrid in operation since 2018• 80 SDs with 400 m, 600 m spacing in stalled in Feb. 2018• SD event rate is 0.005 Hz• Hybrid rate is 0.05 Hz

Go down lower energy with additional 50 SDs• approved by JSPS for 1.5 M$