T p d e Ê 0 LKBD-T CHMEL-T p a e a o v a c d ls a f m i l t e t Ê g y a...

1
Structural models of the lithosphere based on P-wave velocities only lead to large ambiguities in terms of composition and physical parameters (e.g. fluid content, temperature). Additional information about S-wave velocities can put important constraints on composition and the physical state of the lithosphere, and improve the accuracy of the earthquake location. Since S-waves of local earthquakes are often contaminated by P-wave coda and S-P phase conversions, correct identification and timing of S-wave arrivals are difficult and sometimes ambiguous. To check the consistency of the picked S-wave arrivals obtained from the routine analysis of local earthquake data at the Swiss Seismological Service (SED) between 1999 and 2004, we apply the concept of minimum 1D models to P and S arrivals (independently and combined). In case of consistently picked S-waves we should observe only small deviations in hypocenters and residuals of relocated earthquakes between each model. Finally ,we compare the detected outliers with those derived from Wadati inversion, which is commonly used to assess the quality of S-arrivals. Assessment of Quality and Consistency of S-Wave Arrivals in Local Earthquake Data 1 2 1,2 1 T. Diehl , N. Deichmann , S. Husen and E. Kissling 1 Institute of Geophysics, ETH Zurich, Switzerland 2 Swiss Seismological Service, ETH Zurich, Switzerland Overview Introduction Minimum 1D P Minimum 1D S Minimum 1D P+S 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N 0 20 40 Depth (km) 5 6 7 8 9 10 11 Longitude (deg) 46 47 48 49 Latitude (deg) 0 20 40 Depth (km) 0 50 100 150 200 No. of Events 0 20 40 Depth (km) Hypocenters & Residuals Conclusions Wadati -15000 -10000 -5000 0 5000 10000 15000 Depth Shift (m) 0 50 100 150 200 250 300 350 400 450 Event sigma (m): 1971 mean (m): 315 -15000 -10000 -5000 0 5000 10000 15000 Latitude Shift (m) 0 50 100 150 200 250 300 350 400 450 Event sigma (m): 395 mean (m): 56 -15000 -10000 -5000 0 5000 10000 15000 Longitude Shift (m) 0 50 100 150 200 250 300 350 400 450 Event sigma (m): 477 mean (m): 23 -15000 -10000 -5000 0 5000 10000 15000 Depth Shift (m) 0 50 100 150 200 250 300 350 400 450 Event sigma (m): 1815 mean (m): 1015 -15000 -10000 -5000 0 5000 10000 15000 Latitude Shift (m) 0 50 100 150 200 250 300 350 400 450 sigma (m): 348 mean (m): 80 -15000 -10000 -5000 0 5000 10000 15000 Longitude Shift (m) 0 50 100 150 200 250 300 350 400 450 Event sigma (m): 444 mean (m): -86 Event -20 -10 0 10 20 Depth Difference (km) 0 50 100 150 200 Event sigma (m): 3669 mean (m): 883 -20 -10 0 10 20 Latitude Difference (km) 0 50 100 150 200 Event sigma (m): 1491 mean (m): -422 -20 -10 0 10 20 Longitude Difference (km) 0 50 100 150 200 Event sigma (m): 1433 mean (m): 760 -3 -2 -1 0 1 2 3 Origin Difference (s) 0 50 100 150 200 Event sigma (s): 0.34 mean (s): -0.28 Residuals in Minimum 1D Models 0 500 1000 1500 2000 2500 3000 Number of observations -2 -1 0 1 2 Residual (s) 0 500 1000 1500 2000 2500 3000 Number of observations -2 -1 0 1 2 Residual (s) 0 200 400 600 800 Number of observations -2 -1 0 1 2 Residual (s) 0 200 400 600 800 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 60 70 80 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 60 70 80 Number of observations -2 -1 0 1 2 Residual (s) 0 200 400 600 800 1000 1200 1400 Number of observations -2 -1 0 1 2 Residual (s) 0 200 400 600 800 1000 1200 1400 Number of observations -2 -1 0 1 2 Residual (s) 0 100 200 300 400 500 Number of observations -2 -1 0 1 2 Residual (s) 0 100 200 300 400 500 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 Number of observations -2 -1 0 1 2 Residual (s) Obs. Weight: 0 Obs. Weight: 1 Obs. Weight: 0 Obs. Weight: 1 Obs. Weight: 3 Obs. Weight: 3 P + S Preselection from P+S model (492 events) No preselection criteria (1588 events) 0 200 400 600 800 1000 Number of observations -2 -1 0 1 2 Residual (s) 0 100 200 300 400 500 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 Number of observations -2 -1 0 1 2 Residual (s) 0 200 400 600 800 1000 Number of observations -2 -1 0 1 2 Residual (s) 0 100 200 300 400 500 Number of observations -2 -1 0 1 2 Residual (s) 0 10 20 30 40 50 Number of observations -2 -1 0 1 2 Residual (s) S Events common in P and S data (238 events) Hypocenters P email contact: [email protected] We wish to thank INGV, LED, RENASS, RSNI, SISMALP and ZAMG for providing us with additional data. Acknowledgements 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N 0 20 40 Depth (km) 5 6 7 8 9 10 11 Longitude (deg) 46 47 48 49 Latitude (deg) 0 20 40 Depth (km) 0 50 100 150 200 No. of Events 0 20 40 Depth (km) 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N Station Corrections (S-Wave) 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N 0 20 40 Depth (km) 5 6 7 8 9 10 11 Longitude (deg) 46 47 48 49 Latitude (deg) 0 20 40 Depth (km) 0 50 100 150 200 No. of Events 0 20 40 Depth (km) 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N Station Corrections (P-Wave) Statistics 0 50 km LKBD BALST BNALP BOURR CHKAM DAVON HASLI LLS MMK MUO SIERE SLE CHE TORNY VDL WILA ZUR KAMOR 6°E 8°E 10°E 47°N 46°N 48°N France Austria Italy Germany Switzerland Beckenried earthquake: 2000/08/17 07:14 Z = 10 km, M = 3.0 Statistics Statistics Stability Tests for Min. 1D P+S Beckenried event Example waveforms of the Beckenried earthquake illustrate the difficulties in phase identification and picking of local S-wave data. The seismograms are plotted as time reduced Wadati diagrams. Stereographic diagrams for 3 Swiss stations demonstrate the distribution of azimuth, distance and focal depth for observed P and S arrivals. SLE shows prominent differences between P and S for larger epicentral distances. 0 0 2 40 60 0 8 100 120 140 160 180 200 20 2 240 260 280 300 20 3 4 30 P 0 0 2 40 60 80 00 1 120 140 10 6 180 200 20 2 20 4 260 280 0 30 20 3 4 30 S 0 10 20 30 Focal Depth (km) 0 30 60 90 120 # obs. 0 10 20 30 40 Focal Depth (km) 0 30 60 90 120 # obs. 0 100 200 Epicentral Distance (km) 0 0 2 40 60 80 100 120 140 10 6 180 20 0 20 2 240 6 20 280 300 320 340 P 0 20 40 60 80 100 120 140 160 180 0 20 20 2 240 6 20 0 28 300 320 30 4 S 0 10 20 30 Focal Depth (km) 0 30 60 # obs. 0 10 20 30 40 Focal Depth (km) 0 30 60 # obs. 0 100 200 Epicentral Distance (km) 0 20 40 60 80 100 10 2 140 6 10 180 00 2 220 240 260 280 300 320 30 4 P 0 20 0 4 60 80 100 10 2 40 1 6 10 180 0 20 220 0 24 260 280 0 30 30 2 30 4 S 0 10 20 30 Focal Depth (km) 0 30 60 90 120 150 180 # obs. 0 10 20 30 40 Focal Depth (km) 0 30 60 90 120 150 180 # obs. 0 100 200 Epicentral Distance (km) P S Distance (km) Azimuth (°) A) A) Selected data set to compute min. 1D P-wave model. Black dots: events common in P, S, P+S. B) Minimum 1D P-wave model, and final models from “high-low” test. C) Station corrections P-wave C) A) Selected data set to compute min. 1D S-wave model. Black dots: events common in P, S, P+S. B) Minimum 1D S-wave model, and final models from “high-low” test. C) Station corrections S-wave C) A) Random Mislocation Systematic Mislocation A) A) Selected data set to compute min. 1D P+S-wave model. Black dots: events common in P, S, P+S. B) Station corrections for P- and S-waves. C) Final minimum 1D model for P (blue, solid), S (red, solid) and vp/vs (black, solid). The initial models (independent models) are represented by the grey, dashed lines. D) To test the robustness of the final minimum model, we shift the hypocenters randomly (lat,lon,depth) and systematically (depth) by 10 km before introducing them in the joint inversion (grey dots). Velocities are overdamped for test with systematically shifted hypocenters. Hypocenters are relocated close to their original locations indicating a stable minimum (final hypocenters: black dots, final velocity model for random shift: solid green in C). A) Differences in hypocenter location obtained from relocation in min. 1D P-wave model (using only P arrivals) and S-wave model (using only S arrivals). B) Residuals of earthquakes relocated with P-arrivals only (in min. 1D P). C) Residuals of earthquakes relocated with S-arrivals only (in min. 1D S). D) Residuals of earthquakes relocated using P and S arrivals in min. 1D P+S wave model (preselected “high quality” data set from min. 1D P+S). E) Same as D) for unfiltered data set of 1588 earthquakes. 0 10 20 30 40 50 60 Depth (km) 4 5 6 7 8 9 v (km/s) P Initial: high/low Output (low-in) Output (high-in) Min 1D P-model well resolved B) 0 10 20 30 40 50 60 Depth (km) 2 3 4 5 v (km/s) S Initial: high/low Output (low-in) Output (high-in) Min 1D S-model well resolved B) D) 5°E 6°E 7°E 8°E 9°E 10°E 11°E 46°N 47°N 48°N 49°N P Delays S Delays B) P Ray S Ray Station Hypocentre P Ray Station Hypocentre S Ray Station Hypocentre 0 10 20 30 40 50 60 Depth (km) 2 3 4 5 6 7 8 9 Velocity (km/s) 0 10 20 30 40 50 60 1.6 1.7 1.8 1.9 v /v Ratio P S v S v P 1.73 well resolved Final min 1D P,S in (indi.) Final stabilty test C) A) B) C) D) E) A) Simultaneous Wadati inversion for the preselected P+S data set of 492 earthquakes. We define outliers (white dots) as residuals 1 s or £ -1 s. 0 5 10 15 20 25 T = T - T (s) S-P s p 0 10 20 30 40 50 60 70 T (s) P Vp/Vs = 1.699, +/- 0.001 rms = 0.422 T /T couple P S-P Outlier (residual 1 s or £ -1 s) vp/vs -1 C) A) Outliers: Wadati: 56 (S-P) Min. 1D P+S: 88 (P) + 37 (S) We derive minimum 1D models for P, S, and P+S. Within these models hypocenters and residuals of the relocated earthquakes show similar results for P, S, and P+S. Mean values and s of equal quality classes show no significant bias between P and S arrivals. Therefore we assume a comparable consistency of P and S arrivals in our data set. The amount of high-quality S arrivals is lower than for P. This can be explained by a higher conservatism in S arrival picking. In general we detect more and sometimes different outliers in the min. 1D model compared with the Wadati method. Since the later only detects T -T outliers, we can not distinguish S P between P or S mispick and have no information, if we observe only one of the two phases. 10 12 14 16 18 20 22 24 26 28 30 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 BNALP-T MUO-T HASLI-T LLS-T ZUR-T WILA-T CHMEL-T VDL-T DAVON-T BOURR-T TORNY-T T (s) p (T -T ) - (1.71-1)*(T -T ) (s) s p p 1 Sg Pg ? ? ? ? Beckenried event transverse, displacement 21 22 23 24 25 26 27 28 29 30 31 -6 -4 -2 0 2 4 6 8 10 12 14 CHE-T BALST-T KAMOR-T LKBD-T SIERE-T DAVON-T MMK-T T (s) p (T -T ) - (1.71-1)*(T -T ) (s) s p p 1 SmS PmP ? ? ? ? ? transverse, displacement

Transcript of T p d e Ê 0 LKBD-T CHMEL-T p a e a o v a c d ls a f m i l t e t Ê g y a...

Page 1: T p d e Ê 0 LKBD-T CHMEL-T p a e a o v a c d ls a f m i l t e t Ê g y a …mercalli.ethz.ch/~tdiehl/Data2Download/poster_EGU2005.pdf · 2018. 6. 1. · S t r u c t u r a l m o d

Structural models of the lithosphere based on P-wave velocities only lead to large ambiguities in terms of composition and physical parameters (e.g. fluid content, temperature). Additional information about S-wave velocities can put important constraints on composition and the physical state of the lithosphere, and improve the accuracy of the earthquake location. Since S-waves of local earthquakes are often contaminated by P-wave coda and S-P phase conversions, correct identification and timing of S-wave arrivals are difficult and sometimes ambiguous. To check the consistency of the picked S-wave arrivals obtained from the routine analysis of local earthquake data at the Swiss Seismological Service (SED) between 1999 and 2004, we apply the concept of minimum 1D models to P and S arrivals (independently and combined). In case of consistently picked S-waves we should observe only small deviations in hypocenters and residuals of relocated earthquakes between each model. Finally ,we compare the detected outliers with those derived from Wadati inversion, which is commonly used to assess the quality of S-arrivals.

Assessment of Quality and Consistency of S-Wave Arrivals in Local Earthquake Data

12

1,21

T. Diehl, N. Deichmann, S. Husen and E. Kissling1Institute of Geophysics, ETH Zurich, Switzerland 2Swiss Seismological Service, ETH Zurich, Switzerland

OverviewIntroduction

Minimum 1D P

Minimum 1D S

Minimum 1D P+S5°E

6°E7°E

8°E9°E

10°E11°E

46°N 47°N 48°N 49°N02040Depth (km)

56

78

910

11Longitude (deg)

46 47 48 49

Latitude (deg)

020

40Depth (km)

0 50 100 150 200

No. of Events0

2040

Depth (km)

Hypocenters & Residuals

Conclusions

Wadati

-15000-10000

-5000 0 50001000015000

Depth Shift (m)

050100150200250300350400450

Eventsigma (m): 1971

mean (m): 315-15000-10000

-5000 0 50001000015000

Latitude Shift (m)

050100150200250300350400450

Eventsigma (m): 395

mean (m): 56-15000-10000

-5000 0 50001000015000

Longitude Shift (m)

050100150200250300350400450

Eventsigma (m): 477

mean (m): 23

-15000-10000

-5000 0 50001000015000

Depth Shift (m)

050100150200250300350400450

Eventsigma (m): 1815

mean (m): 1015-15000-10000

-5000 0 50001000015000

Latitude Shift (m)

050100150200250300350400450

sigma (m): 348mean (m): 80

-15000-10000

-5000 0 50001000015000

Longitude Shift (m)

050100150200250300350400450

Eventsigma (m): 444

mean (m): -86

Event

-20 -10 0 10 20Depth Difference (km)

050

100150

200Event

sigma (m): 3669mean (m): 883

-20 -10 0 10 20Latitude Difference (km)

050

100150

200Event

sigma (m): 1491mean (m): -422

-20 -10 0 10 20Longitude Difference (km)

050

100150

200Event

sigma (m): 1433mean (m): 760

-3 -2 -1 0 1 2 3Origin Difference (s)

050

100150

200Event

sigma (s): 0.34mean (s): -0.28

Residuals in Minimum 1D Models

0 500 1000 1500 2000 2500 3000

Number of observations

-2-1

01

2Residual (s)

0 500 1000 1500 2000 2500 3000

Number of observations

-2-1

01

2Residual (s)

0 200 400 600 800Number of observations

-2-1

01

2Residual (s)

0 200 400 600 800Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50 60 70 80Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50 60 70 80Number of observations

-2-1

01

2Residual (s)

0 200 400 600 800 1000 1200 1400

Number of observations

-2-1

01

2Residual (s)

0 200 400 600 800 1000 1200 1400

Number of observations

-2-1

01

2Residual (s)

0 100 200 300 400 500Number of observations

-2-1

01

2Residual (s)

0 100 200 300 400 500Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50Number of observations

-2-1

01

2Residual (s)

Obs. Weight: 0

Obs. Weight: 1

Obs. Weight: 0

Obs. Weight: 1

Obs. Weight: 3Obs. Weight: 3

P + S

Preselection from P+S model (492 events)No preselection criteria (1588 events)

0 200 400 600 800 1000

Number of observations

-2-1

01

2Residual (s)

0 100 200 300 400 500Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50Number of observations

-2-1

01

2Residual (s)

0 200 400 600 800 1000

Number of observations

-2-1

01

2Residual (s)

0 100 200 300 400 500Number of observations

-2-1

01

2Residual (s)

0 10 20 30 40 50Number of observations

-2-1

01

2Residual (s)

S

Events common in P and S data (238 events)

HypocentersP

email contact: [email protected] wish to thank INGV, LED, RENASS, RSNI, SISMALP and ZAMG for providing us with additional data. Acknowledgements

5°E6°E

7°E8°E

9°E10°E

11°E

46°N 47°N 48°N 49°N02040Depth (km)

56

78

910

11Longitude (deg)

46 47 48 49

Latitude (deg)

020

40Depth (km)

0 50 100 150 200

No. of Events

020

40Depth (km)

5°E6°E

7°E8°E

9°E10°E

11°E

46°N 47°N 48°N 49°N

Station Corrections (S-Wave)

5°E6°E

7°E8°E

9°E10°E

11°E

46°N 47°N 48°N 49°N02040Depth (km)

56

78

910

11Longitude (deg)

46 47 48 49

Latitude (deg)

020

40Depth (km)

0 50 100 150 200

No. of Events

020

40Depth (km)

5°E6°E

7°E8°E

9°E10°E

11°E

46°N 47°N 48°N 49°N

Station Corrections (P-Wave)

Statistics

050

km

LKBD

BALST

BNALP

BOURRCHKAMDAVON

HASLILLS

MMK

MUO

SIERE

SLE

CHE

TORNY

VDL

WILAZUR

KAMOR

6°E8°E

10°E

47°N46°N 48°N

FranceAustria

Italy

Germany

Switzerland

Beckenried earthquake:2000/08/17 07:14Z = 10 km, M = 3.0

Statistics

Statistics

Stability Tests for Min. 1D P+SBeckenried event

Example waveforms of the Beckenried earthquake illustrate the difficulties in phase identification and picking of local S-wave data. The seismograms are plotted as time reduced Wadati diagrams.Stereographic diagrams for 3 Swiss stations demonstrate the distribution of azimuth, distance and focal depth for observed P and S arrivals. SLE shows prominent differences between P and S for larger epicentral distances.

0 02 

  40

  600  8100 1  20

140 160 

180 200 

20 2 

240  260  280  300  203   43 0 P

0 02 40   6080 001  12  0

140 1 0 6

180 200 

20 2 

20  4 260  280  030   203   43 0 S

010

2030

Focal Depth (km)

0 30 60 90 120# obs.

010203040

Focal Depth (km)

0 30 60 90 120# obs.

0100

200Epicentral Distance (km)

0 02 40 6  080 100 120 

140 1 0 6

180 20  0

20  2

240  620  280  3  00 320  340 P

0 20 40 60 80 100 120 

140 160 

180 020 

20 2 

240  620  028    300 320  3 04  S

010

2030

Focal Depth (km)

0 30 60# obs.

010203040

Focal Depth (km)

0 30 60# obs.

0100

200Epicentral Distance (km)

0 20 40 60 80 100 1 0 2

140 61 0 

180 00 2 

220 

240  260  2  80 30  0 320  3 04  P

0 20 

04 6  080 100 1 0 2

40 16  1 0

180 020 

220 

0 24  26  0 28  0 03 0  3 0 23 04  

S

010

2030

Focal Depth (km)

0 30 60 90 120 150 180# obs.

010203040

Focal Depth (km)

0 30 60 90 120 150 180# obs.

0100

200Epicentral Distance (km)

PS

Distance (km)Azimuth (°)

A)

A) Selected data set to compute min. 1D P-wave model. Black dots: events common in P, S, P+S.B) Minimum 1D P-wave model, and final models from “high-low” test.C) Station corrections P-wave

C)A) Selected data set to compute min. 1D S-wave model. Black dots: events common in P, S, P+S.B) Minimum 1D S-wave model, and final models from “high-low” test.C) Station corrections S-wave

C)

A)

Random MislocationSystematicMislocation

A)A) Selected data set to compute min. 1D P+S-wave model. Black dots: events common in P, S, P+S.B) Station corrections for P- and S-waves. C) Final minimum 1D model for P (blue, solid), S (red, solid) and vp/vs (black, solid). The initial models (independent models) are represented by the grey, dashed lines.

D) To test the robustness of the final minimum model, we shift the hypocenters randomly (lat,lon,depth) and systematically (depth) by 10 km before introducing them in the joint inversion (grey dots). Velocities are overdamped for test with systematically shifted hypocenters.Hypocenters are relocated close to their original locations indicating a stable minimum (final hypocenters: black dots, final velocity model for random shift: solid green in C).

A) Differences in hypocenter location obtained from relocation in min. 1D P-wave model (using only P arrivals) and S-wave model (using only S arrivals).B) Residuals of earthquakes relocated with P-arrivals only (in min. 1D P).C) Residuals of earthquakes relocated with S-arrivals only (in min. 1D S).D) Residuals of earthquakes relocated using P and S arrivals in min. 1D P+S wave model (preselected “high quality” data set from min. 1D P+S).E) Same as D) for unfiltered data set of 1588 earthquakes.

0102030405060 Depth (km)

45

67

89

v (km/s)P

Initial: high/low Output (low-in) Output (high-in) Min 1D P-model

well resolved

B)0102030405060 Depth (km)

23

45

v (km/s)S

Initial: high/low Output (low-in) Output (high-in) Min 1D S-model

well resolved

B)

D)

5°E6°E

7°E8°E

9°E10°E

11°E

46°N 47°N 48°N 49°NP DelaysS Delays

B)P RayS RayStationHypocentre

P RayStationHypocentre

S RayStationHypocentre

0102030405060 Depth (km)

23

45

67

89

Velocity (km/s)0102030405060

1.61.71.81.9v/vRatio

PS

vSvP

1.73

well resolved

Final min 1DP,S in (indi.)Final stabiltytest

C)

A)B)

C)

D)E)

A) Simultaneous Wadati inversion for the preselected P+S data set of 492 earthquakes. We define outliers (white dots) as residuals ³ 1 s or £ -1 s.

0 5 10 15 20 25T = T - T (s)S-P s p010

2030

4050

6070

T (s)P Vp/Vs = 1.699, +/- 0.001rms = 0.422

T/T coupleP

S-POutlier (residual ³ 1 s or £ -1 s) vp/vs -1

C)

A)Outliers:Wadati: 56 (S-P)Min. 1D P+S: 88 (P) + 37 (S)

We derive minimum 1D models for P, S, and P+S. Within these models hypocenters and residuals of the relocated earthquakes show similar results for P, S, and P+S. Mean values and s of equal quality classes show no significant bias between P and S arrivals. Therefore we assume a comparable consistency of P and S arrivals in our data set. The amount of high-quality S arrivals is lower than for P. This can be explained by a higher conservatism in S arrival picking. In general we detect more and sometimes different outliers in the min. 1D model compared with the Wadati method. Since the later only detects T-T outliers, we can not distinguish

SP

between P or S mispick and have no information, if we observe only one of the two phases.

1012

1416

1820

2224

2628

30-14 -12 -10 -8 -6 -4 -2 0 2 4 6

BNALP-T MUO-T

HASLI-T

LLS-T ZUR-T

WILA-T CHMEL-T

VDL-T

DAVON-T BOURR-T

TORNY-T

T (s)p

(T -T ) - (1.71-1)*(T -T ) (s)s p p 1

SgPg

???

?

Beckenried eventtransverse, displacement

2122

2324

2526

2728

2930

31-6 -4 -2 0 2 4 6 8 10 12 14

CHE-T BALST-T

KAMOR-T

LKBD-T

SIERE-T

DAVON-T

MMK-T

T (s)p

(T -T ) - (1.71-1)*(T -T ) (s)s p p 1

SmS

PmP

??

???

transverse, displacement

Poster presented at EGU 2005, Vienna, Austria