SYSTEM DEFINITION STUDY PART IN

358

Transcript of SYSTEM DEFINITION STUDY PART IN

Page 1: SYSTEM DEFINITION STUDY PART IN
Page 2: SYSTEM DEFINITION STUDY PART IN

CONTRACT MASS-15196 DRL T-1346 DRD MA4641 LINE ITEM 3

SYSTEM DEFINITION STUDY PART IN

D180-21071-1 PERFERED CaPiCEPT SYSTEM DEFINITION

March. 1978

Suhmittrd To The Satinnal Aenmautics and Space Xdnlinistration

Lyndon B. Johnson Space Center tn Fulfillmrnt of the Rcquirenirntr

of Contract SASQ-ICIQh

- ' . - *& =-

BOEING AEROSPACE COMPANY

. Stud) Manager

MISSILES AND SPACE GROUP-SPACE DlVlSlON P.O. BOX 3999

SEATTLE. WASHINGTON

Page 3: SYSTEM DEFINITION STUDY PART IN

SECTDN fPTE PAGE

WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS WBS

WBS

WBS WBS

WBS

WBS

WBS

WBS

WBS

WBS

INTR0L)UCTION ................................................. 1 .1 F'uqmE .....................................................

.......................................... 1.2 Rat id fo fSc l e t t ion 13 Ooarsreatbription ..........................................

............................................ SYSTEEUDESCRIPirON 1.0 SPS- .................................................. 1.0.1 P m f p m I n t ~ h ..........................................

......................................... 1.0.2 SglceTnfficContd 1 .1 Sohr Power Stakte ............................................

.......................................... 1 . 1 . 1 Support Subystems

.......................................... I . I . i . i Primary Stmcture

.......................................... 1.1.1.2 Attitude Contrd .............................................. 1.1.1.2.1 T h ~ s t e r s

1.1.1.2.2 PowerRocesor ......................................... .......................... 1.1.1.2.3 Structure and Installation Hardware

........................................ 1 . 1. 1 2.4 Propellant Tanks ........................... 1 . 1 . 1.2.5 Propellant Feed & Control System

................................. 1.1.1.3 Central Computing Complex .......................................... 1.1.1.4 Communications

................................. . I 1 . 1.5 Antenna Yokes & Turntables ............................................ 1.1.2 Energy Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 -2 Energy Coversion ............................................ . . 1 1 3.1 Solar Blankets

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3.2 Catenary Support System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 3.3 it~terhay Jumpers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4 Pc~wer Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4.1 Switchgear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4.2 Main Busscc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . I .4.3 Bu, Suppt~rts

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 J.4 Electrical Kotary Join

Page 4: SYSTEM DEFINITION STUDY PART IN

SECTKlN TTrLE

.......................... WBS 1.1.5 Microwave Power Transmission System

........................................ . WBS 1.1 5. 1 Support Subsystems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.1.5.1.1 RimaryStmcture ...................................... #TBS 1.1.5.1.2 Szcondary Stnrcturrr

................... .................. WBS 1 . 1 .5. 1.3 Attitude Control .-.

.............................. WBS 1.1.5.1.4 Computing & Data Processing

WiBS 1.1.5.1.5 Comnunications ........................................ ......................................... WBS 1.1.5.2 Power Distribution ........................................ WBS 1.1.5.2.1 Power Processors

................................. . #BS 1 . 1 .S.Z.2 P =r;ssor Thermal Control ............................................ WBS 1.1.5.2.3 Switchpear

...................................... V B S 1.1 3 . 2 .4 Bussing and Cabling

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.1.5.3 Transmirtcr Subarnys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS I . 1.5.3.1 Structure and Waveguide

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VBS 1.1.5.3.2 Power .Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.1.5.3.3 Thermal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SBS 1.1.5.3.4 Control Circuits

WBS 1.1.5.3.5 Ham- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1 1.h Assembly and Chec'kout

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.1.7 Initial Spares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2 Ground Receiving Station

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . wBS 2 . I Real Estate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1 . 2 . Control and Con~munication

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1 .2. 2.1 %ax Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2 2 . 2 SPS Operations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.3 Restznna Primary Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS I . . 4 Energy Colltction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.4.1 Ground Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.4.: RF i\ssemblirs

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.4.2.1 Dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.4.2.2 Circuitry

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.2.4.2.3 Shields & Covers

PACE

Page 5: SYSTEM DEFINITION STUDY PART IN

SECTION TITLE

.......................................... WBS 1.2.4.3 PowerCoUection .................. WBS 12.43.1 Layout of Rectenna Panels for RF Collection

....................................... WBS 1.2.4.3.1 R F / X Conversion

............................................. WWS 1.2.4.4 LocalBussing ...................................... WBc; 1.2.4.5 DitributedProcessing

.................................... WBS 1.2.9.6 Grid Interface Provisions ........................... WBS 1.3 SPS Space Construction and Maintenance

.............................. WBS 1.3.1 tow Earth Orbit Construction Base ................................................. WBS 1.3.1.1 Facility

............................................. WBS 1.3.1.1.1 Framework

WBS 1.3.1.1.2 Crewk(oduks ........................................... ................................ W S 1.3.1.1 -3 Work Modules t Pressurized) ............................... WBS 1.3.1.1.4 Cargo HandlindDistribution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.1.1.5 Base Subsystems .................................... WBS 1.3.1 .I! Construction Equipment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.1.3 LEaintenance Provisions ......................................... WBS 1 . 3 . Gros~.nchri>nous Base

WBS 1.3.2.1 Facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS t 3 . 2 . 1.1 Fnn~ework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.1.1. t rsw h4odulr.s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.2.1.3 Wcrk Modules (Pressurized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS I .3.2. 1.4 Cargo HandlingjDistribution

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3 -2.1.5 Base Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS I 3 2 . 2 Construction Equipment

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.2.2 Maintznancc Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.3 Stellite Maintenance & Operations

. . . . . . . . . . . . . . . . . . . . . . . \VBS 1.2.3.1 Satr.llite Maintenancc Equip & Operations . . . . . . . . . . . . . . . WBS 1.3.3.1.1 Antrnna Hsintenuncc Equipment and Operations . . . . . . . . . . . . . . . WBS 1.3.3.1.2 Solar Array Annealing Equipment and Operations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.3.2 \4ohilc Slaintcnanz r. Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.3.3.3 GEO Base Support Systems

PAGE

109 109 1 1 1 t i t 112 114

117 120 1t7

132 133 137

139 142 145

154 154 157

157 157 161 161

161

163 163 163 167

169

175 178

178

Page 6: SYSTEM DEFINITION STUDY PART IN

W B S W B S W B S W B S WBS W B S W B S WBS

WBS W B S WBS WBS

WBS WBS WBS

WBS

\VRS WBS

\i BS

WBS

WBS

H'BS

IVBS

U US

\5 BS it BS

\VRS

\VBS

\\ BS \VBS

\VRS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . 4 Space Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1 Cargo Launch Vehicle

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . . I bunch Vehicle Charicteristics

I . 4.1 . l . l Vehicle Oesign Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.1.2 Ascent Perfom~anse Charasteristics . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 4 I 1.2 Reentry Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. I 2 Booster Stage

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 1 . 2 . 2 Booster Sfas Characteristics

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.3 Orbiter S t a s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.2.1 System I>esc'riptiotl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4. 1.3.2 Orbiter !bias> Cl13r3iteri~tii~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.4 Launch Vehicle Cost

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t.J.t.4.1 L>DT&E Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. I .4. 2 Production Cost

. . . . . . . . . . . . . . . . . . . . . . . . 1.4.1.4.3 .A \era?: Cost Fl~ght i 1 S ; ~ f e l l ~ t c : ~ . a ~ )

. . . . . . . . . . . . . . . . . . . . . . . . . 1.4. I 4.4 tffcct of I..i1111ih Uatz on ('~tst Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4. I . 5 \ '~hiile Operrrtiota

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 4.2 Pt*rson~~~l L;lunch \ ehiclc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I 4 . 2. I Vehicle Georn?try

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 .4.2 .1' Hc>c)str.r Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2.3.1 Booster Stage S>-stem I>cscription

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4 2 . 2 B4tostr.r >lass ('htlractcnstics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.?.2.3 Booster Cost Estimatc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I .4. 2.3 External 1-anL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . I ._ ' . 2.1 Sy3tetn 1) c..i cnptiorl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . 4. 2.3.: F. T Mars C'h;rraiti.ri~tic.; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I . 4. J..;..; 1'T C-ost I'stlrtl, ltc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.2.4 Vehicle Peric~n~i;incc

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l.4.J.5 1'zrion.il \ ! C I ' ~ ~ I ~ L

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 4 . Pe~son;rl Vc.11izle ('ost per I+l~gl i t

Page 7: SYSTEM DEFINITION STUDY PART IN

SEflION TITLE PAGE

WBS 1.4.3 OrbitTnnsferVehick ........................................ 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.4.3.1 Configuration 243

WrBS 1.4.3.2 Subsystem .............................................. 245 WBS 1.5.3.3 Performance .............................................. 246

.................................................... WBS 1.4.2.4 Mas 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . WBS 1.4.3.5 Mission Profile and Flight Operations 248

WBS 1.4.3.6 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 .................. WBS 1 .4.3.7 Crew RatationiRcsupply Yr~nsprtation System 254

WBS t . 4.4 SPSfnstalied Orbit Transfer System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 754 . WBS 1 .1.5 b u n c h Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

WBS 1.4.6 Propellant Production R f k l i vz r?. Sl-stem . . . . . . . . . . . . . . . . . . . . . . . . . 265

WBS 1.4.7 Operations 8r Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Appendix A S i ~ c Sensrt~vtty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix B Staging Cost Opt~mtzation 343 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Appendix C Low Thrust Orbtt rransfer Simulation 351

Page 8: SYSTEM DEFINITION STUDY PART IN

1.0 INTRODUCTION

This document provides a concise but complete system description for the preferred concept SPS developed by the Solar Power Satellite System Definition Study (Contract NAS9-15 196).

1.2 RATIONALE FOR SELECTION

The selection rationale was dominated by a desire t o develop as much credibility and technical con-

fidence in the results as could be achieved within the study resources available and within the under-

standing of the required technology. Significant selection decijions included the following:

1 . Single crystal silicon solar cells

2 . Class encapsulated solar cell blankets

3. Concentration ratio I 4. Graphite composite materials for primary structure

5 . Electric propulsion for attitude con!rol

6. Klystron RF amplifier t i~h r s for the transmitter

7. One kilometer diameter transmitter with a design transmission link output power of 5.000 megawar:s

8. Construction in low earth orbit with self-powered transfer of satellite modules t o g<osynchron-

ous orbit.

9. Twostage ~ i n g e d fully reusable rocket vehicle for transportation to low earth orbit.

Rationales for these were as follows:

1. Single crystal silicon solar cells wcrc selected because their technology base is considerably

more advanced than the alternatives. Promising alternatives include thin tilni ,ealliuni arsenide

and other thin film materials. However. silicon cells nearing the perfomlance levels desired for

SPS are presently in experitncntal production. The paths to achievr the SPS level have been

largely demonstrated experimentally. Even with this comparatively conservative technology

selection. a substantial technology advancement rnust be accomplishrd in order to makc the

SPS system practical. Significant advancements include achievement of the desired perform-

ance level in production cells. sclcction of production processes anti their automation. imple-

mentation of adequate capacity low cost silicon solar cell production. arld implernrntation of

SPS solar blanket production on an adequate scale. These technical challenges are siifficientlp

great that seiection of 3 design requiring cvcn further adv;inces was felt to result in a lack of

contldencc in renllts. The more advanced technologies, however, would likely lead to improve-

ments in SPS cost characteristics later in thc program.

Page 9: SYSTEM DEFINITION STUDY PART IN

2 . Ctlass entspsul;ttion of the celb in the blanket was selected kcartso this avoids life tinlitations

that may exist for plastic matznals and potential pmhlems with darkening of adkt.l;ives.

It also provides better radiation protect~on for the wlsr cells and IS conipatihlz with directed

energy dnneditig of the sc3lar blanket, shoilld that kc' required.

3. r'oncentratlon ratio 1 was selected because low cost solar cells drive the ci>nzentration ratio

trade to eltinination of concentn!r~rs. trt.cause of the simplicity of the concetitration ratio I configuration. Solar cells rxprnsivr enough to ptvc a significant advantage to concetrtratton

lead tct an overall cost preference for thcrnlal engtnc' systems.

4, fhe pnmrry reason for sclecttnp, grrphlte cotitpcw~te nidtenals for the SYS nijin structure was

t h r ~ r achiekdb~ltty of very low thermal cwffic~cnts of expansion. This a highly desirable

bccauw tire vcr) low \tntcttiril frcqtien;te\ ol JII SPS s.ttrI11tc lead to s~gn~ficant concerns

related t o tire d y n ~ i n ~ c effect\ o f tcmpc.r.iturc change% due t o changes In \un illu~ain.tt~on.

5 . Tlir st-iectioti of klystron t t t k s 3s the pow1.r a i t i p i i t i ~ ~ for the tnicrowttue power transtilitter

was largely arbitrary. Earlier studics had cr~ncetitrrtted on artiplitmn cn~wd-field astpli1iei-s

and i t was desired to bring ;tn unde~ tan~ t lng ejt ' the klystron systenr up tu a con~pamblc level.

'me klystron t t~he appears to he nrore tlcsihle in olxration than thc aniplitriw t u b and could

lead to ctdvatitages in situatiens whcrc zotitrol of the SPS power level is dcsired for load tbllow-

ing e r otlter retsons. C'cjnsidcrahlc intcn'st has bwtr expressed in solid state amplifiers hut no

soliii statc a~t~plit'icr technolopy pwwntly in tltc Iab~r;itory is adcqttritc'. The prinziprtl difti-

;t111) ;trt?it's t'rt)til thr. fact t t t ;~ t solid statc' amplitien mtist bc opr;ttcJ at low tctirpetitures (e.g..

COcY'). 1'111s lc.~ils to st%vcrv litiii1;ttions 011 tlie atiloiint 01'powcr tliat i31 \ I ~ c tr;~tis~~littcd with-

out t.xcCr.dtng rltt. .rllt)w.~hlt~ ti.atpcr;tturi. lirtrits on tlrc solid st:ittS devices tlui~ to wasti' htu;rf

~licrtrl.rl rc*jzztinn tcnipt*r,tturcs. I:or ~*x,anpIc, :I ontB ki ln~rr~tcr diaiiieter pou-er transtrlittc'r

11s1iig \ ~ l ~ i c ) t l w l ~ d 3i.ttt. ~ I l c \ t i~ s c~)trlti proP.tl>l\ not lt,tn~ilt, ntt)ri. lh;rn a1)oiit 1 to I' : gig;i\%;ttts

c>fClt*ctri;.tl itiput power, Siic \cttsit~vit! .itr.tI! ?ic> h;tvi* indic.ttcc1 th:rt SPS's witli trntrsmittcrs

tn 1111s po\vcr r;tngc i~tzur .r \tpriit'ti,it~f pcqa.ilt! 111 Itsrrlls of h~gh i.tpit;tl cost.

Page 10: SYSTEM DEFINITION STUDY PART IN

7. Constntction in low earth orbit was selected because the availability of the electric. propulsioo

mode reduces the number of laurch vehicle flights by factor of approximately two. This reduction causes a reduction in transportation cost that overshadows the costs associated with increased complexity of the electric propulsion transfer mode.

8. Selection of the t w o r t a p winged rocket launch vehicle occurred after an extended analysis

and comparison of winged and baliistic sing.ie-stay and two-stage options. The single-stags

options were technically marginal with the level of technology presumed available. The two-

stage wingd and two-stage ballistic options were eswntiail) equal in cost as reported in earlier

documentation. The winged system is believed to represent less of an operational challenge

and would probably be less subject to vehicle attrition In landing accidents

1.3 DOCUMENT DESCRIPTION

This document is organized to the current SPS work breakdown structure. The work breakdown strusturr: js l~ar~fwart'~oftw3rc'vare orit~ntcd and it enzivnpassibs all eltbments of an SPS prt~gratn. .A sum-

mary of the work h r r t a k d ~ ~ n structure is presented in Figure 1-1. The systeti~ description is pre-

sented under each WBS item in four suh-headinps. First is tlte xork breakdown structure dictionary

and description of what is included under the WBS item. Next is a description of the hardxare or

software item. followttci by a description of the itern tnrtss when applicshle, and tinrtlty. a dcssrip-

tion of the item cost. Description. rnass. ant! cost ri~rnmarir:~ are provided at the higher WBS levr.1~.

SUPPORT SUBSYSTEMS REAL ESTATE LOW ORBIT BASES CARGO LAUNCH ENERGY COLLECTION CONTROL AND GEOSYNCHRONOUS VEHICLE

ENERGY CONVERSION COMMUNICATION BASES PERSONNEL

~OI';ER D , S T R , B U T ~ ~ PRlhlARY STRUCTURE hlOSlLE MAINTENANCE LAUNCH VEHICLE

M~CRCWAVE POWER ENERGY COLLECTION BASES ORBIT TRANSFER VEHICLE

TRANSMISSION . POWER DUTRIBYTIGN ' $ ~ ~ \ ~ ~ ~ ~ c ~ E O ' AND PROCESSING SWINSTALLED EOUIPhlENT ORBIT TRANSFER

OPERATIONS AND SYSTEMS SUPPORT

SPS PROGRAM

1 I 1 t I I T

Figure 1-1 SPS Work Breakdown Structure

SPACE TRANSPORTATION

SOLAR POWER SATELLITE

GROUNO RECElVlNG STATION

L

SPS SPACE COKST;1UCTlON AND

R?AINTEtJATJCE r , i

Page 11: SYSTEM DEFINITION STUDY PART IN

PTtECEPlPHj PAGE BLANK NOT FILMED

2.0 SYSTEM DESCRIPT1ON

WBS I .O SPS Program This study concentrated on analysis and description of operational SPS systems with a nominal gen-

erating capacity of i 0,000 megawatts delivered through two RF power transmission links each rated

at 5 0 megawatts. Vario~ts rates of installation of these systems ucre considered with principal

effort directed towards the installation rate of one per year. The complete operational SPS system

includes the satellites, their ground receiving stations, space construction systems for completion for

the satellites in space, space transportation systems fc: movement of SPS. other cargo and crews

into space and into the final operational location. and miscellaneous support functions carried

under these WBS items.

WBS : -0. I Program Integration

WBS Dictionary This element includes those aspects of operating a commercial SPS system that cannot be conven-

iently accounted at the individual solar power satellite level o r under the construction and t rans

portation work breakdown structure items. An example of such an item tilight be governmental

regulatory functions applicable to solar power satellite systems.

Description No effort was expended under this study effort to identify or characterize any system elen~ents that

might apply t o this WBS item.

WBS 1.0.2 Space Traffic Control

WBS Dictionary

This elenlent applies tu space traffic control operations that would function as an overall controlling

element for the fleet of solar power satellites and their associated snacr operations systems includ-

ing construction bases and transportation uclricles. T h ~ s element wduld t~;;tude tracking and mon-

itoring f~rnctions as well as computing ~ n d control functions as necessar?. lu maintain al! system

elements in safe and non-interfering orbits.

Description

h o effort was expended undcr this study to identify space traffic control sistems. An analyses was performed of collison j la~ar j s ~)liL: PG~L;:!~;! :':crk.src~:?dr. T!::s:: ::*sG!?:, 3r:: reperfed i!? ?'z!n!n:: 5

of the Part I I final report.

Page 12: SYSTEM DEFINITION STUDY PART IN

-0 FACE BUM( NOT *

WS 1.1 Sshr P o w S a t a t e

WBS Dictionary

This element includes all hardware and resident software for operation of tbe solar power satellite.

Maintenance equipment resident on the satellite is separately described under element 1.3.4. but is

included in the summary SPS mass statement.

Element Description The reference configuration illustrated in Figure 1.1.0-1 is a photovoltaic SPS (without solar con-

centrators) employing gli~ss-encapsulated single-crystal silicon solar blankets. The nominal ground output is 10.000 megawatts through two power transmission links each rated at 5000 megawatts.

A sctmmary of tfie efficiency chain and sizing requirements are presented in Tables 1.1.0-1 and 1.1.0-2.

Element Rbss The element mass summary is presented in Table 1.1 .O-3. This summary does 2ot include item 1.3.4, satellite-based maintenance equipment. Mass estimating factors and/or rationales are given under the lower level element entries. The mass growth allowance was derived from the uncertainty

analysis conducted in Part 11. About 213 of the identified mass increase (relative to Part 11) was incurred duc to normalizing the SPS to 10.000 megawatts (the Part 111 reference design output was

9300 megawatts); this power deficiency was included in :he Part I1 growth allowarlrc. as illustrated in rigtire 1 . I .O-2. The other 113 was a result of design changes not included in the gowth allow-

ance, and represents an increase in predicted mass with growth. The result was a slight downward

revision of the predicted mass growth with upward revision of identified and predicted masses.

Element Cost The updated SPS cost summary is shown in Table 1.1.04. The cost estimating factors are described

under lower level elements.

WBS 1.1.1 Support Subsystems

WBS Dictionary Support subsystems are those subsystems on the solar power satellite that are not specifically allocatable t o energy collection. energy conversion, power distribution or power transmission. They include primary structure, attitude control. central computing complex, con~rnunjc;~!ions. antenna

yokes, and turntables. These items are described under the sub-head; -ps below.

Page 13: SYSTEM DEFINITION STUDY PART IN

TOTAL SOLAR CELL AREA: 101.8 kmt TOTAL ARRAY AREA: 1102 b d TOTAL SAT€UITE AREA: 1145 km2 OUTPUT: 1893 GW MINIMUM TO SLIPRINGS

Fire 1.1 .@l Photovoltaic Reference Conf~rtration ( 5.000 MW Output Eech Transmitter)

mtm Tabk 1.1 .&I Nominal Effrcicncy Chains Photovoltaic SPS

INCLUDES INTERCEPT f FFlClENCY

8

ITEM I lSC GREEN B W U

.9765

.919 SUMUER SOLSTICE FACTOR COSINE LOSS (POP) SOLAR CELL EFFICIENCY RADIATION DEGRADATION

REASON FOR DIFFERENCE

THESE WERE INCLUDED I N ENERGY INTENSITY ON SPS

NOT INCLUDED NOT INCLUDED

TEMPERATURE DEGRADATION

COVER U V DEGRADATION CELL TO-CE L L M I W A T C H PANEL LOST AREA STRlfJC I ~ R BUS t2i4

ROTARY JOINT ANTENNA POWER DlSTR DC-RF CONVERSION WAVEGUIDE 1% IDEAL BEAM

INTER SUBARRAY ERRGilS IiJTRA SUQARRAY ERRORS ATMOSPHERE ABSDRP. INTERCEPT EFFICIENCY REC'IENNA RF DC GRID ItJTERFACING

PRODUCTS~SUMS SIZES (tCm2)

2

.in

.97 SLIGHTLY BETTER CELL: CR - 1 0.103

NOT INCLUDED

.92

1.0 .98 .87 .sa

.BS

.98

.90 39

.0608

DlF iRlBUTlON OPTIMIZATION

PROCESSING 81 TEMPERATURE VARIAN ESTIMATE

. ItJTRA-SUBARRAV EFFECTS NOT INCLUDED IN GREEhi BWI

NUMERICAL INTEGRATION INCLUDES DC-DC PROCESSOmS

.961

.998 ) -932

.934

10 .97 .85

.965 '

.95G ' .86*

: .95 .89 3 7

.on2 108.8

Page 14: SYSTEM DEFINITION STUDY PART IN

1

commEm P W H I cuIcitan FU'AL t r a r !

aaaDuft€?ER6Va#LEcmmfvrrar Qlratt rssrap kl .1s.lmams - 7 caDrmOuOusoroRll-ma,

MWIllWtUIYg-

tlt goruauav-URE - . - UYEOICL~~~~CU- - n a mounor M - - 3b Cmlml 111 RE-€STWATED 11 - A m 4 8 # O m

comulwmrm W mUeCEUeL#mETS -160 16Lm -EASED ARRAY AREATO

k-It€ W I L R TO M GW 1.8 SOLaR-fOat - - 13 WU€RDILfRIIUTKm m a426 & L M llYtRAlYg

M M E

2 a m 25232 219n IYOIIIIIALm-RAlUI -RAY

s m r o ~ ~ ~ lipw nm OMlWTH zfwm -37- NORIYIALUEDmnOIY

G R O l m n ~

Tot& -4474 -.m

Page 15: SYSTEM DEFINITION STUDY PART IN

A m l U O E CONTROL THRCarrFt OOST WAS REDUCED TO ff EFLECT D f O Y * * U U T Y m - - D R m L t b T E s

.. REU ?&BY U FU&U PART lll m t E

aaGm treorr) ~ F O m Q U l Y O E

. ~ T ~ 991 m D * W E C t G Y C C C N f ~ 3.7s3 4- LARGER A R F ! FOR 10 GW mLAR-VKfm &SER DiSTWMT#IAI l33 - 342 HIGH€ R POWER IKEOWAVE WW€R 2.6?2 2- H M R CQWEAf MROV ntAtm3tSSKMi SmRMX NHiLECKO a ?ARtN 6XOWiD RECEWIIKi 4 .M 4- ftE+ESnMAT E STAT= Bt GRlD UJTERFACE - 1,348 NOT MCLUWO t# PART tt

.CO#SIRI#TIOIYU#Kf 1,lQB - SUCKIiiT

STACEfRAIIISORTATKI# 6Jus 6.387 ttdCREASED E ARTH LAUNCH CG?Sl BUT SAVNGS BY OIIBtT fRATlSFER SYSlEC.1 RECQVERY

WJlTIAl SPARES - 240 NEGLECTED IN PART I . PAcKAGI#O I O M R

~ ~ R E S T O U R ~ ~ Y O coAI8nnrctlOW

.GRowlII

TOTAL

3U

iber

3.250

w.m Bz6wkw

bQt

tost

3.1 15

28.- - 6L2-

IC?CRE&ED TO 6% OF APPLfCA8I.E ITEM ntoll~n BASE con

SOME OF PART I f GROWTH IIIICLUDED M F lGiU$W

Page 16: SYSTEM DEFINITION STUDY PART IN

- The refemmx sate&& coati;epimW %-as Bustrated in Figure I . 1 -0- I . Rte satellite is comprised of 36 bays, each U7.5 nctm squarr- Ttit bays are maagcd eight wide by thirty-two long to provide

gt W4S anrsctive to use o nacbdatat gttuctural concept for cmstn#tion in LEO with t r a d e r and r ' d assembly in CEO. The szt&tr was sectioned into eight iedutes of equal site, each mod& is four bays by eight bays. I#hett joined atong eight bay e d p , the desk4 satellite confwration is formed.

A typical module was used to pcrfona a I d anslysis co identify ttte critical bsms The bask

s&ucturd m f m m t b eg &e W u f e is shown in F i p I . I.!-1 with typical bean h g h s shown in Figure i. 1.l-2. Rie critical besnas. upper surf~ce beamt in bending, were noted and the stmcture was sized accordingly. The edge I d (3.5 Ni%l on these members is the d t of array catenary kmd& cm the piimary swtiad beams.

A b-pd =tion of 7.5 meter beam is shown. in Figure 1.1.1-3. with end-fitting and loading points noted. This beam if fabricated by a rmntinuous chord process which will be discused in section 1.2. The element mnfiguration for this kam, with basic dimensions and materials. is shown in Figure

1.1.14.

ThL end-fitting &om in Figure' I . I .I 4 is that for a centmidakMt, beam-t&%m connector. An itlust~tion of an edge :wan intersection. using this appr-h, is shown in Figure 1.1.1-5. This type

of joint permits centmaat beam-team load trammittai ma is dso consistent with a m n t con- struction techniques a i d construction facility siting.

Eknmli Mass The final primary ~tructural mass estimate is shown in Table 1.1.1-1 and a cornparisoil of the Part 11 final mass estimate. The incr*ax in mass. from the Part I1 final. is broken into two categories: that resu:ting from increased hay size to normalize power output (b. l percent): and that resulting from a

change to continuous chord beams (93.9 p-rent).

Page 17: SYSTEM DEFINITION STUDY PART IN

A-A

GRIT8CAL wAU (FOR CASE OF UPPER SURFACE IN BENMNG)

-tft)

6m.m

-7bY PLlWE Of SOLAR ARRAY

UJTEREDGEOFYOWI&€IN SATELLITE LOR#SITUMNAL DIffECfiON

rta4M

-

Figure 1.1.1-2 Rcf#mccLength~of Rinrrrry Struct~feRtrms

Page 18: SYSTEM DEFINITION STUDY PART IN

WTERIAL: P-1700 GRAPHITE (POLYSULH)NE IMPREG) E-181 GLASS COVER

F i 1 .I .I-4 Continuous Chd/htt tn CoRfIgwation

13

Page 19: SYSTEM DEFINITION STUDY PART IN

CURRENT I PART It FINAL I 1

ORIGINAL PAGE !S OF POOR QUALITY

MASS E S T W T E

(W)

lUASS ESTIMATE

(MT)

CHANGE

(mr)

Page 20: SYSTEM DEFINITION STUDY PART IN

gemcntcost The cost estimating factor used for primary structural members is 55Slkg. This factor was based on mature industry projections and was verified by detailed manufacturing and fabrication analysis. The updated SPS cost summary war shown in Table 1.1 -0-4.

WBSDictiol The attitude control subsystem includes all operational elements aGd software required to maintain orbit station keeping itnd attitude control of the SPS in the operational orbit or to establish attitude control from an initially uncontrolled condition.

Description The attitude control system is an electric propulsion system with four installations. one at each

comer of the SPS energy conversion system. A typical comer installation is illustrated in Figure

1 . I -1-6 (blue book). The attitude control system includes thrusters, power prxessors. structure.

propellant feed and control systems and instrumentation aid control.

k A mass summary of the attitude control system is given in Table 1.1.1-2. This mass estimate is based

on Part 11 results described in Volumes 5 and 6 of the Part 11 Final Report.

cost

A cost summary for the attitude control system is given in Table 1.1 .I-3. The cost data represents

an update from the Part 11 Final Report results given in l'olume 6.

WBS 1.1.1.2.1 Thmstm

WBS Dictionary Ttlrusters include the primary electric thrusters for maintenance of attitude control. and auxiliary chemical ;hrusters required for establishment of attitude control when electric power is not gener-

ated by the SPS.

DesclSip tion The electric thrusters are 100 centimeter diameter ion thrusters operated on argon as primary pro-

pellant. A typical thruster is illustrated in Figure 1.1 .I-7. Perfonnancc characteristics for such a

thruster are illustrated in Figure 1.1.1-8. Chemical thrusters itre small pressure-fed oxygen/ltydrogen

thrusters operating at a mixture ratio of 4 to 1 with a specific impulse of apprnximatcly 400 wc-

onds. Illustrations or technical details for these tltrusters were not dr\elopecl. I'licp would represent

a negligible mass. volume. or cost contribution to the attitude control system.

Page 21: SYSTEM DEFINITION STUDY PART IN

-

fWkSA Lyndon 0 Jot~nson ::peco Conlo?

Figure 1.1.14 SPS Syrtema Delinitton Status Report

SPS SYSTEMS DEFI N IT loll STATIJS SEPORT SATELLITE SYSTEMS

CLARKE CQVINGION I 1/25/78 , I

ATTITUDE CONTROL SYSTEM THRUSTERS

THRUSTER PANEL

ELECTR I C THRUSTERS a 4 PANELS (ONE AT EACH CORNER)

T THRUST/PANEL - 150N 1 2 0 ~ ~ THRUSTERS

a 25 OPERATING THRUSTERS/PANEL (40 TOTAL)

8n r I,, = 20,009 SEC

I e ARGON PROPELLANT (41,000 - 80,000 Ko/YEAR)

a OPERATING LIFE - 2 YEARS (0,5 DUTY CYCLE AND BOA BEAR

YOKE CURRENT)

FLUID & ELECTRtC CHEM I CAL THRUSTERS (LO?/LH2)

L I N E S e CONTROL DURING EQU INOCTAL GIMBAL OCCULT AT IONS LINE

1 9 0 u TO TRIPOD Q I,, * 400

a 1500 - 3000 KGflEAR

Page 22: SYSTEM DEFINITION STUDY PART IN

THRCISTLRS W x 40 x 4 COCIWER - 8.- ha

P R O C X ~ 15S83ly~ 12 I; 187,aaO

I W L .i 1 5 T O N s ~ 4 = 60.aW3

TANKS l .STOMSxI m QOOO

CONTROL 2

263 TONS

PLUS ANNUAL PROPELLANT 60

323 TONS

Table 1.1.1-3 Flight Conkok System Cost 4

THRUSTERS 180 X $10,000* = S 1.6 MILLION

PROCESSORS #.57M EACH X 12 = 542.84 MILLION

INSTALLATION = $25.0 MILLION

TANKS = $ 5.8 MILLION

CONTROL = $12.6 MlLLfON

$85.0 MlLLlON 1

*LOW COST RESULTS FROM COMMONALITY WITH ORBIT TRANSFER THRUSTERS.

THEY ARE THE SAME EXCEPT FOR ACCELERATION VOLTAGE AND OPTICS.

Page 23: SYSTEM DEFINITION STUDY PART IN

Figure 1. I . 1-8 1 2O-r'hl Argon Inn Thruster Perfmmnee

4

Page 24: SYSTEM DEFINITION STUDY PART IN

his Electric thruster m m WYS estimated at SQ kilograms each baed on extraplations from the LO centimeter thrusters presently in rxptirimental pmduc.tiotr

Cstt

The tfirustcr cost esttmate was derived frottt an ricctrrtintecha~icai cost estimating relationship and

d nratttti' tndtistq e~tmpc~!i\tton. .A <ost check WJS tilade b t ' t ~een this result 3nJ a cost est tnl~te

pnlvided to WASA by tire thruster trranutacturrr (Eiuphr.~) with gikd agrcement.

H'BS Dktiunary The power pmt?;sor element inclu~?es all poser pnwsssing rr'qulrrd ro convert the SBget~era tsd

electric~l pr>iver t.tt 40.OtXI \ctlts) to the ioltages ~ n d ct\ndttri~nc rcyulwd by the ;itt~tuQc cotltrt4

system. inc.ludtng thnister reqirrrenirnts, contrei wqitirrrt~~nts, as we11 as ~ ~ t i ~ p u t r n p dnd other

ri'yirtrenrents

Description

Prlvtt'r I*rtlit.i\iVS .lK attltd \fJfc' ~ l t ~ ~ . t r ~ l i l < i ~ h > i c \ > t ~ h tl1.1t iOll\r'Fl the 40.01X) \tlil\ frotti tlic SPS t 0

tlis Icwrr \olt.tpr\ n.qi~~r;.d b! rlrrtistzm .inti i3thr.r c~iilpiiI~tiI I'lk-rc ,ire .I to1.11 1 2 ilrgtcc\\im.

thrsr at t'.tAi conlrr

Cost

i:,tc.jl prr,ci'sc>r H,IS c\ttti~.tti~ii ttt ittst 5.; 5' t l l ~ l i ~ ~ i i ~ i o l l i n tl,i\c.d oil .I t ~ ~ ~ t t t r i * ~ t i t i ~ t \ r r ~ \~..tling t'roltl ccw c \ t ~ t ~ ~ , t t s pr\\~cctltm \h.ri\ci! ttv \ili1iI.\r l \ . ~ r ~ ! w . ~ r ~ 111 ct~~ti~ii~-r;i.~l pr t) t i t~~.~t t t t~ I I \ .tt-\litt

$230 kg.

WBS 1.1.1.2.3 Structure a d lnst~llatioti Hartlwarc

Page 25: SYSTEM DEFINITION STUDY PART IN

lksxiph The structure was tllwtrdted eariicr in Figure I . 1. la. The structure would hs similar t o tkc SPS pri-

mary structure including truss h e m s with suitable .eminations to f i>m the t r i p 2 like sttmdoff.

The jgknbal system is a ?-axis mototviriven slow rate girnhti system. Ciimbsl cornrnsnifs art. derived

from the instrumentation nnd contntl system. The thruster pa11:ls prcwide tnounting for the thrus-

ters and support muting for the electric power feeds f n ~ m the power prcsesorr.

kfasrP Each structural installation was esti~nated at 15,800 i g .

cost The four stntcturdl installations %ere estimated to cost S2.t iniIlion. ctpprt)kimately 1670, kg. inctud-

ing the gimbal system.

WBS 1 -1 .I -2.4 hpt thnt Tanks

WBS Dictionary This rlrnirnt includes tflc arson. i~.ygen. and hyctrogen propellant tanks fi3: the S f 5 attltudr 2011-

tml thrusters. I t also includcs tanh-nlountctf eqtltpmznt sttih w propi'l1;ant patiginp rttict vent \ a l \ c ~

and the miiltilayzr tnsularlcw on the tank.

Description

The propellant cntlrdtners 3re sphcrtcdl .itumlnum tdnh\ 10c.1ti'cf tlr'ar c d ~ h tI\rt~ster 1n\tall3tion.

Tanks are sized to Itold one year's suppt!, of jlro[vll;lnt plus d -10'; tndrgul. 1 he t>xygr'n dnd h!ttro-

p n tanks include it J 0 . 0 0 0 hllapratn nl.tni.u\zrrnp rr'wrte rn addit~nn to the tionii.il zoritrol propel-

lant. Thts is ~trfficlent to re-est.thlish the SPS tl%rr~\~.~f .itt~tutic Sroni ;11q tn1t1.11 att~tilde

Ekcniiw of the lotlp p~t~pellasit \to~.igc tlinc the t.ltih\ .Ire Jt~\tgnr'd \ t t t l i .i I~glit-werght hard-shellcd

vacuum fackrt thdt rncludes 1tpprou1rnntt.l) 60 I d ~ c s 01' ni~iltil.t>er ~ ~ i f u l d t ~ r ~ n Tllc tanks Jre

iiestgned to be wt?lled t'roni .i t~ t iher or rCtttott*tt .ittcl t'wlianpeci \ \ ~ t l t ~ C H I,IIII\\ brntlgllt frolit

tar th .

Mas l t l e ~iid\s of tile propelldnt tar>h\ \\.I\ c \ t ~ t n ~ t c d a\ 1 Q ot tlic t lu~d cont.tuirtI. I'hc tot,tI iiid\\ IS

1500 ktIoprani\ per znrrier not i i~~lu~l i r tg icr11t.1tnet1 prtywll.tnt I lie ci~~it.tineJ ~ ~ r a p ~ l l . ~ ~ t t 1s 1j0.000

kg ~n~lu t i lng the nr.inrirvtlr~~ip re\eni'

Cost

Thc cost of the trttiks was r*stia\atcti ttait\g ;I cost rstirnat~tip rclrtt~onship for tank structures. Shc

total cost for all tankage wris esttm;itcii at SC S niillinn. ;~bt)ut FQ7O'kp

Page 26: SYSTEM DEFINITION STUDY PART IN

WBS 1.1.1.2.5 Propdant Feed and Thnist Control System

WBS Di' trury This element includes all propellant feedlines and thrust control electronics and instrumentation.

Description The propeliant feedlines are uninsulated aluminum lines, Propellant pressure is controlled t o the

pressure required for the thrusters by regulators. A shutoff valve is inc'udrtd in eazh line for each

thruster so that any malfunctioning thruster can be isolated irnm propellant feed. The feedlines

include flexible elemeats and gimbals to cross the thntster panel gmbai joint. Electric t l l iu~t

control is provided by startup and shutdown o r individual thrusten. Oxypenihpdrogen t h r ~ s t e r

thrust control is provided by operating the thrusters In pulse mode.

Mass The mass of the propellant feed and thrust control system w ~ s cstimsted at S12.S n~iliion. an

avenge of S6250ikg.

WBS 1 . I -1.3 Central Computing Complex

WBS Dictionary The Central Computing Co~nglev tncludc\ ,111 computers and cc'ntrsltzed data grocesslnp required

for overall onboard management of the \rttellitr' configuratton opc'ration ;tnd tlight control. (This

element excludes antennadedicated coniputrng anct data processing. The latter is separately covered

under elenlent i .1.5.1.4.1

Description

The Ccntril Computing Complex consists of a triply redundant solid-state computer systeiil with

supporting equipment. Relativel) little effort was in\e~tt 'd in defining coniputing requirt.n~c'nts or

the computer complex. A rough order of magnitude estimate suwests that the con~putttr capacity

of this complex need bc no greater than the cdpacit) of the space shuttle computers. The coniputer

system was assumed to eniploy advanced large-sc,iIe integration.

Mass X rough estimate of rnass suggestt'd 2 2 5 kg per cornputcr. including rt significant allowance for

r~didtion dlieid~np ot' the c'a~iiputci ioillple\ to en\tire long 111;. dilri mlnunltm diffic'iiltie~ 2nd

fail11 res.

Cost The cost of the Ccntr;~l Conipiitinp Cornpltlu wiis estiniatzd using a CEK at ayprosimately S 2 X

~riillion.

Page 27: SYSTEM DEFINITION STUDY PART IN

WB!3 1.1.1.4 Communications

WBS Dictionary n e Conlmunicatinris subsystem pi0bidt.s a con~mun~cat iuns link hetwc8.n tile satellites and tliz

q c u n d receiving station for overall satellite control purposes. This romniun~cations link dcws not

include speclaliked antenna phase zontrol cotnmunii-attolls services. It i s tlcd in ~ ~ t l i the onboard

central computing complex and includes all ortt~odrd ddta hus\ing !'or condition and pcrfornianct.

monitoring of the energy converstot. suhsystetn.

Description - f i r Conlmt~nu.ittons syftertt inilttcie\ .i tnpl\ r<dut~tf,,it tran\rntttcr rccttLer \y>t:ln ope~titirlg on .I

fwqi~rnc) sltfficrentl~ renlovt'd from tilt- p i ~ e r trdn\nttssioti freqlietic~ to dvotd r~itcrt~retlit ' -2

KU-band link 1s Irkely cdndicfdtc. Thib conlmuritc~ttron~ \! \ten1 . t l ~ ~ ~ l c l u J c s d.it.i. huwtns. .~nd

r~l lect ion. Thr\ s \tcm itlterfrtc'. wrth the C c n t r ~ I Cornpitt i~g Cntliple\ la, otihodrd iont r01 I).~t,r

bussing ineana has not been selected but \till prt'thdhl! employ tiher optrc.

Mass The Coriitt~uni~.itrons s>\teni mat\\ was rstrm.itcd .is 2 - 2 0 kg.

cost

The Communications \y\tem was est~mated to cost S T 4 mlilron. an average of S2'.(MO kg Aero-

space communications cost estirna:rng rrlationshtp.5 mzrt trsrd.

WBS 1.1.1.5 Antenna Yokes and Turntables

WBS nictionary

TI* l in t iricludcs dl1 prodirctron h,trcfu drl* rcrlurrcrf l o rticclidtirc.ill\ t n i ~ r f d ~ ~ tilt. t .~tt , l i t tc. pn-

m: i ~ i c t i ~ r c w ~ t h the MPTS \tructurc Sithclenitnt\ ~nclucit. the ~ i \ ~ ~ l i . ~ ~ i ~ i ~ l rot.rq iixnt ~ n c i d r r ~ c

:ystrm. tlie ele\dtrun bohe jotlit. ,rnJ in:crf.i~c strlrztttrr. . ~ r ' t ~ c c t i tl!c ~ ~ t c ' l l r ~ e .inti 311'TS \>\1~,11i \

Element Description

'Ille MPTS dntcnn.1 i\ .itt.tiht.d to t h ~ \.itcll~tc prtntdr! \trircIttrc fr) tlw IISC ot'.tn .tntctrn.i ~ o k c .

yokc sttppoFt strlrcturc. .I lllc2hdnlidl rotdn jornt ,tnd .in ~ l c t . t t ~ o n joitlt (figure I 1 fhc cnt1rc

MPTS \upport \tru~.turc I \ Iitngcri *ir thC t.tlpi* of t11c aitr':litc' \tritcti~rc for 11 11 (;I Ct :r,in\port

configur;ttton (section 1 31.

Ttle )t&c support atrtri.tt~rc 1s con~po\cri ot tllc 7 5 tilctcr hc,~tii\ : .,\clr~icd for rh: s~ti.llrtc prini.ir\

structure (sectlun 1 1.1.11. 7rhc. \tippt*rt \truc.tttre be,itttt jt)in to ft~ri:i .I Iic\,tpc ,l.ll itttcrt.rcc t11.1t

probtdes erght \il[lpc)rt point5 lor tllc ~ l l ~ i h ~ ~ t t ~ d l rot.lr) 10tnt ctr:ui.ir he.1111 (L'igurc I I 1 - 10) 0 1 1 the

satellttc srde, thew beam\ ~ o i n t o tile 11tttpc.d pl,ttfc>rtii that vvrll dllow tlie cortiplctc .tntcrin,r dnti

support 3) zterli In rotdte under the i'nrl ~ ~ i ~ i ~ ~ r l e s of 1111' \.itcIl~tc

Page 28: SYSTEM DEFINITION STUDY PART IN

RCUUR BEAM

U

PTS 4 B. C . E, f. G, H ARE THE MECHANICAL ROTARY J@lHT C i R C U f A R B E l W A f t ~ P O I W t S

F v 1.1.1-10 Yoke Strppurt Strat. -5

Page 29: SYSTEM DEFINITION STUDY PART IN

t h t ~ m ~ u y p i a t k c a m ~ a f ~ ~ n t r 8 c i m t b r r ~ ( o a e m t h e ~ t t t i i t e r i d t Padotrtwtttoy&sidel.a~tionofwhsclfrushoa~ninf~ 1 . 1 . 1 - 1 1 . E ; l e h d r c u l a r ~ i s mppaxtd a t eight points emy 45 degms, to its adjacent support struchirc. The ituter utd outer

bose chords of each circular heam are srranged a d h ~ n t t o each other. k t w e e n each x t of ckmk a drive ring and roiier assembly is attached ( f i I. I . 1-1 21 t o ptovide relative movement

between the satellite a d WHTS system. The antenna yoke attaches t o its d ~ & r beam in a similar

method irr d-riW fur the 3-uke support QNC~UZP.

The yolrr is ~~ of one hundred meter tntssts made up of the beams ar that for the prkmq stnccture (sectio? I. t .5.1.l). At the antenna end of the yoke. a spechl end fitting is

provirtej fo interface with the antenna e h t i o n joint. T k elevation joint prcwides for a small painting angle adjustment b p v ~ i n \ a t e i y 7 depxsh of the MPTS system fix dttrnate m-tennr t - m eapbitities.

There is an e k t r i d rotary joint at the interface of the yoke and yoke support stwture. The e k e t t i d connection a c ' r ~ a t3e ekvation joint uses flex c a b k k ~ a w of the small an& adjustment

involved. These etectricai c!cments are detailed in section 1.1.4.4.

E i a n t n t b The mass cf the antenna b-okt: and tun~tahtz. t'or one MPTS. is listed in Table 1.1.1-4. i-~cluded in

t h e e masses are the attachment prosisions and mechanical e1t:mcnts nes iwry for the s~belemttnt

supports.

Element Cost

The element i m t s estimating factors. tor the ttems listed in Tabk l . l . l -+ . are listed in Table I . 1.1-5. Also iisted is the total cost for one MPTS antenna yoke and turntable system.

WBS 1.1 -2 Enerpy Colkction

WBS Dkthnary The t n e p y Colli'ctton Systtm 1nc1udr.s all rr.tlccton or concentrators ubed to concentrate solar

energy on tltt. t ~ r ' t g ) Cnn\i'nlc~ri S>\tr,111 J ~ J .I \ccotldar> ftructure required to support the concen-

trator -; stern.

gescription

The concentration ratio 1 preferred concept recluirrs no energy collzcttoti systr.111.

Page 30: SYSTEM DEFINITION STUDY PART IN

SECflON A-A

Y

TEmON GABLE VERY 30 DEGREES)

f

CIRCULAR BEAM CHORD CiRCULAR BEAM CHORO OF CIRCULAR RING OF CIRCULAR RllYG BEAM (SATELLITE SIDE) BEAM (ANTENNA SIDE)

A ROLLER/DRlVE ASSEMBLY IS LOCATED AT 12 PLACES (EVERY TENSION CABLE) AROUND THE PERIPHERY OF THE CIRCULAR BEAM (SATELLITE SIDE). THIS

LOADED ACROSS THE ASSEMBLY.

Fin 1.1.1-12 Drive Ring and R o k AssemMy Loation R & t h Ika Cltords of Circuk Ring Bcurrs

Page 31: SYSTEM DEFINITION STUDY PART IN

1

ELEMENT CER -GI C a r ( n o 3

AmEWWASLIPPOilTrnUCfURE 111 5.87

MECHANICAL ROTARY -BIT 34D 11.36

MYTEWU YOKE 128 5-27

TOTAL COST 22.5X106 i

Page 32: SYSTEM DEFINITION STUDY PART IN

WftStDkhemy This clement includes all productrun hardware required to convert incident suntight into zkctfical

power at the required voltage ;mJ deliver this power to the distribution systeni, There are t h m

primary wttelements: the Pbnkets. the catenary suppe* s)=ste~?t, and interbay jumkn.

Element ~ r i o n The reference e n e p son\erstoit s? stem contigutation was iliustnted in figure 1.1 .@I. -4 sunim3r-

of the efficiene) cham m d siting rqutrrinents mere presented rn Tthlr'3 1. I .&I m d I . 1.0-2. .A

more detailed d r x r i ~ t i o n #tit be given under each crf the t u ~ l e n t c n t s .

ElmKnt AIia Tile C I X ~ conwrdon mass summar?: w3s given in Table 1.1 .&2. The mas estimating facton u ill

be d;ssusssd in the >rtt- iement mtries.

EleRlent Cmf The uCj3trri SF'S cost surnntrte was shown in Tahk I . I 04. The i r s t estimating factors will hz

di*rikd tn ttlz suklctrtznt entries.

WBS Dictionary

rhrs elentent itlc1udr.s ail prtrjuctt~tn tt,irti\\are rrqiltrti! t o irlil\ t r t tn\'trfeni \uilItgf~t intit the reqtt~red

electrical power. Sub.-!i.mr'nts ir~iliide wltir cell panel\. ysnel trltercon 1ects. pro\isions for mrr.rba1

tnteriotinects. and support dc\~cc' intr'riaii's

Ekment b - r i p t i o n

An tllustrattrtn ot the wlar it'll hl.,!:hct I-. pro\ldcct in tisure 1 1 .-?-I. :\ \ilrcon d a r cell mulit be pro-

vided w ~ t h a co%er trt tnc'rc.w i.rot~f-\tirf.tit' ertlrttanii. froni areund 0.25 lo around O ri5. and t o

protect tltr. <ell irctrtr lo\i-eni.rg~ !vr*tcw t r r~ t l~~ t t r t n .

Cr'rttim&c.ped hero-ilriate pl.1~- :- .I good co\r'r fn.itCrtal bee-use tt c'oits on]! .I irdclton of the &st

alternate, ?WCI iir-iJ \tl~c.i. t\~.ttii\~.i t.tt c'twiticient of thcn~ial r'xpansron rtf sillcon. and 5r ' t rt'sists

darkening I-1 uitra\c~tlct light. &~rosilicatc gIa-s c.111 be elr'ctri~st.ittc~ll) l>ili~dt'd to ultcitn to form 4

strong .ttrd pent\.tnetli . i i ih~~\~\~l ' \ \ 101111 in \ rS-0 fiicht tc\t\ :he i i . l l \ ha\ rnr intrgrai '0-C) b o r e

\ i l l i ~ t t g1a.s i ~ t \ c r \ 1~w.t orll) 0.8 t 1 1 pr'rcetlt 01 tftr'ir outpt~t b e i ~ \ t ~ i ' of 11ltr.ntvlef Jegracl~tton.

f'lrcst. icll\ i,.:,! 11%) <o\er .trlll~\~\c. Otllr'r ci.ll\ I~.t\ti~g i t I l - t ~ - i - ~ \ r ' ~ adhc31\e\ ~legr.idr'd t ~ t ~ t ' .I\ muctl

J<o.I (;lasuerh Sitloot Sr (;en. lnc . 111 H'rW\t C;rnii.tny. cxpcct\ to hi. able to manui,icturc. '5 piit

hctrct\~l~idtc g1.t-t- t l ~ i . i , f t ottt. nlct~-r I\ I& b\ -e\t'r.rl trictr'n long.

Page 33: SYSTEM DEFINITION STUDY PART IN

SJLJCmi SO- C E l l ~ BY 7 .44~4 rn- m O B l m LIW(I*T)C 2 aPl HW) Mnin EFFICIEYCI.

N AND P C O # N E C T I W O& BACK

cWEf4 7544 B O I O O ( L U n G L . 9 E L E ~ T R o S ~ A U U I Io*oEo t& ) I U I ~ ~ E m . 4fUW CnWEO TO GtVE I ~ L T R A W X E T S I A B I L ~ ~

-re 1.1.3-1 Sohr A m y BhW

Page 34: SYSTEM DEFINITION STUDY PART IN

'fhe e l l cover is embused during bonding with grmves which refract sunliekt sway trom the gnd

lines and brrsss OR the seU surface. CUMSAT Lab expects an 8 t o 12 p e ~ x n t increase in cell output

fmm tKis lerture in eel1 coves.

War cells only 20 gm thick recently made by k h ~ x tud an ir-mass-zrm efliciency s f t 2.5 per- cent without a backsurface klif or ~'ot'cr glasses. improved ot33cieni.y can be obtained by using

textured cover &se. Texturing the s~n-factnp surhcc makes the inconling light a m ~ c at the back surface s f the cell st ari angle over 3 lo, so the tight rays that have not k n absorbed are r e l l~ t cc i

ofT the hack w r f a c ~ with tirtmily n o fuss, the zrittzst angle in ;i silicon-air junction k t n g 15.3 dzgrtw. ntis feature not only imprmws photon collection efficiency, when compared with thicker

cells, by lengthening the light path m silicon for inirjred 141cttotis. but atso i n ~ p m \ . e ~ r~dist ion M s -

tsnce. Since all charge carries are generated within 50 pm of the P-N junction, which is 0.2 rm tinder the utn-Cacir.g ~,s;:';ize. Ihc cell can absorb ndiatiuti daniage until the diffusion length irt the

bulk silicon is reduced to 50 pm try radtation gettented rez~intrination centem.

Ifti. cells are designed uith hoth P and S t~rinlt~dla hrrtught to the track?; of the zrlls This feature

nrake it pc1sf;1.12 t o use simple 12.5 pm silver-plated copper i n t c ~ o n ~ c t i o n s uvhich are fornlr'd on

the substrate @ass. Complete patcls are s e m b l r d t'leitrtcall> b) wetdtng tryether the nicdtife-to-

n*idule r:iterionns~tiuns.

Glass was d h w n for the substrate to enable annealing of radi~tic-I, iidn~dge by heating. Wit11 a11

glass-to-silicon bonds made by the etcctro-stttir: pmes them art. no rttements in the blanket sh ich

cannot withstand the -'.:Oh; (Q2 1°F) dnnr'rtl~ng ft'tnyt'ratun.. ufi~zlt at present ~ t * ~ n t s t o be rr'qiiiri'd.

t h e t t \ ~ d r i h t t s t t s e z t ~ that -73% (9.3 IC'Fi may not be nccded fcr sr,neal~np out thr r;rdt.ttion

darna$rs frotn w l x - t h e yrotana. tfou ct rr. h ~ h tt?than h ~ a t;<>i > t.t hren ictntini3t.J t\! r.\pr.nmi'nr.

The trdsic panel adopted tor d r q n ctuclrc~ t ftgttr: 1 1 -I-:) h.t\ .I ni.itrtx ot 224 st~l.tr cell\. r ~ ~ h n ' 5 b) ' 44 zni tn suc, c ~ ~ i ~ t ~ i t d in groups of 14 zrih rn p.tr.tlli.1 t.! 10 zclls tn sene% S,*.i,-rng k t -

ween < < I f dnlf edge spai inp drr' a- show 11. T.ib .trc hroi~ght out .I( two cdpcs ot titc i\~nt.l lor elcctrt-

idll) connecting p~tlcl\ 111 wrw- ('ctis \\~tttlti t f ~ i*.~tlr'l art' ~llt~rictilnt*it~ii h? ~ondtiitttlg clrtitcnts

printed 011 the glass whstrstr.

11tty0rt.tttt panel rr.qutrt.nlc.nt\ r'w thew.

tr The psnci iortlpitncnts and prrrzesws \hnttld br i0lilp.t1lb~~ w tth thrnt\,tl . ~ n n c ~ I ~ n g . ~ t riwck- P r c ~ e n ~ c of ctt.ugc-tucl~.rngc i*lastti~ rlirririg inri-cnpne operation r11,tt t~rc'r'~\rtdte rn\t~Ittittg the

i ' l c i t r~~al ~ I ~ I I ~ ~ I C ~ O T J on the P.JIICI.

I I hi. p.tncl cfcvgtl dioultl t.r apitrctp:~.ttc for t l lC htglt-qtcc'd . ~ u t o w ~ t t c ,i\\znti~l) rc.qirrrr8tt t t ~ r

nl.tLtiig tltc mi. 0 3 n~tllion p.rttr.l\ rc'iji~~rcii 101 c ~ ~ i t ~ \ ~ t ~ l l ~ t ~

t~ LOU ~ ~ r g l ~ t ant1 low . t h t .~te i i i lport~t~t

Page 35: SYSTEM DEFINITION STUDY PART IN

Figerr 1.1.3-2 A m y Bbkd-

ORIGINAL PAGE I5 "F P W R QUALm

Page 36: SYSTEM DEFINITION STUDY PART IN

Also shown (fqgure 1.1.3-3 is the way panels would be assembled to form larger elements of the

solar array. The intehmnnecting tabs of one panel are welded t o the tabs of the next panel in the

string and then the interconnections are covered with a tape that also carries structural tension

between panels. The 0.5 cm spacing between panels provides room for the welding electrodes, and

also permits reasonable tolerances in the large shwt of 75 Fm glass that coven the cells and the

5- sheets of substrate @as.

The panels are joined in a matrix that is 14.9 meters wide by 656 meters long to form blanket s eg

ments (figure 1.1.3-3). After assembly, the segment is accordion folded, at panel intersections,

into a compact package for transport t o the low-Earth-orbit assembly station. Packaging is give11 more detail in Section 1.3.

Provisions are made for connection of the blanket segments with interbay jumpers to form power

sectors. Power sector definition will he discussed in !kction 1.1.4. Conductor strips wilt be used to

join strings, with pro~isions for welding strips t o join blanket segments. t o form power sectors. The

conducting strips also have a bossed section to ronntct with interbay jumpers.

The tapes. at the end of blanket segments. are extended and have attachment r i ng to connect t o

the tensioning spring of the catenary support system.

h n t Mas The total energy conversion systent Inass was shown in Table 1.1 .O-3. A more complete Itlass hrzrrk-

down of the solar blanket is provided in Table i . I .3-I. .Also included in this table are the mass

estimates for the array support system.

E h n t Cost The cost estimating factors for the solar blanket elements are the same as those given in the final

documentation of Part 2. The marure industry projection cost estimating factor for the reference

solar blanket is 535 'rn'.

WBS 1.1.3.2 Catenary Suypon System

WBS Dictionary

Tliis element includes all prod~lction hardware required to support the solar blanket within the

satellite primary structure including attachments to both the structure and solar b1:tnkr.t.

Element Description

The Part I1 silicon photuvoltair. systcm probided an output of 4650 megiaurttts per antenna. To

norniali~r this outpilt t o 5000 nlegawatts it was necessary to increase the satellite bay size to 607.5

nirten which Has Inotr' t l~an adcqurtte to satisfy tlir incredsed area reqitiren~ent.

Page 37: SYSTEM DEFINITION STUDY PART IN

Table 1.1 -3-1 Silkon Sohi CcB Bhnket Mass

AVAlUBLC BLANKET Q PART II MlDlXPM

COVERS-FUSED SILICA 220 a m a0 1.0 167.64 CE LLS-St LICON 236 59.94 20 0.9607 115.17 INTERCONNECft-COPPER 6 9 4 227.08 d 0.100 11.3s

. U)%ZTRATE-FVSED SILICA M 65.88 20 1 .O 111.76

-c THEORETiCAL PANEL WEIGHT 40s-92 3 MILS COVER TOLERAKCES ALLOWANCE 6%) 20.30 - ---

7M1Ls 2hCLSCELL ESTR.1ATED PANEL WEIGHT 426.22 - 2 MILS SUBSTRATE L INTERCONNECTS PANEL AREA FACTOR L9913) 42251 SEGP.~ENTS AREA FACTOE c s s n ~ rt1.u JOINTISUPPORT TAPES 2.93 CkT EMARY SYSTEM 2.52

- -

ESTIMATED ARRAY WEIGHT 4S.n

Page 38: SYSTEM DEFINITION STUDY PART IN

The array segment wldth was changed t o 14.9 meters. This change provided better packaging for

transport but made it necessary t o provide IS meter catenary attachment points on the structural

beams. A 10 em spacing was provided between array segments for clearance during array deployment .

The method of supporting the solar blanket within the primary structural bays was shown m figure

1 1.3-3. This method of support will provi-ie a uniform tension to the end of each solar array

segment by the use of constant-force blanket tensioning springs at each blanket support tape (figure

I . 1.34l. These springs are also attached to a catenary cable that ts then attached to the prit*iarq

structure. upper surface, beams at i 5 meter intervals. The spring are in compression, for better

reliability, and exert a uniaxial force of approximately 3 . W t o each blanket support tape.

A uniaxial blanket support was selected over the biaxial support shown in Part 11 of this study. This

change was the restilt of analysis of construction techniques and aswciated blanket uniformity pro-

blems. It will be necessag' to provide batten t a p s between blanket segments, at a few intervals

along the segment length, to provide correct segment-segment orientatidn.

Element Mass The mass of this element was included in Table 1.1.2-1 rind represents small fraction of the energy

sontersion system mass (less th3n 0.5 percent).

Element Cost

'The cost of thts talemrnt wri5 ir~cIlidcJ in the solar b1311ket cost S;tcfors.

WBS 1 . I .3.3 Interbay Jumpers

WBS Dictionary

This eiement inclitdes all production hardware required to provide for inter bay power distribution

within a power sector of the solar blanket.

Element Description

The fornii~latioti ot' liip!t volt:tgc in tht. solar 3 r r ~ y is 3ic01ltplish~d by connecting approxini:tttbly

78.000 sets of solar cells In series. Since the strings of solar cells start at the centrrlinr of the satel-

lite. goes to the oittcr edgc ant1 tlicn hack to the centerline, it must cross the primary struct11r;tl

beams. hetwi.:*tt hays. eight times. Thc pttrpose of ttti. interbay jumpers is to provide a inea;;s of

eli.ctrically corincctinp strings in one bay to tllc appropriate strings in the next bay of the stritig

icngtli.

The interbay jumper\ ( fipurc 1.1.3-5) itre So. 12 ~ l u m ~ n ~ r m cable. One-hlanket segments jumpers

are collected and run aloris tlie catenary cable to an end-connector. This end cannector is joined

with tlie next hay3 juniper cnd connector in the beam frariit*work near the catenary support point.

'This method &.IS chosen as a less complicated construction'maintena~icr sctieme while still

providing the nect.\\ary function. 3 3

Page 39: SYSTEM DEFINITION STUDY PART IN

1 b ARRAY S€GM

Figure 1.1 -3-4 Refemwe A m y Bhnket Support

INTER BAY JUMPERS FOR /r A NP~CAL B-KET SEGMENT - - - - TO SEGMENT CONNECTOR

I CATENARY CABLE

BLANKET TENSIONING DEViCE

STR ING!I?ITERBAY JUMPER CONNECTION

Figure 1.1.3-5 inter Bay jumpers

34 ORIGINAL PAGE IS I OF POOR QUM,ITY

Page 40: SYSTEM DEFINITION STUDY PART IN

Element Mass The mass of interbay jumpers was estimated to be 34,401 kg. based on using No. 1 2 alilininum cable.

The average length of each cable is 20.4 meters and there are 192,080 cables.

Element Cost The cos? estimating factor used for the interbay jumpers was 45 Efkg.

WBS 1.1.4 Power Distribution The prime function of the Power Distribution subsystem is t o accumulate and control prime power

from the ~ ~ l i c o n solar cell collector panels; control. condition. and regulate the quantity and quality

of the electrical power generated for the klystron microwive generators: grovide for the required

energy storage during solar energy occultation o r system maintenance shutdown: and provide for

monitoring fault detection, and fault isolation disconnects. Figure 1.1.4-1 shows a simplified func-

tional svstem block diagram of the SPS from end-to-end.

For power managentent and power distribution, trle photovoltaic SPS is divided into typically 228 power sectors. Each power sector is switchable and can be isolated from the main power bus. facili-

tatins annealing ?r other servicing. Main features of the power distributiot: system art. shown in

figure 1.1.4-2. Power transfer across the rotary joint is accontplished by 3 skip rinpibrush assemblv.

Mechanical rotation and drive is provided by a ntechanical turntable 350tn in dianieter. The antenna

1s suspended in the yoke by 3 soft mechanical joint to isolate the antenna from turntable vibrations.

the antenna is mechanicall! aimed by CMG's installed on its structure. X position feedback with a

10% frequency passband allows the mechanical turntable t o drive the yoke to follow the antenna

and also provide sufficient t o q u e through the soft joint to keep tile ChiG's desaturated.

Figure 1.1.4-3 is an electrical schematic of the SPS. The "satellite" is defined as the large c o l l e c t ~ i

solar array. its power gencmtion ntodulcs and control. altitude control, and stationkeeping power

processing: thermal control. :elemetry and control. data. power processing. etc.: anci th.-:IlC covvcr-

sicn and energy storage tor the satellite. The rotary joint is the interface between the "satellite" and

the "antenna".

Table 1 . I .4-1 gives the C;tlcitlated Power Uistribittion System weiptit (mass) and power loss for tht*

"satellite" connection locations and conlpont'tits. The total losses are approximatel!, 200 nicgawatts

per SPS "satellite" (less antenna losscs).

Solar cell strings approximately 5 . 1 knl long were selected for the reference photovoltaic systetn

eontigurat~on. This permits gctierating the requirzJ voltage riirectiy from the solar arritp kt tthoirt

intervening power electronics. All solar cell strings are i11cl:tii al. Current generated by the solar cells

art carried by conductors or by the solar cell3 ttlemselvt3s. 1 he contiguratiot! in frgttre I 1.4-4 u5es

the solar cells to the rtiasiinum possihlr extent for carrytiig the cutrent. I t is noted that no conduc-

t o n are needed for bringing in the current from the edges of the array. the \ol,tr cell strings b e ~ n p

arranged in loops which start from onc center bus loop aroilnd thc edge of t l p r . arra!. and return t o

the other bus at the center of the array. 35

Page 41: SYSTEM DEFINITION STUDY PART IN
Page 42: SYSTEM DEFINITION STUDY PART IN
Page 43: SYSTEM DEFINITION STUDY PART IN

-AL PAGE P a' WOR w-

Page 44: SYSTEM DEFINITION STUDY PART IN

~ N A L PAGE IS QUALITY

L- *- -w ?n m a r

r- ,---- ' iry L - - d

-I. ' - --- UnriiQgc

a.t,u T . . . _- - 2 ---

*-1; , - - J- *-- d.u --

-- - P A

---- - .-- -- ,, -- .t" 5 t ,.r a

. - - - - . - +-- - a - a ---

- c-- - - 7 '-

L X -'%*

----A

-4: -% - 4 ---- a - - - -- -

* + - .w4 ' -*+ -- z

- &- -i

b . . -. A-'

x9- -&%%

I s m -

;-%. P

-- - - * a - - * - m w ~ ~ 3 t -4 . C

- -*s - a:=* % LW. - * - - - - 4

*- -- - * - - - - - - - L 4 - C

- - X 1 -- -

,=sa.g~ cs%. Y U d . . - - - - .*a= - *a -- - -

- s K - -

, k- - a**='* --- - - -

- - A

G f .av4rs < & X U

rlh.(tyia< -4 x- i.%

Fire 1.1.43 Ekctricrl Schematic Photovoltaic 37 & 38

Page 45: SYSTEM DEFINITION STUDY PART IN

BAY

Page 46: SYSTEM DEFINITION STUDY PART IN

War amy power is cxm- by W~%UUIII d t t u i t Breakem near the buss Volt- is contmkd By turn@ gwps sf strbgr on or off. ddepending on I d quiremars. Two sections of the m y prr,

W e tkt mphad pdfage at the sliprisg using the sheet c m d w t o r voltage drop t o ac-hizve the

rapired vdtage at the s k i -

POW~I sotme *A' pnwkk pimer directly t o the fifth stage of the kiystron depressed cdkxtor .

Power 5oun-e 'I' pfovidza p w e r directly to the fourth stage of the titystron depressed rtolkctor

and to tke MPTS DCIDC mwrters which supply atl other klystron element power requirements.

The cdkt)on and dirtribsttion approach u k ~ t e d for the reference c'onfigurdtwn meets the photu-

voltaic energy conversion subsystem rsquir~mnts delineated below:

I . The photovoltaic system shall be n d u h r i z d in ts space installahie blanket array c o n f i r a -

risrts.

2. me lphotovottaic system shall m p b y radiation shielding and or annealing as appropriate for minimum power cost.

3. Individud conveners (sells) shall be %-ired into the blanker array such that either open or

shon -cArcutt failures of individual converters do not cause icm. oi m a y output t d i sp rq~r r~c ln -

ate t o the loss of the ~ndividuat converter's contribution o r arctng.

4. The photovolttic sFstem shall bc decr_med such that a solar trlrtnkct poacr wi tor and or its

sw-ititl~zar idn k isc~lated from the opwtln_r onhard electric power distribution system. and

its genr'rateu zlzctriial potential rdtsied :c* cafe tciels. SO that ~t ma) be szrvt~ed without shut-

down of the en t ~ r e phot~voltai i e n e r a ic>nvcrsion subsystem.

WBS 1.1 -4.1 Switchgear

The silicon cell panels and ba] s fnnn the pauzr Vncraitun n~oditlrb shown 1x1 the ptlotovoltaic elec-

trical schernat~c in figure 1.1.4-1. ntt* modules arc fed to tszuuni i ' iriu~t breaker PU i tch~c3r con-

trolled by load and systetn demands. The salellitt. switchgcar is ratcd at 2 . 2 0 0 amps and 10 kv and is I similar t o the antenna sui tchpc~r. {For more drtarls wc Section 1 .I 3 .2 .3 ) .

WBS I . 1.4.2 Main Buses I The main bus subsystem outlined here covers the portion of the power distribitticm subsystem fmtn

the solar cell i.~tetionncc!ions t o the antenna sliprings. f l i e buildup of wlar cells into strinp, w~thin

cach hay was described in Section 1 . I .3.1. The strings on each side of the sattllite longitudinal ten-

terline are connected in xrtes t o form a half string ZQ.104 (97% s 4) cells in length. P o obtain the

40,000 volts needed to operate the hlystrons of the MPTS. tile ha l f s tnnp are connectrd togetl~er at

the outer cdpr of the satellite by triangular jumpers. This gives 2'98 series str inp ( for each four hays

4 sentor t o edge) cach 78.208 cells long Note that. t o prtlvidc cell t'ailuw protzction. each stnnp is

really 14 cells wide.

Page 47: SYSTEM DEFINITION STUDY PART IN

For vdtage ccmtml snd fault p r o t e e t h each "end" of the satellite is isolated into 96 load sectors

by vacuum circuit breakers. This is done by wblwsding each bay kngth into three i d sectors; i.e., each end of the SPS b 16 bays long and 8 bays wide. Thus there are 32 "bay sides" t o each end. each with 3 load =-tors. t ~ c h load sector provides an average current of a b u t 2 1 0 0 amps at about

40.000 volts t o either bus A or bus B. The ctumnt is cdlectzd ftom the - 1 0 strings in each bat;

side v h copper connectors from the d a r array strings to acquisition b w s . Each acquisition bus. is

~wnttslledfisolated from the main buses by switchgear. This uhtsle confipration of stringzs. jumpers.

acquisition bus. switchgear, and main bus is shown in tiynr I . 1.4-5. Since the current along the

acquisition bus increases as str ing are added. these cc~nductors are appro~imatel) triangular in

shape.

T o minimize satellite mass. conductor grade aluminum sheet was selected for the n-sin and acquin-

tisn buses. Analysis of conductor operattng temper;tture vs. mass led to the choice of a conductor

operating temperature of 100%'. A one rl~illimztrtr codut t r t r thickness was selected 3s the mtni-

mum gauge on the basa of handling and assembly. This Itads to the result that the bush are 0.01 581 centimeters wtde for each .impere carried. Hence the main common bus reachr~ a maar-

mum width oC323? cm (for 204.7MI A) at the slipring en43 of the satellite. It reache. this m a w

mum in a wries of steps. One tn iwag for each added load sector from ttte c.r.n!r.; o i the ~ t e l l r t e .

The iundu~ to t s for buses .A and 0 are smaller. i 'ormpnd~ng to therr lower ck!m*nt\. and bus

onl) extends about two th~rJ. of the dt\tancr ir~biir the Antentias toward the center ot the satelltlr

Operating poucr ior the siteilttr. l t a u ~ h ~ e p r n g and centril fut~ctrons a drawn !rat11 Puxa B and

common. To pro\ tde thtz power redundantl! irortl both e t i d ~ of ifl: ~;tttIlttc tlic~t ' t w ~ bu=\ nln

th: full satellite Iengtti. To p m \ d e t h ~ s ntdundancy and allow xtnrt. toad rransizr iront one MPI'S to

the other to meet load demands. A nltnlnlunl PUS i t \ n J~ t~ t i ) r of -3 tncters s.i\ \ ~ ' l e i t ~ J ior the center

connection of b u m B ankt common. Tlt~s atrrent capabllit) of lQ.&XI '4 (-CO 34WI at norittnal

zrrrrent denstt) would not dnl! suppi! ,111 Sf?i ~ctntrcll nr.ccf\. btit s l l c ~ s .il?c~ut S . ic3.1cf Nh~rrng to

r~.iur. (!niter emeqenc> conJtttons tills could be rnctt.~sc.d to ilier a thtrd loiJ shanng between the

MPTS utthoi~t o\r.rheat~np rite itlato h i t ~ ~ s to the point ~ 3 i pcntl-~nctlt datii.ige

lk'tarls o i the fili 'ihd~lti~l drrattgeti\r.nt ~i the *ctton arc i~~iIt~l11i.d III Sectton i.!.-I 3. Bus

Support.

Page 48: SYSTEM DEFINITION STUDY PART IN

TRIANGULAR S W f R COWDUCTOR ~ t s m o n - ~

3FER SEGMfWT

stmum I OUTER EDGE

Page 49: SYSTEM DEFINITION STUDY PART IN

The basic requirements for the bus support subsystem are easily stated:

o M e a naiural freauency. substantially higher than the satellite. o A ~ c o m ~ t e thermal expat.sion without applying large loads to the main satellite structure.

o Belightweight. o Have low ground fabicatio~i cost.

o k exq t o assemble in orbit. using inestly automated methods.

The supwi-t design presented here satistjes these bas~c requirements. but it is recognized that fur-

t k i r study might lead t o a better design.

The principii! loads on the bus conductors are illustrated in Figure 1.1 -4-b. The "compression"

and "'cooling" loads a r t generated within the conductors and must be resisted by ?he conductors.

with whatever f o m of reinfcrrcement is provided. Fortunately. these forcvs are relative;:, small so

the resulting stress level is very lo-LV. The elastic stabilit? of the thin sheet conductors is a conccrrl.

however.

The major load on the nlain bus conductors is the magnetic S i j i~ t repelling rwo conductors v a m -

ing c u m n t in opposite directions. This load i3 so large that, for the current density being used. the

bending stress in the sheet conducton over the span of a segment would aimoft certainly cause

elastic instability in the compression side of the bus bar. especiall\ when combined with the com-

pression and curling forces. Fortunately. the force is replusion, so it can be reduced by adding

tension ties between the conductors at p i n t s intermediate to the supports at the main structure at

segment joints. This reaction means that at the ends of the satellite w-here there are three buses:

A. B. and common. the con1nion bus must he located hetween buses A and B so that tension

rather than compression loads are grr .dtzd in the intermediate supports.

The find force acting on the conductors is caused by the interaction of the bus magnetic field and

the earth's field. In operation at gec%yncrhonous altitude this force is extrcmrl? small. because

the earth field is weak ( 1 38 n T 'i and neari) aligned with the bus conductor. In comparison wiih

the other forces this one tilay be neglected. Dunng self transportation from low orbit the f'orcr's

are substantially higher. hut still small.

The other ritajor factor whish derrrmines the design is the differential thermal expansion between

the praphitrsopxy structure and the alumlnum bus. The temperature variation between eclipse

and full sunlight is froni about I 23K to 273K. O ~ e r thc span of a full segment this results in a

differential thermal expansion of a little over four meters. For thc one millimeter thick sheet con-

ductor a load of 443 kS for each meter of conductor \n idth (stress of 442 5iPa) would be rrqtiired

to overcome this change in length. Since the return bus is over 32 meters wide at the slipring end.

Page 50: SYSTEM DEFINITION STUDY PART IN

sf CURL

cj MAGNETIC REPULSION d) EARTH FIELD FORCE

F i 1.1.4-6 Sheet Condoctot Lords

Page 51: SYSTEM DEFINITION STUDY PART IN

a total load iin erci~ss of I t million Ne&tsns would be drvelofctdl This is an unreasonably large toad to impose upon the structure. so provrstons for thennal ca,ratlaon rrtust be made. After cun-

sidering severit altetnatives. the d e s i ~ selected is to allow r thermal zspansion cune .it edch bay joint, as shown in Figure 1.1 .+7.

Fhe selected method of keeping the natural frequency of the sheet conducton about that o f the

s tel l t t r is to keep the bus cc~nditctors tn trnuon. A pt r t f~n\~nsn analysis indicates that ntcdzst

forces (ef the c l ~ s t n d c r of one Newton per c~nt imet r r of conductor width) w~ t l keep the tiati~ral

frequent) of the bus m order cafmagnitttde higher than that of the wtrlltte. ( Ihe wtelfttt' fw-

quenc') is a b u t 0.005 Hz). TQ mantain this load in the cunductnrs wh~le allowing fix thermal

expansion requires spring. T3r easiest way to provide this ltpnnp sitton 1s to use hi@ s t r e ~ t ' s t i t

1 0 s rnC#IuIus matenais, such 9s ~ e v l f r R or E-plas. (A stwss going from 250 to 5 0 0 S+P;1 In a

200 m Kevlar tension support wili izro\lcic the four rtletcr estrnsion needed t o asconin~cxiatz

thermal expansto~r. while vawtnp the load on the Piiq $5. ctnl? a factor of t\si.)

Phi.% fiiitorj led to tfte tindl *lz'tt~n ot the rnain 1-u\ configurritton s h r l ~ n in Figtiria I f .4-8

Thta vletn \has% s t c r a l b t > r near the rltpnng end of the s.itc1ltcr. whew there arc three p;trallcl

buses The thwe point sprtrtg <dhle tie\ 1%) the niatti \trit<turc .IN \hnsn. and tltz tenston ;IT\

tc.tit the 5u\ nt.lglici1; rCi~iilrltlt~ fcvies Z J ~ I PC \ e m

So t \ t t r l \ t t ~ in f I s l iTC I 1 4-8 I \ tht. i.tb.1 that r'.it7h hit\ tr J i \ t r i~d Into si.vr.ral parallr.1 wpncnts Th~s

i\ done for both tratisi 'rt.itrop. sutltertrcnce ~rtri for a\\zrnbl! reabifns The coti~~rloti Ptr. tecrc..wz

tttl steps) tnml a ntrtcr tor so, ucj~tldttig .it*ott t'tc l o ~ r t \!i.lrttig k ' t ~ c c n the t\\n W T S I to a ie r 20

meten. Holl~.rf up as A riiiglr \heel. tilr roll a oitld be 30 n1zti.n long. \olurnet rtcali! \cry pwr .

and tm? hcav) for a ri:~gle t iLL\ ' l a u n d ~ t t ~ r t h ~ r . for w-li tr.t~i\pc~rt.iti~~ll. i t tttitst Pz ~itilrtcd Into

,it lc.i\t f t ~ t r \cgtni*t~tr for r.iih " I - I I~" c l i the \ateIlIttt' Ht ' i~i i ' .II l e s ~ t e~glit scpi\i.ntr H ~ l i bc u\cd

for thr tttaln .tnd B Ptiws. ttirthzr \ t i t& nia! \IIOH tti.tt t'tcn grth-ttcr \~~fxi i \~\ t t lu I \ kf~.\tr.~klr. The

tnJt\td~taI rftcr.t\ CJ'.)I c>nl> Sm HIJC (m.t\itiiuti\l J ~ C 1011:i'ci h! I ~ I c * rtrrtchr'rs at the ba! vdc\

u htih \ttpport drtd fcglric>tl thenl, .~tlJ ~t ttiteniirJtatc 1xi1tits 1%> !hr. t<il\ii>n t ~ c r

Page 52: SYSTEM DEFINITION STUDY PART IN

BUS

Figure 1.1.4-8 Main Bus Support

\LEVEL OF SOLAR ARRAY

LC GUY WIRES

Figure 1.1.49 Acqukition Bus and Switchgear Support

ORIGINAL PAGE B OF POOR QUAL,ITY

Page 53: SYSTEM DEFINITION STUDY PART IN

WBS 1.1.4.4 Ektrieal Rotfvy Joint

The MPTS antenns-tc~sistrllite interface rzcltrirrs ShOo rotatton abuut the s~rac'eciaft cetttrsl :lurs

with limited motlon for elevation steering wtttle n~tlrntaininp structustll .tnJ elcctncal itltzgntj

between the satellite and the antenna. Fipure I . I . I-Q illustrated the rotary joint in rclstionship to

the basic "sitellitc" structure.

Coin Silver (9W siker and 10°i copper) was xlrcted for the slip-ring ntaterrai J I I ~ a silver-

motybdrnunt disulfide brush with 3'; gnphrtr' was .rr'lec'trd. The charactrvistics of t h ~ s conibina-

tion are shown in Figure 1.1.4- 10. With a design asing a bmsh current density of 20 mps!cm2

only about 30 kW of power is dissipated in the mtsry joint.

The installatton of 3 smglz brush sswrtthly on s circt11,ir dip-r111p causes unwrtntrd dr'tlections due

to as)nlztrtcal Iosdinp: For this resmn. the dtp-ring hrusll aswnihl~ was designed for syn~mzttcai

loading as shown in Figure 1.1 .J-1 1. Brush dmg (with a cwfficient of fr~cticm of 0. i 4 l at a brush

pressure of 4 PSI ( 2 5.o);Pal was cnn~putcd to he ?Of K. ?S?K ail4 4tdb (bQ. 87 snJ 1CW P O L I I I ~ S

force) for r3ch ianer. ni~ddie rtnd oursr slip-ring brush assembly.

The c,o~i~+~ltzr d~p -nne r \ a bn&t surface 2nd. hence. rejects ticdt \er) poort). Coin \~ l \ e r IS s \ e n g ~ o d conductcrr N ~ w e \ ~ r , thz combrnattt)s\ of thc t s o resiilts 111 fd~rl) high shy-nnp temper-

atures d\ IS s h u ~ n in Ftpure 1.1 4-1 ,' It *.I\ ct\stlrttt*j that 110 he31 i~ rejected t l l r ~ l l ~ h the shy-nng

feeder Actual operattnp tzmperat~ire.c wrll thu\ he sontewh;t lower than s h o ~ n srtlzc the feeders

are destprlt.d to tlper:itr' at a rtluck 1owc.r tclnpt.r.ttitrc dtrc! tt111 Itt.lp Ira r e n ~ o \ ~ r ~ g shp-ring \sasti* licat.

Feeders fritni thr' 111,1111 power di\tr~t- '1~111 b11\~*\ to t f l ~ s !~p- r~ t~p .ire d c ~ i ~ n f ' tn cyler.rft. at .a

current dt.n\tt> of onlk 100 .1111ps ~111- I-t'eJcr\ .Ire \p,iccd 45 deprec\ dp.irt (centerltne to ccntcr-

Irnrl and art' qrdced . ~ t 15 ttegscr' ~ntcn.lI\ .I\ d ~ t t n In t:-**$ re 1 1 .4-I 3. Ihc ternpt.r;ittlrc ot'thc

feeder\ I \ \haw11 111 1 tgtirc 1 I .4- 1 1

Page 54: SYSTEM DEFINITION STUDY PART IN

Figure 1.1.4 10 Slivet SpRing Gtode 26 Brush 85 Ag 3 CR 1 2 Mo S2

Figure 1 . 1.4- 1 1 Electrical Rotary Joint and Mass 4 8

ORltXNAL PAGE IS OF PtUlR QUAlJl"Y --

Page 55: SYSTEM DEFINITION STUDY PART IN

F~guce 1.1.4 1 2 SlipRing Temperatures

Page 56: SYSTEM DEFINITION STUDY PART IN

\-- COIN SILVER (903 Ag 10X Cu)

ORIGINAL PAGE IS OF POOR Q U A W

Page 57: SYSTEM DEFINITION STUDY PART IN
Page 58: SYSTEM DEFINITION STUDY PART IN

~~ ntis-nti-tkmtirt-bplrasedamy potvertrrttotaitter. Thisinchidcrthcbc h k r t i o n eysZem frow the mtay p i n t to the tf trrrranritten. the rf trarrsltlitten t k m d w s f ~ ~ ~ ) , their dc aMt rf umtrsl and monitor circuitry. and tht rf antenna dements csmpmed of d&Eed mwgs&s, support shw-ttire. rf fed circuits, nmbmkal poiRthg c o n t d , mi a?# thc cocsponcnts requid for disuibutiun d cuntrttl uf the phase of t k retrodirectivt antenna sub - ~t~

. TBe W Y f S qum sen- the basic function of cotrverting dc power t o mkm-e povver in space,

trattvllittinp it through tho medium with a minimum of environmental implet and con~erting it

b d to dc on tfir & tnd. The baseline approach utilizes a rrtrodkctive phased anay -bed

in Section 1.1 -5.3, powered by dc-rf klystron converters desc-rib4 in Section 1.1.5.3.2. DC power

from the rotary p i n t is distributed in a nianner t o minimize I ~ R h s s to the klystrut\~, utihzing 85% unptckyssrd p w e r with a maximum vo l t a s of 42 kv. The transmitter design coMtnints ue out l id in Figu~~: 1.1 -5-1. The high ef fx ienq k t y s t m are described in Section 1 -1 -5.3.2 and are i-ornbinid to provide a tapered t 10 d b qumtized Gaus-cisn) iiluminatiori of the array reoulting in low

sidelobe levels and high antenna effrckirc-y (over 955 b. The thermal loading in the renter of the

array (22 kwim: rtl permitz a design for o 1 lim diameter army which provides roughly 5 GW of dc

power on the ground per antenna. The phassxl distribution system is d'tipned t o ntinimize line lengths and cumulative phase errors in the distributing ttansrniaion lines by using a 3nocte refer-

ence distribution system with line length cmpcnsatinn. The pilot reference sigma1 from the ground

utilize 2-tane modulation with a suppressed carrier near the power beam frpquency. t o effect cm- jugation (i.e.. zlectronic tine km steering) in an eftit'iznt manner. Correction for m e syrtrmstic

propagation errors is p o v i d d thmugh multiple pilot heam transmitting antennas.

Element Mass Itas hcen enimatco nt 12.749 metric tons and element cost 3t trillions per antcnna.

Tabk I . I .5-l prtwnts m a s and cost summaries.

WBS 1.1.5.1 Supportsubsystents

This e1emer.t inciudt's those subsystems nat directly asociatcd with conversion of electric power

into rf beam power.

WBS Dictionary The Power Transmitter Primary Str~z'iure i q thc main struzturc that provides ovenli shape and form

to thr transmitter.

Page 59: SYSTEM DEFINITION STUDY PART IN

WAVEGUIDE

-VIE LESGfnE

TRAf4sb3IrnR APERTURE L8IIT-IKIY

Page 60: SYSTEM DEFINITION STUDY PART IN

- MAsm CC#IC

~ ~ d 1 9 7 ; 1 E )

?FSmARVtntUCfllftE - 5t5 6.6 SEmBmRVETFt-E - 1979 25.5 A T f l T U E m - 1270 101 m T A - ae-7 142 WIlllROWTFIteUttOll - 2fm.S 401

DG-mCOIYVERTEFlt& - - 1141 -6 194 TMEC~YALCOW~ROL - 2221 n LIILP?CIYT,- 397.9 48 EHERGVSlmAGE - 3132 74 SI.mORT - 118-7 12

R F e E u € R A T I O # S ~ ~ - Sm.9 '791

KL- - -4.5 m mEmuLCOlYfftOL- 10Q02 151 WAVEGUtOE Iwm - ladb !M ~ A I Y ) ~ C l C T R V - 5136 Ztr SUBARRAV S l B t E l W E - 667.0 m

TOTAUPlERAWTrlYhM 1 2 m MT 1430

TOTALS PER STATELLIT€ 25346 28QO

MOTE: THIS BREAKDOWN COST 03ES MOT IMCLUOE ASSEM8LY AMD CHECKOUT OR INITIAL SPARES.

Page 61: SYSTEM DEFINITION STUDY PART IN

DcSerktiog

Phe Primar). Stmcturr is an A-frame open tnrss structure. 1-33 metrn deep, with a qu;rai-lqunal

s k ~ in excess of 1.000 meters width and length. Ihe Primary Stntc-ture and its relttienship t o the

k o n d u r y Structure and the rest of the power transmitter are shown in Figurn 1.1.5-2 and 1.1 -5-3. The &frame eIZRKnB of the Priman. Stnrcturr are made up of 7-1;: nleter continuous chord

b z m s cmqmsed of graphite pstysulfone rmpos i tc structure.

Mass Tho mass of the Primary Structure is 52.500 kilograms per mtltenna for a total o f 105.000 kilograms for the two antennas.

Cost The cosi of the Primary Structure was ostintrterl a t 51 25 yet kiiogrsm for a total cost of S13.2M

for the two antennas.

WBS~iuntr)r The Secondary Structure pm\ides s truztur~l bridging cxer the Prinlsry Structure with a suifrzientl)

small repeating structure ckrntnt internal to allow installation of the transmitter urtrsrrays. The Qcondsr) Structurr drk% not ~nclude s i ~ b a r ~ ~ y stnrcture.

DesctiQtisn

R te Secondary Structure is a deployable cubic tntss. with telescoping \zrtizrl members to niinimise

packaging volunle. The nisttibea are mads front graph~tc zompcxite materials and the joints all

include a rifidizing rtrezhanism or device to pmvide ztm~plete rigidit! cxf the structure after

deploynicnt. Diagonal im-niemkn are rc.movatrlz as n c c c w n to allow for maintenance of the

\iiP~rr.i? s b! tlir ri~aintcnanzr s? stctii des~-riktI tinder WBS Sztrixn 1.3.4.

Mass

The k i o i l d a n Stn~ztun. Inass estirndte %as 107.500 krlcxpr~nls for ~ s i h antenna for a total of

395 .OC)O L~lograms.

Cost The i i s t rsttma:r for thz k c n n d r ~ Strtrcttrrc was estimated as 21 4 kilograni for a total S i1

nlillion ( 2 ~ntcnnas).

Page 62: SYSTEM DEFINITION STUDY PART IN

ORIGINAL PAGE IS OF PrWH QITN,ITY

Page 63: SYSTEM DEFINITION STUDY PART IN
Page 64: SYSTEM DEFINITION STUDY PART IN

wm Dietionmy The Power Transmissin System Attitude Control System provider fine control of antenna mechani-

cal aiming. Control Moment Gyrm (CMC's) are used t o gnera te torques required for this fine

c m t d .

Dedptioa

The CMG's are located on the back side of the Primary Structure and are 12 in number for each

transmitting antenna. A feedback loop from the Antenna Attitude Control System t o the SPS

mechanical rotary joint aUows the rotary joint t o appb torque to the antenna to contiriuuudy

desaturate the antenna CMG's. This torquo is supplied through a highly compliant mecnanical joint

so that the natural frequency of the antenna in its mechanicai supports is below the control

frequency bands for the CMGs controlling antenna attitude.

Mas Each CMG was estimated to have 3 total mass of 10.660 kilograms for 3 tatst per antenna of

127.920 k g

cost

The total iOSt for the attitude control s)\ti.ms iticlidit~g the - 1 CMC's for two antennas ua s eqti-

mated as SZOl million b a d on a CER. This aberages t o 5190'kilogram far the CMC hardware.

WBS 1.1 -5.1.4 Computing and Data Procasing

WBS Dictionary

Thts Computing and Data Prwzsinp s~ s:;m lidncflcs tlic computing and data processing load for

the Pomer lransniisston S>steni '1 data 1111k 14 ~nc.luticct :\tr communication ~ r t h the SF'S Central

Computing Complex. This jnteilna iotitputi~tg tern also hzndles the computtnp load for antenna

attitude control.

Description

For ihr reference design ( the phdsc control is provided by a retrodimctive system with phase

compensation at each subarriiy 1. tho computing load is mainly for condition monitoring. iault [sola-

tion and detection. and general antenna itinfigur~tion nianagement. Some of the potential phasr:

control systems would add t o this coniputing load ti'.€.. a command and control nperation bawd on

ground-nizasured phasc' infomiation). The iomputitig load for conditio;ling monitoring and

associated functions requires a high capacity. high speed computer companble in general capability

t o the current types of scientific o r business l a rg scale computers. Flight cottiputers in this

capacity r a n g presently d o not exist. It presurnrti that in thc time frame of SPS interest such a

computer could he developed using advariccd LSI techniques. Each antrnna was assumed to have

three computers operating in a triply redunriai~t fashion.

Page 65: SYSTEM DEFINITION STUDY PART IN

l b s The estimated mass for each computer was 225 kilogranls. This mass estimate includes radiation

shielding and heat rejection.

Cost

The cost of the computer complex f?r m e SPS was estimated as $56 million, including the six

computers and their support subsystems.

WBS 1 .I .5.1.5 Communications

The .4ntenna Communications System provides data, collectior,, processing. and command distri-

bution onboard the antenna. and also provides a data link to ground separate from the main SPS

data link in the event this is required. This comn~unications system does not include the retro-

directive phase control system. as such. That system is separately covered.

Description The Communications Complex involves three primary data handing subsystems for redundancy and

employs fiber optic' data bussing to minimire mass of cable and problems with RFI on the

transmitting antenna.

The total mass of the Co~iimunirations and Data Complex was estimated as 20.000 kiloprams per

transmitting antenna for a total of 90.000 for tile SPS.

Cost

The total cost estimate for one SPS for the Communications and Data Complex was estimated as

S 147.5 million.

WBS 1 . I S.2 Power Distribution

The MPTS antenna power distribution system provtdes power transmission, conditioning. control.

and storage for all MPTS elements. The antenna is divided into 228 poBer control sect^^. each

providing power to approximately 420 klystrons. THO of the klystrons' depressed collectors

"A" and "B" which require the majority of supplied power are provided with power directly frotii the power generation system t o avoid the dc-idc conversion losses. All other klystron element

power reqi~ircnients are provided by cor~ditioned power from thc dc!dc converter. System dis-

connects are provided for isolation of equipn~ent for repair and maintenance.

Each dc'l-tc cortvt.rter nrovides power to approxirnittely 0.5'; of the total number of anttntla

klystrons as shown in Figure 1.1.5 4. Its power requirements are given in Figure 1.1.5-5. The

klystrotl with five depressed colle~tors has 3 ca1~1113ttd tube efficiency of 85' ; .

Page 66: SYSTEM DEFINITION STUDY PART IN

11180-24073-1 NO. KLYSTRON PER

' SUOARRAY 38

STEP NO. SUBARRAYS NO. KLYSTRONS

F i r e 1.1.5.4 F4PTS Antenna Power Distribution Control Sectors

ORIGmU PAGE CB OF QUALPPy

Page 67: SYSTEM DEFINITION STUDY PART IN

to KLYSTRON B O Y ANOOES

k TO KLYSTRON MCUAILATiNG ANODE SUPPLY

2lpso v (2 105V) - TOKLYSTRON CATHCOES

C

COLLECTOR NO. 2 SVPPLY 1 tr37A TO KLYSTRON - COLLECTOR NO. Z S -160 v 1258 V )

r- ----A t

COLLf CTOR NO. 3 SUPPLY - TO KLYSTRON 1 = 61.7A - COLLECTOR NO. SS

29.475 V (t 1474V)

COLLECT OR NO. 1 SUPPLY

I SOLENOID SUPPLY i - 42WA - TO KLYSTRON

100Vr'- IVl SOLENOIDS I

I- 18.5 ,TO KLYSTRON COLLECTOR NO. 1's

CATUCJDE HEATER SUPPLY 1

21.050 V I f 1OSllV)

I 10 V I+ O.Mo.15 V) . T 0 KLYSTRON I - 2100A HEATERS

Figurr? 1.1.5-5 X / D C Converter for Five Segment D e p d CoUector Klystrons for IblPTS

Page 68: SYSTEM DEFINITION STUDY PART IN

The MPTS antenna was divided into approximate equal power areas t o define power control sectors. F i r e 1.1 -5.6 shows the location of the power sector control substation and the associated dcfdc

converten. No substations are located on the center structural node, since this node is in the center

of the highest waste heat tlux region.

The reference antznna structural design concept consists of a relatively s p x - x pi:;iiiary stiuzture,

fairly dense secondary structure and ten different types of antenna subarray elements t o achieve a

ten step approximation of the desired illumination taper. Within the subarray element. one set of

connections provides the interface between the external power distrihution system and the subarray

distribution system. Power is routed from the power sector sirbstations t o the antenna subarray

elements. Disconnects are installed at the power sector substations to provide isolation for

maintenance and repair. The power sector substation location was selected t o he at the back of the

primary structure. Aluminum sheet conductors are routed from the rotary joint t o the power

sector control substation located at the primary structure truss intersection nodes at the hack of

the structure.

The following is a list of the key antenna power distribution subsystem requirements which are satisfied by the reference configuration:

I . The power distribution system shall conduct dc electricai power from the energy conversion

system interfaces t o the klystron transmitter rotary joint interfaces. (It is assumed that there

are two S-GW ground output antennas and associated rotary joints p r SPS.1 Thc distribution

system shall supply the following nominal voltages atid currents to the rotaty joint interface

from the integrated klystron array ~iiodulz ciusters:

Bus 40.800 volts at 138.600 amps (5.hSGW)

Bus B 38.700 volts at 59,100 atrips ( 2 . i C G W )

A comrnon return for these two supplies sliall he provided.

1. Tltc antenna pouer distnFutton systeni shall crnploy dci1icdtt.d 3luminum i ~ ~ ~ c f ~ t c t o r ~ (not part

of main structure) whlch art. passivel) coolt~d hy radl~ttnn tc-, free spact*.

3. Tfre antenna power distritr~ition system shall hitye switcliitig and control equipment 3s

necessary t o isolate tilt' rotary joint ancl power triinsmissi~-,ti systeni 1'roni enr'rgy c~71ivers1011

system startup arid slii~tdowr~ transients. This requirement may he in part met by delayed

activation of power distribution pmvidcd titat tlic dclay is riot greater t1i;in five mintites.

Page 69: SYSTEM DEFINITION STUDY PART IN

ANTENNA MOUtiTEO ON Y.AXIS SYbIMETRY ALOYG 00Tt i X AND Y AXtS

YOKE CONNECTION DARKENED NODES SItOIV LOCATIC V AND NUMfrtR OF nc oc CO~*VERTEHS

DC-DC CONVERT ERS - P~~ - 5.443 MwlCONVE RT i R n - .96

Pour - 5.226 MwiCONVEhTER - HEAT LOSS - 218 kwiCO\VERTER - OPERA'Tl:3G TErsl?. - @ TO 70'~ DIMEKSIONS - Ix2r3m

TOTAL L'O. CO!dVERTERS - 228

ex- - X

3m

+.Y BACK SURFACE OF PRIMARY STHUCTUnE

Note: T hk d m repramnts th. Part I I configuration. It ms not updated for Part 11 1.

Figure 1.1.5-6 :.!ITS Reference Antei~na Power Conditioning PI cement

Page 70: SYSTEM DEFINITION STUDY PART IN

ORIGMU, PACE IS OF R W R QUALPlY

Page 71: SYSTEM DEFINITION STUDY PART IN

Output

Switching FILTER a3

RECT FILTER 25101 p37a

FILTER P 2 1 K V p-=~:l ,a

FILTER lmPA p=~=p,,,

J

1% LOSS MATTS)

49.644.720

4.774.760

249,776.m

MASS (KG)

1 . U 1 s 6

35,071

1.077.034

I

LO CAT^

"ANTENNA"

'ANTENNAw

CONNECTION a COMPONENT

SECTOR CONTROL DC/DC CONVERTERS A?tO SWITCHGEAR

m R R A Y WlRING {IMSULATION INCLUDED)

TOTAL

Page 72: SYSTEM DEFINITION STUDY PART IN
Page 73: SYSTEM DEFINITION STUDY PART IN

TBe WTS power m t d and distributiun subsystem provides cbwtitiaMd power for all WPTS elements. The fwe depmaed collector klystron requires c o n d i t i d power on dl inputs except the

two coilectm which utilize power directly from the SPS Coiiectm A supplies and Cdlector B s d a r

paeel nrppks. The power conditioning subsystem bloctt diagram is drown in Figwe 1.1.5-7. The

estimated input power t o each dc/Oc converter is about MCNXW.

Fire 1.1 -5-8 shows a simptifed mare detailed diagram of the individual dcfdc converter modules

employed. The selection o f the partkubr switching circuit device has not yet been made but an anaIysis has down that a switchkg speed of 20 KHz with SCR's or power transistors can yield a dc!dc conwetsion efficiency of a b u t 95%.

Overall power distribution system m a s and loses are summarized in Table 1.1.5-2.

WBSDiaioR.rry This element include aU praduct~on hardware required t o c d k t and dissipate the waste heat flux

fnnn the power prc-cwsing equipment on the hf PTS system.

Elemest DeocriQtioa The power proc'ec~ors t d c J c converters) haw a waste heat of approximately 2 18 Kw per unit. The

thermai limitation of the power p~~c-cssors is 700C tfor high reliability) so it was necessary to base-

line an active thermal control system for this equipment.

The active thermal contra1 system ( Figure 1.1 -5-9\ was sited. for the MPTS system. using a heat

now of IOOO watts per square centimeter. Redundancy was built into the system (pumps. valves.

and control equipment k for higher reliability.

The basic system is composed of a heat exchanger, pump. thermal control!bypass valve. and thermal

radiator. The heat exchanger uses finned heat pipes. with the condenser sections in contact with

the working fluid of the active loop. The elaporator section is in the power converters. for better

heat rejection from the more sensitive solid state components. The fluid pump was sized at 4.1 Kw.

The power consumption of all the prwessors thermal control systems was estimated at 916 Xw.

Element Mass The estimated mass of a typical power processor themal control cystem is 972 kg. Approxinlately

33 percent of this mass is for the thermal radiator with the remaining mass dis'ributed between

working fluid, piping, pumps. motors, control valves. and includes redundant components. The total processor thennal control systems mass is 222.1 MT

Page 74: SYSTEM DEFINITION STUDY PART IN

~ C s s t The cart estimating factor for this cIentertt was 414 S& as d M in the Part 2 find rtport.

Each YPlS a n t e m in tfie basetine design contains over 97.000 dclrf conwrters d 128 gotver

s t o r control substation; During the conceptual design of the ktystrcm, an effort t o minimize the

mass 3f the individual tube e h n t s d t e d in an overall li&tweight tuhe. However, removing

mass from the tube imposes the requimmmt that the probabitity of intental arcing mus; be mini-

mimi and, in the event that vcing should occur, @ remod of tbt power somxs is required. Prrtiminary ~ p u b m e n t s pkiixd on the M P r S switchpear were extremety stringent I I) rnicmxawnds cawrent intenuption time, Tke development of & --bgwr t o pcrfonn this task will require an impmvemsnt of two orders of magnitude in a m n t intenuption time over present swtchiprar

capabilities (miUisxonds t o hudrPdths of milliseconds). Analyses arc requid of possible klystron

design changes ond possible uses of current iimitinp reactors t o inasas? t h s time.

The antenna circuit breaken couW !x either solid state (present conftgufiltion) or vacuum stwitshes

(pregx~A configuration). The taring of the switc-r is 4 O A s t 49KV. T a w 1 15-3 surnmarks the ttvo circuit b reakes

An dititional circuit breaker is required which clamp the anode t o the cathode at the kIystnnr.

Micro~e~-ond switching IS requid at jOKV and no rumnt . A soliJ state c ' i r c ~ t breaker is pmpod.

The antenna power distribution system fault protection scheme is shown in Tattk 1.1.54.

In addition tc, the fault protection required in the M P n Power Distribution System. isolation of

the switchgrar for maintenance purptm- is requir~d. The act. of isolation disconnects wwld enable

isolation of a single power sector substation withrwt powerins down the main power buses. The

disconnects arc not designed for current interruption and arc: only operated when no current Ilow

eatsts (LC., the downstream hreaker is o w n when the d ~ o t l n w ~ is operated).

In Figure 1.1-5-7. tlie need for an lhinterruptahle Power Supply (UPS) is indicated which has

suitable dcidc converters which contintmusly charge an energ! m r ~ v (battery bank). Klystron life

is impacted hy cathtxie heater power on+ff cycles. In order to increaw the MTBF of the klystrot?.

it is propwd that heater power be ma~ntained during the p~ritd of time when occultation (cawed

tither by tlie earth or other sola: pt~wcr satellites) is encountered.

It is anticipated that significant increase in the MTBF of klystrons can be achieved if thernlal

cycling of the k!ystron cathcde heater can hr' tllittimitcd. There are 101 5 5 2 klystrons pcr antenna

each requiring hzatcr p o w r of 50 watts at -30 V K . Thus. a total of 5.08 mepawatts of power is

Page 75: SYSTEM DEFINITION STUDY PART IN

i

GE V ~ s W l r n ( P R E 3 € w T T ~ O e V ~

o RATIIYO: 4 0 U V , ~ t o Z O O O A ~ Z ! @ # t S A ~ 0 MASS: 1 0 p a w 0 corn: mamG 0 sYwTCHtffiTYf: S l a h m m u h q

SOLID STATE SIIIITCHES (FUTURE TECMMULOGV)

o Ct.tisl: 4 D K V . 3 0 0 t o ~ ~ l O . W O A i r r t r w p o ~ . s : l a m 0 cost: s2wKG

I 0 -Tlsr: 5 - m

Tabk 1.1.5-4 AR- Power DistriSu tion Fault R o t c c t h

FAULT AREA

MAIN BUS

ANTENNA SUB DISTRIBUTION BUS

ANTENNA OClDC CONVERTER

KLYSTRON INTERNAL ARCING

OUTWT WAVEGUIDE ARCING

PROTECTION SCHEME

REMOVE ALL SATELLITE POWER SOURCES

OPEN APPROPRIATE MAIN ANTENNA CIRCUIT BREAKER

OPEN CONVERTER CIRCUIT BREAKER

TAKE KLYSTRON MOWtATfNG ANOOE TO CAWODE POTENTIAL

REMOVE KLYSTRON INPUT RF DRIVE

Page 76: SYSTEM DEFINITION STUDY PART IN

used for ldystntn h?ers. If a distribrtion toss of 20% (&mause of the low voltage) and a period of

2 boun required for operation from s t d rrtergy are assumed, then 12.1% megawatt hours of

st& energy are required for U y s t m heaters.

Gas electrode ti-e.. nickel hydrogen1 battery sys tem offer the advantage of numerous lPcttarge

eydes and high energy densities. A nickel hydrogen battery system is selected for the reference oontiguration and should pmvide a t least four times tbe service life of conventional nickel cadmium

battery systems. With an enem storage system of this size. an e m density of 57.3 watt-hours/

kg (26 WHrfrb) including tankage was derived. With a depth of d i of 0.7 during a nonnal

2 hour operation, a density of 40.1 WHR!kg b usxi to detennine the rt\irss of the required energy storage system. The estimated mas forth, energy storage system is 313.2~103 kilogmns (313.2 metric twrs).

The conductors for the MPTS power distribution consist of aluminum sheet conductors from the

rotslry joint to the power sector control substation. circular aluminum conductors from the ssb-

stations to the subarray interface. and circular conducton o n the subarray.

The conductors on the individual MPTS antenna subarrays are included under "'harnesses.'' WBS

1.1.53.5.

WBS 1.1 -53 Transmitter A m y

WBS Dictionary This element includes all hardware required for the generation. distribution. phase contrd. and

radiation a f the microwave rnerjg including thern~ril control.

Ekmen t Description The retrodirective phase array configuration utilizes 7220-10.4 x 10.4 meter subarrays arranged in 3

quantized 10 db taper configuration conforming to dimensional requirements which will result in a

maximum RSS error associated loss of 2'7. The concepts of configuration~for fine beam steering

have been adequately defined to the block diagram stage but require further design refinement and

laboratory verification. The array features a standing wave slotted waveguide approach with a maximum effective stick length of 5.2 meters and maximum power level of 3.5 kw p r stick. A test

progrant for a plated composite waveguide has been suggested t o verify the potential adv .l;!arCs c f this lightweight approach. currently in modest use on some communication satellitc~.

A modular concept intcgrites klystron power tubes with st~barray radiators. Onc '1 r;trtrr - f' I I I ~ '

transmitting array is sliown in Figure 1.1.5-1 0. The square subarrays, complete witti ssczisted

klystrons. tile the face of the antenna which is in turn supported by the secondan stn~ctLre. A

Page 77: SYSTEM DEFINITION STUDY PART IN

K L V S T R W WJtaBER SUBARRAYS KLYSTR-

36 om

Figre 1.1.5-10 T w i t t i n g Amy

ORTGNAL PAGE fS OF POOH QUALITY

Page 78: SYSTEM DEFINITION STUDY PART IN

taper o f the microwave power density across the antenna aperture is achieved by varying the number of klystrons used per s u b m y . h section of a subarray called the i n t m t e d klystron module is shown in Figure 1.1.5-1 1. It shows the 70 kw k l y s t m mounted on the back of the

siotted waveguide antenna array. The passive cooling system can be seen. Not illustrated here is the phase controt system required to insure that the radiation from the modules will be in phase at the wtenna. This system will tie the modules within a subarray together with wareguide and all the subarrays together with coaxial cabk or an equJvalent transmission link.

~ t M o s s Debailed mass estimates for this ekment arc. given in Table 6-9 of Vd. IV of the Part 2 final document. The total is 9880.9 metric tons per antenna.

ElarrcatCod Cost estimates for tfiii ?!entent are given in the summary table ( 1.1.5-1 ) as $1.43 billion per

antenna for structure. waveguide, klystrons. thermal control, and control circuits (mature industry estimate at 1 SPS wr year).

w%tsm

POWER MOMITOR

THERMAL CONTROL HEATPIPES

KLYSTRON SUPQORT BEWW SCLlO STATE

CGNTROL DEVICE

RADIATING WAVEGUIDE

- LATERAL I-BEAbl - K W E R ClSfRlBUflON CABLING

Fito 1.1 .I 1 1 Integrated Klystron Module

72

WktNAL PAGE E6 "F mn C S U W

Page 79: SYSTEM DEFINITION STUDY PART IN

WBS 1.1.5.3.1 Stmturr and Waveguide

WBS Dictionuy This element includes ail production hardware required for the radiating waveguide, distribution

waveguide. suba~ny support stmsturs and attachment provisiqns for subarray components.

Ekmtnt Dcscriptiorr A typical, four module. subarray is shown (Figure 1.1.5-1 2) with 311 pertinent systems installed.

The elements t o be discussed in this section are the radiating waveguide. distributin waveguide.

subarray support structure. and the klystron support structure.

The radiatrng wavegude, s t the subarray level, is coniposed of I 20 waveguide sticks (Figure

1 . I .5-13) that are 10 43 meters long. The method of attaining\arious numbers of module units

per subarray a to install internal shorts. conducting elements, within the stick lengths and t o dis-

tribute rf power with the distribution waveguide sticks to the desired number of wavegurde sticks.

for a sin$c klystron. In this manner. it was possible to obtain ten types of subarrays, ranging h m

36 t o 4 I-fystrons per suba r i8~ (Table 1.1.5-5). t o achieve the desired power taper. The integml

radiating waveguide forms a subarray unit 1n.43 meters square. which remains unchanged

throughout the array, a1 ' based on realizable mechanical tolerances an3 acceptable error

plateau levels.

The datribution wa\eguidrs feed power from the klystron outpltt waveguide t o the radiating wave-

guide. Tho distiibutron wave~uidr sticks are arranged in pairs. each one supplying half of the rf

power ro 3 gfwn Ll>stron module. There is also an attachment p r n t . at haif of the distribution

sttck length. to connect disconnect the klystron ouiput wa\eptc~de.

The su5arrat support structure is composed of peri~tietcr besms. lateral and longitud~nal I-beams

(Figure 2.2.5-1 21. Thew beams have a web of 1 . 0 cni and tianges of up to 6.0 cm and are bonded

drrectly to the hack of the raii~attnp \r-a\eptcrde. The Iatc.rn1 and long~tudinal 1-bedrn.; form a rnatris

with a klystron module being framed within each box.

Attachment provisions are made on the subarray structure for rhr klystron si~pport structure. power

distribution harnesses. module power cotitit-ctors, solid state control devices. and subarray support

to the secondary structure. The klystron is supported. within the module. by a C-heani 'saddle fix-

ture thaf has a support block on each end for load transmittal into the radiating waveguide. Further

fupport of the klystron IS pro\ided througti the klystron output \vavepuidc distribution wa\epuide

connection.

The power distribution harnesses arc. discussed in Sc'ction 1.1.2.3.5. The harnesses are supported.

by the subarray support stnt~.torr britrns. with ticdown bands at half module lengths. At the point

of tieparture of the cables. from the liarnrss to the module. a connector support atfachmcnt is pro-

i~ r f ed for the module power connector.

Page 80: SYSTEM DEFINITION STUDY PART IN

STRUCTURAL MAT'L: GR Ep -8PLY

CONDUCTING MAT'L: ALUMINUM (T f 6.67 pM)

Fiyre 1.1.5-13 Radiating Waveguide Stick Dimc&ons

ORIG'NAL PAGE IS OF R W R QUALITY

Page 81: SYSTEM DEFINITION STUDY PART IN

SUBARRAY 1 YPE

I

1 2 3 4 6 6 7 8 9

10

NO. MODULES SUBARRAY

36 30 24 20 16 12 9 8 6 4

ARRANGEMENT OF MODULES

W x L )

6 x 6 6 x 5 6 x 4 5 x 4 4 x 4 5 x 4 3 x 3 4 x 2 3 x 2 2 x 2

MODULE DIMENSION W (ml x L (ml

1.738 x 1.738 1.738 x 2.088 1.73% x 2.808 2.086 #i 2.608 2.608 x 2.808 2.608 x 3.477 3.477 x 3.477 2.608 x 5.2% 3.477 x 5.215 5215 x 5.215

Page 82: SYSTEM DEFINITION STUDY PART IN

Revisions must also be made on the perimeter beams, at three points, t o attach the subarny to the

secondary structure. This attachment will allow the adjusting mechanism. located on the secondary

stnicture attachment points, t o attach to the subarray structure to facilitate relative movement

between the subarray and the MPTS structure.

EltmtnthClss The element masses for the element in this section are shown in Table 1.1 .S6. The structural mass

includes attachment and support provision for the subarray. The mass per subarray for the distribu-

tion waveguide and subarray strucutre varies, between the limits shown, depending on the number

of modules per subarray.

Ekmcnt Cost

The cost estimating factor used for the elements in this section. was 66flkg. This factor covers

both wave,*iides and structure at the subarray level using a mature industry approach.

WBS 1.1.5.3.2 Powcr Amplificts

WBS Wicdomry This eleinent includes all the hardware and control circuits for the klystron rf transmitters, namely

the cathode subasemhly, the rfcircuit (body), the collector, the output waveguide and window (if

required) and the solenoid for beam focusing. External monitor circuits. both dc and rf are also

included.

Ekmen t Descrip tien

An rf transmitter and configuration of 101.552 - 70 kw CW klystron amplifiers operating at 42 kv

with 45-50 dh gain using a compact efficient (X2-85!;) solenoid woundan-body design approach

with consemativc design parameters (0 . I5 arnpsicm2 c ~ t t ~ o d e loading) t o achieve long life has been

chosen. This 5 stage depressed collector design provides a compiementaiy design to the amplitron

alternative. Proposcd multiple tube developnitnt programs and assessment of high vvoltagc operi-

tion in space will provide the final answer to thc transmitter selection. The layout of the basic kly-

stron building block modulc is shown in Figure 1.1.5-14, with the various elements shown. The

6 cavity design, with a second hamionic birni-hing cavity for short length ant1 high efficiency. fea- tr~res a dual output waveguide with 35 kw in each a n . Hcat pipes at conservative ratings are used

to cool the output pap. th: depressed c.ollector and the solrnoicl. with ii design tcmpcraturc o. 300°C maximum or. the body and 500°C on the collector. An MTBF improvement of 3 to 10

from the present value for scveral hundred spacchorne tubes of 2 years. and best tubes o f small

prolrndhascd radar systems of 10 yean \;;!I haw to be rea1ir.t.d t h ro~~gh conservative design and pro-

per burn-in procedures. The driver for the final klystron power ampliticr will require an output of

about 3 watts cw for a 45 db oittput aniplific'r sirturatrd gain. This power lcvcl is available in .iever~I

off-the-shelf re!iablc low power low noise TWT amplifiers which can be driven directly from phase

Page 83: SYSTEM DEFINITION STUDY PART IN

I ELEMENT I MASStSUBARRAY IKpl I MAE< * CNNA (MTL

INTERNAL COLLECTOR HEATPIPE/EVAPORAfORS7 R E F O C U S I N G SOL"oID

RADlAT ING WAVEGUIDES DISTRIBUTION WAVEGUIDES SUBARRAY STRUCTURE

I- MAIN SuLE:J010

FiF IFJPUT FROM SOLID STATE CONTROL DEVICE

COLLECTOR

TO RADIATOR CAVITY.'SOLENOID t!EATP:PES (4)

TO THERP.lAL RADIATORS

OUTPUT WAVEGUlOE

114 22 - 63 63-120

Figure 1.1.5-14 75) Kw Klystron

1545 289 667

Page 84: SYSTEM DEFINITION STUDY PART IN

cow'oslTF MATERIALS 1. GRACnlTE-EPOXY 1750C 2. GRAPHITE-POLYMICW ZQPC

Page 85: SYSTEM DEFINITION STUDY PART IN

regeneration circuitry at power kvek well below a m~lliwatt. The driver tube ecwlu be either an off-

tb&lf low-noise higbqpm TWT or s multistage tw-%tor mpl i f i r *.:;!!. up t a 10 db g i n per

stage at this froqtteney. All phase conf,autation f-tions will be pericmnzct at low drive kvek.

a c l w r r t b The klystran mas per tube is a t inu t zd t o k 48 kg. with an additionrl 18.Q kg for thennsl contrtd.

Elctluttt c st

The mature indurtry mas production cost per klystron has been estimated b t w e n 3 IuOO and

52-%MI per Wya.ron ( 1977 di&,nt.

WBS 1.1.5.3.3 Tkmml Control

WBS ktionw?: This element tneludzs all pr~xiuctton h r t w ~ r e requared to r:al:n\e and dtutpste w aste heat i r ~ w i t the

Nystmn modules a t the s u b m y level. S u r :iements include the klystn~n heat PI^ radiators, s l i d

state zontrel d r t t ~ c ~ thrn t~s l citntrol, and tttermtl insttiatton u ~ t h t n the subarray.

FIemtnt Description

The two mqor waste heat source. at thc wba r tg Ir\cl. arc the iolleitor and <.I\ II? scllcnotd w,--

ttons oi the Ll?stron A small antount o i uasrr 1 1 ~ ~ 1 tilust bz i i~wpstcd froni t'ie ~ t l d \rate control

d ~ l i c e Tahlzs I 1 -5-- ~ n d I 1 5-s 1,st the u a\le h e ~ t \cturies dnJ thcnlldl Itrllttatt~~n .~zsunlplic~tl

iclr wbama~ components.

tieat pipes and radtatc~n wen. dzstgned to dtv.~p;ltr hlydrun wr\tc h r ~ t icves Thr heit piiw C \ ~ F -

orators. an tntc'g131 part of the hiy~trc~1. ptik up thr* uaslc l1e.11 lor transti'r Icr I ~ C - lllt-nil~l rtdt~tc:r\

I I . 5 - 1 5 ihi. thema1 radiator has v\ wittons. t w o \-~-t~cms for the colli.ztt*r ~n i f tcwr for

the ia\ittes anti v~ lenc~d . A ircrss-brdcv t s uXJ to rctrtn the rrddurars J I C ~ I I ~ t \ to i-dp-s. I he .-~)llcc-

tor wction operafcs .~ t 5UCr\(' tnd thc C J \ I ~ > \i>li'~ic~td WCIIOI~ J I :(WF3('. .-\ b.=ttcr k lc~-npt~t rn the

heat ptpe rJdi:tr>n I\ g\rn in Table 1.1 5-Q

t-\en thouch the thernlal ccjtitrid s!steni rcttlo\e\ thc heat rcIct~*ti b? lllc kl\\fre~n. .I htpll t~.lrljrcrt-

lore ztrll r\i\tcd at nicxl~il~ ;arrtprni.nts \ticti .IN st-ltd srati. ;rr~itrol. p*\\i'r rtrstribtr~l~*n llti.\i*s. .i*l,l

i ~ ~ t l l $ ~ ~ l I c tll.itC~.il\ In IhC stntilurt' a!lJ wa\i.guidcs :\ icn\cr t'~tilpcr.tIi~rt- cn\~rtr:ttn,-nt !i'! tiicw.

i~ t l l pc~ t t~ t l t z u a\ prcn idcd s11:1pI? b\ t s i d ~ ~ i n ~ thi. litpil t~~tn~*cr.tfiir~. qclic~tls th'. hi\ .Ireti! and Ill'.

t~i'-h SICIC c ~ t ' 11s tliCri~itl rtdtt:ot u tth tl1~~11.tl i i i s t i l i ~ ~ c ~ t i F.1111~ I . i 5- It)) I hc s111.tiI .it11t>t:iiI C V I

\\ .I\IC heal trot11 tlie w4tal ~ 1 ~ 1 ~ cil11lrt*l ticS\ I<'- I\ . I I ~ ~ I ~ . I I ~ C I I*? I(\ C*W 11 r~tiitliw IIC-.II st~ih.

Page 86: SYSTEM DEFINITION STUDY PART IN
Page 87: SYSTEM DEFINITION STUDY PART IN

m HEAT ~ P E TYPE- 1- acm

FLU~D-

I H U T W E S * 1KBlCIIEACM

RADMiUR - ALUlVllNLiY

- THKXNESS - -1 CY

- A R E A - O . ~ ~ ~ @ F A C H

M A S (EACH! - 3.lb KG

b - QOLLECtOR S € C t W - 9 LAVER MULf IFOIL (21 0 SPACER) 1 I (RADIATOR 81 KLYSTRON) 6 LAYER KAPTON (QUA sTZNETSPArCR) I

I

I ICC CAVIT I & SOLENOID - 15 LAYER KAPTON (QUARTZ NET SPACER)

e151ATOR & KLYSTRON)

I WAVEGU1MS - 10 LAYER KAPTON (QUP.RTZ NET SPACER

Page 88: SYSTEM DEFINITION STUDY PART IN

Eksmcntb The major dtennsil control system element masses were listed in Tables 1.1.2-9 and 1.1.5-10. The

total t h e m d control mass per submy varies between 778 kg and 86 k g depending am the sub array power aensity. The totai mas of s u b m y thermal control systems b 00.2 MT.

Element-

The m t of thermal c o n t d ekments was estimated as Sl350 each.

WBS 1 .I -5.3.4 Phase Contrd C i i t

Tho p u m of the phase control cttieit for the space antenna of the microwave transmissim

system is t o facus over 96% of the microwave power radiated from space t o the rectenna

i w a t d on the p w n d .

Figure 1.1.5-1 b show3 the simplified block diagram of the system consirtine of a m n d and

a sapce segment.

On the pound. a t rarmit ter and antenna complex p e r t i t - 3 pilot signal *i~h is radiated

toward the space antenna. In space. the subarray elements of the overall space array antenna

receive the pilot ugnd in a phase c o r r r s p d t p to their location relative :o the pround antenna

By comparing thew p h s s to the phase of one of the subarrays I tkpically the nominally c(05CJ.

or center subarray) the phase differences at the tndi+tduaI *ubrrays are detemined. Then the

relative transmit phaw at t h e e fubamys IS t o the conjugate of the metved phase% at each

subarray\. Thl\ aswrr% that the downlink stgnah frtm all the subarrays are launched in the proper

dim-tion to the pilot signal 2nd amvc in phase .it the pilot antenna. The correct operation of

the s)..-tem a monttored on the _en>und by a wt ctf monitqr stations. The output stpnsk fmm

these stattens are used to caicula'te line correction\ uhtch may k necessity to ~omprnsate second

uider s!,~tc'ni3tti pottittng erron due to the tr~nsmtc\ion medium.

'4 kc) funct~on In the ownt ion of thc ahtive divnhr-d sy stcm is thz determination and the con-

jdgition of thc rcldtive phase\ of the pilot \ I ~ P J ~ F 01 t~ t e 5ubdrra. .. Thn require\ the genemtion and

Jistnbuttrtn ol a reference p;im for thr conjugaton In the $elcited system. thr refewncc phase a thc pha-r of the A,, \ubdrriy and thw phaw. I\ rlt\tnhuttd oser a trartsmtsston Itnz tree. T'IC

tlectncal length ihangrs In thew transmwsion line, art. sent brih to the next higher level n d e on

the phaw distnbutlng netmoiL. Th~r I\ tqu i \ lcn t to perionnlnp all conjugattons at the A,

subanay. In \uih an dnangement the pit. \r. dr\tr~bitttnp Irnt.\ arc uwd hildter~llb. thuc their

Itlie length change\ do no: 3ffect thz :c~nlu.ptlon prtxc~s.

Page 89: SYSTEM DEFINITION STUDY PART IN
Page 90: SYSTEM DEFINITION STUDY PART IN

F i 1.1.5-17showsam- : ~~ittdblockditpramofth~system. T h e ~ t i o R o f t h e s y s t e m

cul be explained by f: :',* rg a rypical signal through the circuit.

Ckr the ground (Figure 1.1 -5-1 7a) a pitot generator at fU = 1460 MHz is amplitude moddated by a nominal f l = 76.5625 MHz - 77 MHz. Tne carrier is suppressed and the remaining f- = fU - f l r 2383 MHz and f+ = fU + f l 2 2537 MHz t o m are distributed t o the transmitters of three antennas. nese antennas are 10 m diameter steerable p;ireboioids, which are located in the apexes of a triangk, spproxtmatelv 1 3 lun from each other snd symmetrical da t ive to the center of the

rectenna. These antennas are used for fine positioning ~f the beam and b g e r s p a r a m may k ujed when a wider pointing range is desirable.

At the pilot antennas a dual transmitter is located. capable of transmitting each of the uplink tones

at 13 kw level. The actual kvei and phase of these transmitters can be adjusted in such a manner

that the effective phase center of the three element array appears t o be adjustable f m the space craft antenna. This adjustn~ent is achieved by the pilot location control subyttem which is using

input signals from the monitoring antennas of the dowitlink beam.

The frequency plan for the phasing circuits isoutlired in Figure 1.1.5-1 7b and a detailed description

of the refrodirective system is -&en in the MPTS fiase III Studies.

The opentiot? of the above described system in real life is influenced by a number of practical

limitations which degnde the power transfer efficiency froin its ideal value.

Table 1 .i -5-1 1 gives a summary of the considered errors. They can be divided into random and

syrtematic categories. In each case phase and amplitude crrors can be distinguished.

The results of this c 'mr analysis are summarized in Table 1.1 5-1 :.

WBS 1.1.5.3.5 Harness~s

WBS k t i o ~ r y

This rlr:~icnt includes all productio*, lardw ware to provide p w r r distribution at the subarray level.

Thr subrltments in this category include the pigtail connector for the ~l:bsrray. bus~ng between this

connector and the klystron r,rdule connector. and thc klystron module connector.

Element k r i p t b n

The conduitors on the indiviiiual MMS antenna sk~barrays are in5ulated circular aluminum

conCditon. The thermal environnirnt for the caiiductors i s relatively benign since the klystron

ndiatc-r systcni is designed to radiate away from the waveguide surface. Each subarray conductor is

muted from tllc interface ionnectio,i at the subarray drop to the klystron. For wliatrility rea?qns

no iotiducfor t ~ p s 3rc maJe on thc suharrny to ~rovide for multiple klystron feeds from a single

Page 91: SYSTEM DEFINITION STUDY PART IN

ORIGINAL PAGE R? OP POOR QUALITY

-

Uonimn m.

r-------- "8 .

AUPL 1 -- + I =LOT A m

PllASE I -= ST* AUSE wTL t 2 so. a STABLE I + L-'L---t__a SLiBan. - * I1

4 I

r

F i i i i 1.1.5-178 T k Pilot Antema Coatroi System

6101t.10 of S**

r r e ~ ~ c i e s ( I f f .L Cimri t D e s l g ~ a t i a u Indices

fD - 2b50 r - recelver e - refennee fo = 2460 I - regenerator k - f i r s t layer CL I I, 2. .- - m i - 19) f, - 2486.25 c - rmjugator LL - w o a d l a p r (r - 1, 2. ... a2 - 23) f l - fD132 = 16.5625 d - i-f dfplexcr ktm - third lapr (- - 1. 2,...nj - 22) f, - 2383.4375 t - tr-tter f+ - 2536.5625 8fl fa - 50.3125 fb 132.8125 -f* - fL - fg ' 36.25 fl - fg - f 1 - 66.5625 f~ - f+ - f~ - &%25 fa - f,, - 14.0625 fB - fa 16-25 f, - fc - 16.25 2z1 - 153.125 4 f l - 306.25

f- f+ tD f, f+ f~ f- f+ Fr, f- 4 f D

fio 00 $1 fllX 911 hlX 01 11 9111.

F i u x 1.1.5-1 7b Block Diagram and Frequency Plan of Phasing C imi t for Space Antrnna

Page 92: SYSTEM DEFINITION STUDY PART IN

I RAN- SYSTEMATIC PHASE - AMPLITUDE POINTING AMPLIT URK

I PHASE JITTER (fur f*) TRANSMIT POWER - APPROXIMATE

CONJUGATION

I TRANSI#ITTER NOISE SUBARRAY ROTATION DOPPLER FREQUENCY POLARIZA ;ION SHIFT ROTATION

I LINE MATCH DIFFERENTIALS IF;)

I DIPLEXER MATCH DIFFERENTIALS

TRAMSMITTER PHASING 16,J

DIFFERENTIAL OOPPLER

ABERRATION

IONOSPHERIC OlFFERENTlAL

Tabk 1.1.112 Summary of Losss

SYSTEMAllC POINTING (3 PILOT STATION)

SYSTEMATIC AWPLaTbDE (8 LEVELS)

SOURCE

RANIXMU PHASE

RANDOM AMPLITUDE (A0, = -05")

RESULTANT L OSS ASSOCIATED TO SPACECRAFT ARRAY

LOSS (X)

1.53

1-34

FARADAY ROTATION (Boclnon. WORST YEAR! .48% "AVERAGE" PEAK. -

I

Page 93: SYSTEM DEFINITION STUDY PART IN

conductor. Connectors are provided at the interface connection, of the secondary structure and

subarray. and also at the interface of the harness and the klystron module. This provides the

chpability to physically connect/disconnect either the module o r subarray for maintenance options.

Figure 1.1.5-1 8 presents the conductor summary for the four klystron subarray. Also shown in this

figure a n per unit length tabulations of conductor mass and 1 2 ~ losses. All subarray conductor

calculations for subarray distribution mass and losses were computed using these per unit length

values. Figures 1.1.5-1 3 through 1.1 -5-23 present the results for the other antenna subarray types.

Total antenna subarray conductor mass and losses were computed by multiplying these quantities

by the number of each subarray types.

Element Mass The harness mass for each type of subarray was listed in the tables on Figures 1.1.5-1 8 through

1.1.5-23. The total mass of harnesses for an MPTS antenna is 35.9 NIT.

Ekment Cost The cost estimating factor for the harnesses is the same as that given in the Part 2 final

documentation. 45 S:kg.

WBS 1.1 -6 Assembly and Checkout

WBS Dictionary

The Assembiy and Checkout functions include assemt~ling and packaging of SPS hardware for a

launch to low Earth orbit. installation of the individ~t 11 payload packages into a payload pallet. and

ground checkout prior to packaging and prior to launch as applicable. This function do:s not

include the assetnbly and checkout of the SPS modules in space. That function is separately

covered under thc space constructiorl work breakdown stntcture element.

Description

A description for assembly and checkout was not developed.

Mass Mass of payload packages ~ n d pallets was eJti:;iated as 1 1'; of the mass of contained useful payload

on an average basis. This 1 1'; estirnatc was inzlitdcd in calculations of nunrt:irs of flights for the

transportation system. (The useful pa)ioad was ~onsidercd to be 90'; of the launch vehicle gross

payload lift capability.) Pa) load pallets and payload pxkdping ptovisions are constdcrcr! rcusahlc:

they are returnable to Farth by t1.t. launch vrhiclr. except t'or sola: cell boxes which remain

at t~ched to ttic SPS to protect solar cells during the transit to geosynchronotts orbit.

Page 94: SYSTEM DEFINITION STUDY PART IN

WIRE NO. W ~ R E WSUL wrm t2~m

VOLTAGE CURRENT

REOTJ SIZE THICK KG WATTS (REF TO A W . IYIU aODY AhaMfl

2lpso I Jo B R a D o o i 3t as .maom

21- O W 1 Jo 8.6 JXtOB 0.mI aaa 1 m 6.8 m10m

12.630 4310 4330 I 27 7 a O O I O B 3 C 2 . 1 ~ 1 . I n I .v:o 0 . t ~

42.100 6.000 I 18 16.8 .UKa O g b t 42.*4) 7.1% 1 16 16.8 .M)#) 1.107 42.14) l&mO 2 1s 1 BlOl t.709

Figwe 1.1.5- 18 Four Klystron Subamy Conductor Summary

Page 95: SYSTEM DEFINITION STUDY PART IN

VOLTAGE TOTAL CURRENT -

VOLTAGE

21 .ow 42.100 2 t . m 25.1 60 29.4)O 3 7 m lO.O00

10 100

COMMOEI

TOTAL CURRENT

0 KLYSTRONS 2x4

Figure 1.1.5-19 Six and Eight Klystron Subarray Conductor Summary

Page 96: SYSTEM DEFINITION STUDY PART IN

TOTAL m* *:KT

MCTAGE TOTAL CURRENT

12 KLYSTRONS 3x4

Figure 1.1.5-20 Nine and Twelve lilystro~l Subtrrav Conductor Sumnrq-

Page 97: SYSTEM DEFINITION STUDY PART IN

VOLTAGE TOTAL CURRENT - -

21,050 42.lW 21.m 26.1a %A70 37890 worn

10 100

COMMON

16 KLYSTRONS 4x4

VOLTAGE

21.050 42,100 21,ow 25.16r) 29,47v, 37.890 40.000

l l 1 00

COMMON

TOTAL CURRENT

20 KLYSTRONS 5x4

Figure 1.1.5-21 Sixteen and Twenty Klystron Sub'tnay Conductclr Summary

ORIGINAL PAGE IS OF POoR QUALITY

Page 98: SYSTEM DEFINITION STUDY PART IN

TOTAL- - Zttz 110 ZItz I 3- nsa - UQlDBD an-

30 KLYSIRUUS 5x6

F i r e 1.1.5-22 Twenty-four and Thirty Klystron Subarray Conductor Summay

ORIGINAL PAGE IS nv pf mTb nrrA1,ITy

Page 99: SYSTEM DEFINITION STUDY PART IN

# KLYSTRO(YS 6x6

F i 1.1.5-23 Thirty-six Klystm~ Subamy Conductor Sum-

Cost

:I 5 , ; blanket allo\\ancc HIS applied t o appl~iable Sf% itciiis for p~ i l i~g t t lg . 32~111b1> .IIIJ ihci)ic>l~t

costs.

1 . I .7 Initial Spares

WBS Dictionary

Initial spares arc ttiow spares supl3lit.d with tilt. SFS as initially purchased t o provide an adequate

spares bast. t o acconi!.~ish thc constru~-tioti and the initial ~ -h t .~kout job. 111t- ctu;l~itity has hccn

t.stirtiatrt1 as 2T; and was ccwtcd as 2'; witltoi~t a spcii!ic brcakout as to tiow ri1;tny sparcs of \\illat

type.

Page 100: SYSTEM DEFINITION STUDY PART IN

PACE RLah'X NOT

wBSl.2 GtoltadRei+gStrtk=

WBS Dicticnu y

The SPS _ m n d receivinl stations include all functions required t o receive .-le power beams. con-

vert them t o grkkompatibk electnc power. and provide ground control of beam formation, aiming

and power. Whether the ~ r o u n d receiving stations would be responsible for SPS flight control has

not been determined.

Description

The design of the sround station is a combined effort by The Boeing Company. Raytheon 4 Wall-

thamk and General Electric Space bivision. Each receivinl station inclcdes the land area. rectenna

(rectifying antennat. grid interface equipment. and control and communicatio~ls systems. The land

sites are 13.18 x 18.7 km (nominal. at latitude) and each rectenna proper is 9.885 x 14 km.

The output power of 5000 megawatts is delivered through five 1000megwatt transformer stations.

Szveral reztcnna configuration 0ptior.s were etaluated. The tilted-panel configuration shown in

Figure 1.2- I was retained as preferred <onccpt.

Mass Mass estimates were not made.

Cost

Land and site preparation was estimated as $5000 acre based on Bovay estinlates (contract XAS9-

15280) of S1500-4000 acre. with additions for ay-iculture in the perimeter area not covered hg

rxtenna.

Cost Summary

Rectenna costs were bawd on Bovay Engineers estimates for structure and installation. Raytileon

estimates for the RF hardware and ground plznes. Boeing and GE estimates for RF diodes. and GE

estimates for power processing and stid interfare.

The struzrure used Bovaq fr4 (see helo\\. WBS I .2.3 ). which IS approximately S 19.3 rn2 (of panel

area). The panel area is 76.7 kml.

Land was estimated at 55000:acre for acqinisition and site prepamtion.

The fiF assemblies were estimarrd at 35 each. with each dipole element receiving 70 cm2 of beam

ares. A total of 10.96 billion elements and diodes are required.

Page 101: SYSTEM DEFINITION STUDY PART IN
Page 102: SYSTEM DEFINITION STUDY PART IN

M i r s were zs:tmsted from Ic t o 2' J each tt? CF snJ k i n g . A figure of c used Dt\tnbu-

t b n hswz were est~matgrf at S5: millrctn. ilte c a n m a d and cwntrd system uas cetm~etcd s t SfrC rn~llion. Power prrscsing and $id 1ntertks.e costs were tsrmsted as %'J million.

Land 4 '.so0 ;izn-s Stnizturrs & In s t a i l~ t l~~n

RFAssrmtrlres St Ground Plane

Diodes

Dtst nbu t~on Busses

Command d G n t r t ~ l Center

"h re " Rrctenna Torril

Pttule r Pra\r'clsrtig & Cnd Intr.riac-e

I hew is :uriS\ in' lnr one r e w \ tnp \tte ~IIC IO.iXh1 iiiep.iw.,~ff SPS reqtrtrr\\ two ~ L Y C I \ ttig \ttr'\

WBS I .,'. I Real Estate

WBS Dictionary

I'lirx clement tn<htdc\ the land .II-CJ tor the groutid r i .~-~ning st.it~tm* dnd tit i \it< pwp.Ir.itiot1

&scrip1 ion

1 tic I.inJ .irc.i n.t~iitti.niCrtt H.I\ .~\\ttrilcd tit f-c ecjiit\.,~ler~f ttt t11c SPS pnscr 1.c.rtii filotpnnt tlii thc

grt*ttrtd 1'11&* \t:c ic 1io1t1iii.111~ 1 .: I S \ 15.- Lln. riliyti :dl. h t t \ant.\ H ith l:itttu~iC 1 I l i t iwriton oi

t l ~ c i , t i~~i .IW.I littt ttw,i i t l r .~<ti\c r~>~-tct1n.a clctiient> tii.i\ h. illantcd gra- tjr t~*rext (.I\ I \ apprtlprt-

atc tt1 thC cIrni.1tc1 to rlittiitiitic rt'f1~itl0:l OI the outer inn^^*\ n i thc nii.+rtw+.i\e t\c.ini. 1'he. br..irii

I I I ~ . , I I \ I ~ > 111 t t t t * r+it*ii \ \ i l l 1-c Icx\ :".II~ 1 111% cni2 ihc ciitlrc rcirr\ttip \ltc* w t l l h. tcn<r.tf

HRS I . 2.2 Ct,titrt~l atid C'o~ilniunkation

I l c * i t i s * i l t i \\ \ t ~ t i i \ .irt3 prcn tticii \\ hi<h i.ltt\r. the \I-.liCt<titl.i to gcitcr.;tr' t i \< rcqutrcd ,-nI~t*rciit br*.illi

tltd grt*ti~ld-Ii ,~~*~! p ~ l t ~ ~ . r t tf l l i t \ \\ \ICIII c~\ t ic~\ t \ ot I~c.it~t nloi11torui~ \! >tc111\ .ttit! .I f i i l t l t tr.~~i\tIil\-

1 1 \ t c 1 t;rt\i1n\i-t\.1wii \\\tciii\ for crtntrctl of \.ttcllttc opcr.tt~<'n\ h.i\c !lot 1lc.cn 111\ c\tt$.ltr'e!

Page 103: SYSTEM DEFINITION STUDY PART IN

WBS 1.2.2. I conhd Systcn,

On the ground th podtion of thz received k a m a tnon i t d a d the effocttve phase center at'

t r i m p i a r t y zonf i iurzd pilot antznnd a m y ts vrnet! in such a way that the k s m center is kept at

the center of the rectcnna. Tht. uplink frequency is htrlimd as 2- Mhz (to ptaviitc w p r s t ~ m

from the doun t~nk f~qucncy o: 2450 Mhzl. Three ptiot antennas wouW be spaced appmxrmatellt

two Libmeters .tp;lrt w ~ t h t n thc rectenna ares. Four monitoring antennas would be provided. as s

ntinimum.

ww 1.z.r.r s~soptnt iaas

A detailed annlysts of SPS cy?t.rations has not k e n ptrformcd. f lcbwe~if. o n a prelirninaw basis i t

appzar?; that all _ ~ r t ~ u n d sxstcn, oper'f;tticrns can be pcrformcd ~ u t m a t k a l l y . This does not i w i d e

system maintenance w c h 3s the rt-plltcement of rccti.nn;t p;rwls. fit. midu ls r c c ~ n f i u n t i c w of the

m-tcnna sfla#% Iiwd folfcwing snd I 'acil i tatr~ m3intzn;lme. Ttre power cn l lec tkn a d dtstrihuiion

system is &scribed i n w i t i ~ n I .2.J.i thmuph i.2.J.h.

Page 104: SYSTEM DEFINITION STUDY PART IN

hBS 1.2.3 Rwte~rna Primary Stwrure

Page 105: SYSTEM DEFINITION STUDY PART IN

SECT ION

Figure 1.2.3-1. System No. 4

Page 106: SYSTEM DEFINITION STUDY PART IN

SYSTEM NO. 4 STEEL FRAMES OIY 32 F r. CENTERS, WITH 13 LIGHTGAGE STEEL PURl.INt AND ONE ALUMINUM PURLIN AND SPANOREL FOR ELEC- T RICAL CONDUCTION WANTITIES FOR ONE 96 F W T SECTION.

1422 LBS. ALUMINUM SHAPES O $1.50 10377 LBS. LIGHTGAGE STEEL @ 8.36 13277 CBS. STRUCTURAL STEEL Q $.a 2 EACH CONDUCTOR INSULATION MOUNT @ 1.00 1 EACH CONOUCTOR SLIDING W U N T O 58.00 3 EACH 2' 0 X 5' LG. FTG. * $50.00 3 EACH 4'0 X 7-8" LG FTC aS100.W 1 f ACH U & P € R CABLE 530.00

1 14.160 C ~ T ~ S U . FT = 7.816 - 31 80SO. FT. GROUNDQLANE - ~ 1 9 . j ; l . ~ ~

Page 107: SYSTEM DEFINITION STUDY PART IN
Page 108: SYSTEM DEFINITION STUDY PART IN

\ **...* ..., * ."'I

4

.... *,... ...+... L -

H 4 L f H A \ f t I

PIPOLE ANT€ Nhll * \'\ * . DL LcSf Mi: 2 SECTtG% Ir'b Pas?. * t. MKROH4\ E F tin9

NPL<TAN<t P\ f 45s CAP4C 174Nct

KALF k \ 4 \ € >C&OTTh\ TP T:SoN.\tf 4NE' ?:li'l~: FttftR

M8aiEe aEi"riF tEit "';'If lER CtfK,?!

F M 1.2.4-1. C'Uta~a? m t b n of the three-pbne rwlenna rppnm-h i r sd it\ the RSCV ar JPL's G M s t u r f=&t) lrhociqs how the mtenna rkttrnts phrg into the rmy. Althtwsh this a p p ~ w h was atida~.turj ekrrl\.sll\. it is c o ~ i ~ l \ l k ~ I d fmnl a fabrication pint of v b w . .4 greatly simplifimI nrwhaitkal spi~tuac.h La the two-phtu syst~tti whkh p m r w s all of the dc?riratrk c.)C\'ttir'll ~ r n q w t t k of the thnmphnc s! star.

Page 109: SYSTEM DEFINITION STUDY PART IN
Page 110: SYSTEM DEFINITION STUDY PART IN
Page 111: SYSTEM DEFINITION STUDY PART IN

Fifure 1 -2.45a. Schematic of the f~epbnc of the two-pfanc rrct.-mm showing the rmn-genxnt of half-wave aipoks. input fdters a d Schottliybmkr rectifying diodes. Two-wire Transnission lhKs are d for both microwave cinuib and oxrrying out the DC power ccatcd by the array.

MIGCt'.4L PAGE IS W P(M IR Q U ~ - \iCTIDh - ? 1

I t---

Figure 1.2.+Sh. Schenlatk ekctrical drawing showing how the sections of dirxics representing the rertenna elements within a long length of foreplane nre conreted in paralkl and series to build up tct the desired output current and voltage levels.

Page 112: SYSTEM DEFINITION STUDY PART IN

t.2.4.2J me,rlwli'orm rk akaqm * m n m Fe::i I -' 4 : +fzet t~ l \ \ugec\t\ that tkc rrtctr l \Atchi tisat I* t. twrrttt l tr* itw

~ i r i f i t k~a l j ltw ~ ~ t t t t ~ ~ t ~ c t l f i / ~ ~ C U ~ I I ahrr i t t ~ l k r ~ t a* t k / ~ ~ n i t / % l f h t d - k a n t e l r i * n ~ ~ b t t i r l . e r n ,

rncatht rn righi-t 4 t1;t \ r t urtat~.rl i*-t-timta It 1% the $ q t t p t w rrt ttttx LA ttr*tt tr* ~ l \ . ~ h i s t at: sf\

\t\ r*? f k r i thtckl a i tkt. her t;rmtal \ tnt%-iufol .+itWttt artct r l r ie r t t t t t r th+ fht t k i i ~ s i r*t t!iz \its.zt

tttetd fib-ttr * h ~ k tt I\ tahtt, atmt r\ J titrt i ts\trr 01 Icwt h t t t ywn h-tmeetr Iat t r a? itrl*grrrj I &kt IIW

W t ~ i t k\a\ttt\p .*f Irkdttrg t t t t p t ~ t r r i i r i r l t t i t 121 .~rtr* ' 'h; s \\-t i \ t ihi. ttti'ittf\r-t 1% itcat!\ / \ t i%

p a ~ ~ t i i l trr the f h ~ k l l ~ % \ -\*I ~ h c t t t~ts 'nr) . -3 that t kc thrikttr\ \ pagaitr;tcr i\ att ~r t tp+t tar t f on*-

1Ptc &ape dell st=c *sf thr dctrrrki 4 r ~ m r r ~ r t ,frr\\ *,-, t w r t t t i f tgttte 1 ,' 4 ' i\ ti.-trnrrrittrf tr\ li it iattth I

r ~ t i a g r r n €Itc ,-,t<rttt ,sf tttr- k \ i f t t t\ r f i t i - ~ t t t t t ~ i r t P\ tltz .-\\at\ r l ~ \ € ~ t \ r i 131 ~Ps*ttt cttt; trr. h t v f s c c r ~ ik. kal? s a t r rttprfi* ,tltfcttttf\ aittl titr* ~ c f l t * ~ f t t ~ g M wit ah1 thc itwflitrrt ir t a\\;it~l~trttg t l r r

*sir! ttr the h'ri-err jht ~ ~ ~ . t t t t \ l \ rr l thc 1v.ttit tt- fltz kft*,+tt I\ ittigt*tt.itrt trut l t tz r-g*itlbrtt r*r\ It*$#

t r l sit* tt a i r \s'\ctz'f\ ttttt:t<~f if\ ittdklitg i f h - \ ! t l \ . tr l di'ctt't d i d 1I1\cftri\g i t tttltr ir*l\!\ irt I~Is* \\ tr'<t\ d

~ X t t t Z . fa\$. &t+j t\t*ll\Ytttr dl d\\iit!blt r al l ti 'rlttl Hfllh. -if\%* pt\r\ trtillg t l t ~ f\\'.iftl H 1tt $ti.ttr.t \ f f~ ' t lgt f t

t't*~.dtf%* % k t 111%. gfr'df21 ctr-l*tfl I fls ' H h i t t\ tflr' \tlt..t,f t\ l.Stgt't\ * ~ ~ f ~ l l l t t t t i s ~ b\ Itl i ' pt l \ % ..sf \I:'- s* l

the , \* t i - ~\u- t r tb \ \ ,itrJ t t t i w\ftirtt.tt\rsttl fr*t tqvtdittri: ftr,. kitti. +\wttttrlr l i t \rr:ttr j.r-i.-ttti.ii t i l i t \ * \ .-st

t l t*tt l gft*\tltrl f f t i tht. kt.1 ftt%. a\h'tlti*i\ ftt; ttltrtt. ~ t f l IV Ihr' H l i lt# ft\l\l.tlt\ s' ill< tttt\ &$t i \ \ * I f l i t<

tllr'tl\~*%*I t\ i t l i c f i ~&*i t \ f . t i l t I t t l ~ ~ i ~ l l r ~ i l l i f \ r8i'f8tf\ t i * jVrY t r f ~ 11 \\ ti!t flt$lI Ir*t\li*ltlif f<'\i\f.iflr C / f f!tra

4ttd bs*?f**ttl tttt-t::!kr*8% '91 Ill*. \btr .t!,& sit:~t,' lht i l . 1!1\'\ '.ti¶ bs3 gi\tStl l~ ' \ t \ t . f th <. t q * b i i k h!&ft~* tt i*d~'t

** &*\\ t*\ ~t~iI l l t11$ I.I~,*~.I~ g l \ k t \ i \ $81 ttl<. $ll.tt*-.l-ti

Page 113: SYSTEM DEFINITION STUDY PART IN

Figure 1.2.4-7. Brupl~d deign of the slrirM for the foreplane assmMy. Ib ign cvnsistr of t h m pi~ts C. parts rw contiauc~usdy men1bM to each ather by mUiq ovez &qes Cft on fop a d d e gkccs. alter the parts flaw a w n d and e n c k the a m nf the fomplmc.

Page 114: SYSTEM DEFINITION STUDY PART IN

1.2.4.3 ?arm fitr =tmm m t e ~ e p t ~ the WF radiatm nt' f k BSS atkd r t~mvert~ this RF p w t r te wful ut ibt~ p-vf k t f ~ t M k ' w ~ r t i t t s f r ~ censurnptten. wilt%> or far fmnr t h ~ wtenm stwtuw. rtlc sac a d

cmfyufiltiun of t k wtenm IS dc t cminz j try the BSS mdtated katn wbch is drtrnntnd rtukl)

frtwt tk snount e t r d u t i r t mswer, the zafe r;tdittten ifewtrcs ten earth and rn t k tmttwherz) a t d Ik K1%nunly el' power iwllwtrutt {a\ deti.rti~tttrd lnvn tk kt <r . l l< i t t~*~~ r\itiiteih'\. the \ ' o t t%e~

swn ztTwtetx~ oi Kt' rnJ tk in2sall~ttt*~ i"xpensci's\ It appears df this ttn~e that the twt~titial \UZ 111

ti) k n ~ tor the ~ e ~ t e t i e d f d u t t c .~.$ttt 1% tk rnmt Seaubte dtstrt.n\tett for ct~llectttg 5 t;W '*I ~ ~ H C I

31 2.45 <;HE. Silc'h a ~x\nr"yumtwn i t ~ l i l l i e w !th the pre4rotd5 ieenttatnd c.t*ttstratnt\ dt tt:s\~ *

titun1 jetlug\ of 23 mw ~111- 3rd utth t~tlttttttitl ~rtttr*,sphenc d t t ~ n ~ a t m t l etfwts. ~q~igdt ) ;it

rtktrrate uea :kr canititk\n.a wtth scsahbna! i s m , at the tterthrm lvi-t 131 thr yhrk-

l3s use at' 5.S <;Hz is ;rtf ractr\i f r i ~ i i thz \ KW p i n t cf ~t t~a t lc r alzc ier the rtt'terntu \tfuitttte I'ht\

a&itntwtt ht~uetcr , IS ' t i k t P) the t ~ 3 C I y st\-tt4J itk.redsc in the ~tt=a\ts KF ilrlrt drttut). #tn:r.

dqrddtieti tgt the t'nrl-~thf i 'ifiite~ti\, w ~ t \ e ~ hat higher mtn dttettttafit\n I e \ ~ l \ . tttit irx\ tofat

msnuc . I'his a.adtyat\, a\ welt a\ the attliktapheni ttkt tt%ar13phenc rffi.rf.r o r n tk rtdtarrt\rt t ~ a t t t are e1ahzrrtai rttn the Ph.w 111 3lY1 S di~ttenztrt

Iniiudr*d ~ ~ t h t t t the r=:tzt\tta \trUititgc 1\ t!;; yr\ '~tt\ i qgt~~it t f ~ t t thi* it"~x\lit~' ; t t \r~ j*ha\i' ,trttirtrf

lrr\L, V, hrch itl<li\d~s wpar-iti' Wf. ;? tit* t t* i t t \ e gtr-tlitit \tattt~tl\ \\ 51. k ate ,i.-\. r i k d t f r rtt.t\,. ; \ t t t t t t*t

qittirtl t*i the tetssit'tt,,eif d\*.ttttr,-ttt

1.2.4.3.1 La~wt uC KWtenrtir h ~ w h fer WF i'rrlktiun

fhr re'ertlny; re~tt'tttti ~ t c i ~ t z t ~ t \ t c ~ d i \ .+b\irrb Rt ia~tt.~tt\b~l t\t t f n i . ~ ~ \ I \ \ ~ I A ~ Z T I U I ~ ari'.~ ~ t t t i

iielaer tta crwt\zrtrd (H' \c~\:tlti to 'hc Ic~. t1 ir t t t t IY bur\ h t s It\ th\\ P A ? ttir acir~nr\tlatcti IN'

pi>\rzr u w l d be tttr!r'pil\ie~tt ,\i the Itx.tt ph.r\r trtwt \*t this K t r ~ i ~ t \ i . J p1#rks t*t t t ~ I H , J ~ \ tttil.\f

Rt' elt*ttni*tlta 1 hz \ t ~ r ' ol the p.+tlt!\ ~ h 1 2 h carry the Kt' t~Iet~t~*ilt\ 1\ det~1ttttt1~11 b\ I ~ T \h.tdt*~tttg

, I ~ i t i ~ ~ f ~ ~ ~ ~ t eSfc*<.tx \\ htb-h i\\t*d~t'\ the Hi- fic-!t\ Itb\ '*I\ **:. ..!: ;;: s t 1 1 tttt. <,*!l\.~..~t~t\ < i*at~il\

1 h I I I t I * t r I h t i I 1 I I 4 Q . \I hish l.ttrt~t.tz\, i t :\ .tfw .i\ \

\ t n ~ z t u r ~ t t \ ,le\ir~bli. 11% tt.t\r I.rrg~. \.ditc* ttv t i . wtlt,-h tran\l.rri\ ti* 1drf.c t .lfiit-\ f t l t h Oii (!I.- , x t i ~ . ~ i

h.ii~d. (he &It! f t.ic tt<+tt k t t ~ \ t t . t t t < \ t \ \ Si*\ i t \<l th\* \,lItith\ t p t . ~ t l t I i~\.iLt'\ I t ,I\.\II~II'IL' ha\<* lI,\t ! :\'t\'iI?!wi

\itltitttTrw\ H hl\+?l I\ eJ\ll\ .t\'tlt"\ slb!is .it it.\\ \.illl\tk!t' !r\t'.tll%*tl\ t t l k ' 1,'. \ [ ~ t l l t . l 11\1\ kt\\\ll\. f \ \ \ \ \ i \ i i .

:ttc H trlfh t l i , -<~l l r .~~t t tk~ p.t:\..t\ .tl h r ~ h a Iattttkir t,a..rttrritt\

Page 115: SYSTEM DEFINITION STUDY PART IN

SPS

ELZIATION BEAX ASCLE

DIRECnOS OF DIRECTION OF PR0PAGAT:OX PROPAGAnON

LOCAL VERTICAL

UNLEVELED RECTENNA LEVELEDRECTENXA

2 2 H < K N A A = WAVE LESGTii

SHADOiiIXG FACTOR W = N A (SMALL FR4CTIOh')

Fire 1.2.49. Layout of Aect- Rneb

ORIGINAL PAGE IS OF POOR Q U W

Page 116: SYSTEM DEFINITION STUDY PART IN

1.2.4.3.2 R r r W Cuwedoa 'Ihe RFiB conversion oceurs W t behind the radiating elements using simple detection SchottLy

banier dioder, These are back biased, by the bass bai generated DC udtage. which allows eonduc- tiom of RF elarghg cwrent pulses only in small p n i o n s oP the RF =&tion cycler h d o m i z a - tion of RF phase at each RF rdiatinp element uauld ra.?domize the charging pulses and avoid acem~ulation of RF ripptes which can be *%st& by radiation on the DC buss ban (which reduces

the RFfDC detection eff~iency). Fortunately this is the situation of t i e rectenna phase front

after passing through the ionmpheric and atmsspheric layem whi4-it is atso sequcntidl) phased hy

the need :or using a flat recttnna w h m thc radiating elements .&re arrayed in a phne tilted from

the plane of the unperturbed phase front.

The optimum effikney of the =tifying etcments is attainat-!: at sWtic RF density levcls and at

specifs DC load Iwels. 'The matching DC load increases for low RF density levels. which makes it

needful t o use different elements s t different locations of the rtitenna. Higher impedance elements

are needed 3t the lrctenna edge locations which is conwmttant with the n d to array more panllcl

elements to reach specific power levek. fhe receiving apsnutz ~ r ~ t i o n area of such an element

is approxin~atelg 50 cmz. Tho converdan efiicirnq of the element is 3~erag.d to Ix 8Q%. with SW; ctlicirtncy at the preiphery of the rectcnna at power levels of appresimately 1 ms'sm2. and 94';

at the center of the rectcnna at power levels of 2 I rnu:crn-f.

The RF'DC converters are ar~ayrtd in units of 1 MVI' at a DC voltsgi' of 2 2 kV. Ttresc again arr

amygd to Torn1 2s2O MW priman units at the sanie DC voltage. Thc IK efficiency of arraying to

the level of 40 MW units at t 2 kV is evaluated to be 97';. which I e d s to total RF UC efficiency of

approtzirnately 827.

All the primary units of 10 MU' along a radial line of the rectenna are locally convert~d to utility

power levels and the power flow is directed radially to or out of the center of the wctenna.

1 2.4.4 Local Busing The collection of the outputs from the I MW primary units is done into biwks of 10 MW. This is

shown in l'ipi~re 1.2.4-8. Two 20 MW power blocks each with 22 kV is connected in parallel to one

convmer station. The Be cahtes will start closest to the periphery and run radially to the 20th

primary unit In each block and then to the converter station Iwatt'd 1t the midpoint closest t o thz center of the rectcnna for each 40 hlW power blcwk.

The 2 kV DC cables will ht. run in conduits and t.tpert.d to allow for the ~nc'r~.;lsinp ck~rrent Ie\t'ls

approaching the convt'rtcr station.

Page 117: SYSTEM DEFINITION STUDY PART IN

1.1.4.5 835bibrlW Cmvcrsiun to A e b ttctrftwrd in s total of 1 If 40 MW can\zrtcr a;itisns. The cunertcr statiom

a &own m the d i a m in F i y e 1.2.48. T k tractem d t m are szi:irmhmg reactcws for tk pllrprar of reducing ngpk c u n m t s

The vrllt;rlpsumnt sbiacteristl of the mtcnna , over the rang t o k c r w d e d . can be described IK a tsunstsnt power rectangular hyperMr. At h& vidtsps: anJ low cunmt . an autotnatk short

ckui t ing deter clr "cruwhr" %-ill trc pmtded as an integral part s f the wtenns . L i t c w k at the

h w w h y . h;pk zumnt end. the charzxtciistii-s will k terminated by a short c~n-uit. '1P.e only

usahk yurt~im of thi- c u n e is the itntndiatr vicinity of t h t n t r j voltage point as shown in Figwe I 2.3-10.

intcrtcr in the converter ststiim tz m skc'trotik device og\;thk ui kgt.ml I I I ~ ~ CIS ccmtn~l.

Flse l i t~irnrinutr ter l inverter is clt-n for the SBS system a d the inverter will ~p r 'mte in a emsfant t o l tdp n ~ t d e . It IS not ptrrizihlr' fer the inverter t o aifezt p w e r thnmpfttut . It is

thetefi*w the @ml e f t h e cuntnrl system md n~cdt- of crpnt;,ln to pnn.de rriiahk operation i t as

opttmunr i [x~wer fxtr)r as p w i h k .

In sctditlon to thz constant ueitdge portion of the <ott\ertcr chsmct~ns t~c , 9 constant r'\tlnc'tton

ttitP/e I 3 ) cttnc wt1I PI' pnr\rdr.rf .IS .I bazh-ti;? t l t ~ n n ~ cttntlngcitcth of Iou A(' 111ie \ e I i ~ g c

t;qttrc i t 4- t 1 i C t i n e r i t r I I . The "riyulstor" 15 weti fi.*.dlnp .I

t r i t t d i ~ ~ ~ . r 1 \tIit<li ionrerfs 9 \ttltdpr into an iirs!i* tor tltlrtng) for the tiring pulses to thc

th) r t \ t c tB ra t fhi. it>tt\c=rtCr bffdpr' <lr~XJ11.

I W ' \irltagc :i.i*ttst~r i*nnlcir\ .I o r ~ ~ a w n . ot ttrz .tcturl ~ r ~ l t s g c ~ l r t i t i . *he11 ionlp~red with thc

\t~It.~gc I t.r,l\. pro\ldcs thi. crntr \tgttal for tltc rcpttl~tirr. rlita Jl4ti~lll.ttli \t~lt.tge i~crntr~d

loop ts tile pnriitr\ <r~tttrt>l o i tl,e it1titcrtt.r.

A<' lint. t.trrri-tit and -I(' Ittir. \t?lt.~,ei. t t z tnrrs~lwd [ i s s h o ~ t t ) ~ n d 9 rrlati\c tttti~ri!: slpnal IS

Jcvcltrjwtt ~ l t l c l t ri.\rtlt\ t t r i~ic.~\itn'~tii~tit tt1'r\tttit.tttrn .ttlglz 1 Ttas clu.lnttt) IS t-otiryarcd to tlrr

~ . \ t t l i ~ t l t r t i .tnpIc rcti.retictq .iti~l tllt* ri-siiltinp crrccr S I ~ I J I l~asws to the regtlldtar and ItoWs the

c"tn>t.liit t i tnc \\Ii~.n i~~raittttrti\ ~1.i' \ttcti t l r ~ t ~.on\tanl \t*lt.rgc i&ntlctt bt* !::id

Page 118: SYSTEM DEFINITION STUDY PART IN

- *

w

REOUCEO - POWER

* ~ I ~ l l l I l ! i l l

lQPoo AMPERES

RECTENNA AC BUS ARRAY

VOLTAGE SENSOR I

I

I

I;istrr 1.2.4-1 1 Comctttr Control Block D@mn

Page 119: SYSTEM DEFINITION STUDY PART IN

8.24.6 Grid IabrCwv RQv%jons

The converter thyristor kridp cmnit feeds sltentating c u ~ n t to the cimvc&er tnansftmttr which steps the voltage up t o o'.) kV t o 60 Ht.

Fiten connected t o the AC bus a b r b current ham~cqkx p w m t d in the ~xxtvcncr. 'I he AC' wave Q s p is thereby kept wtthin acceptafrk hamtonic c a t t t t t limits :or the utitit) $13 and

m i 3 t i . d plant ryuipnrent.

f he conbcrter ststic~n output. 11 00 kV and a msxint\lnr c u m t of 400 antpews k tr.tt~s;tttrttcd hy

undcwwnd cable to the trsnsfonncr stattrw as &own rrt 13gu-e 1.2.4- 1 2.

Tlrc converter station. once c'on&lr,lSSio~)ed. OPM~CS ~utentaticalty, AU s~ i t c l~ rng , startup YIIJ d\utdr?wrr an. directed sttit tnonitowtl By r small iotttj*utcr systertt in r.l~rti~rtrztton with other

zontrrtrr and stat rntr ztbttt~nl c;juij?tnent.

Srncr tllc rcctrnttrs arv ztbtntant ~ I W C ~ Jevtces and the UC,'AI' crtlvrrter cart t n ttit UI) ait'i*cl

p o w r ffaw, tlre contn~t of power can be appltcd on the iJ<: sde. lhrs riteat\\ that rrtttcr thc 121-

1r.tzl t11t1.t be czontn?llctl .tt ~ t t \o~rr 'e or the nurtrhc-r of mztcntta?; cottnectrd in prralli.l ntil?it be t a r

kd. ('rwuit breaken prcwtdcd tilt reztenna pmtectri>n can slar kc trahd t o adii \lr wtitc~\c trttits in

unirr to iq,ittiX~l power. Pttt not or\ .I cc~ntrnlrou~ basis.

The zdlui.t~r~ti tr.~lxtc~nnrr ststttin gatiten titc powcr outp8t of 5 zm\~*rtt-r stst~trtrs, cc?t~itzcts

thew crr~xtttr tnto .I rrlrdblc wttshtng .trr.~nprt\rnt, and trattshrnrs the A<' p r w r fnlrn nJ hV rip to

2-30 hl* 1 ill\ 1s iit)tlc* 1 9 ~ ~ l \ ~ s t ~ ~ ~ I l > artti ~ l~ i t~ t c ' 31 l ) arranptrg 111d sclnrti.ittn$ srdnddnt rh/r'zttt~dl

ccltrrjrrlt~~tlt t t t t r l tlw cIc-.trctI ittnligttr.tt\c?~\ fftt* clec ' f r t~~l ccttttigi~ratic~~t lrrt%iJcs h'l~ahtltty h! u

"bt.i.dcr arid d Ii.tII-' ~~.t\c*tnr 6') h \ sbitCh!ant :I srnplr. r'ontinp'rtc\ oitldgx cart hz I I \ ~ J I I \ L * ~ ~ 118

the (4 i t \ H . I I C ~ I ~ .tnt H ttltc~tt I c ~ w . of j\owcr rltttjpi~t i.tj>.thtttt>. PO i~nt\trle i - o t t t j r r . t t ~ ~ t t t ~ ~ r for tlrr

i t~hrwnt I,Igetrrp ponrr f.ttqtcw ~ l ~ i ~ . t i t i . n \ f ~ i s (11' the iottverter V~IYC and tntrtsfctrttti.r rtliitj*ritrirl olrc

1 (MI MV 4K \> ~ ~ ~ l r r ~ t ~ t ~ ~ i r s ~.tlrrrierrx+r is t*o~li~Citt*d to ttte o ~ ) hL\' bits. I't~r s) t t~~i t r t~ i to t t~ L.ortcic.tru*r

ratlnp 1s ilrmwi\ to allti\t s! rtr~ttrc~noir\ ccrtldrnsi'r tn.ritttenat\zc on . t d ~ a c ~ t ~ t cc~lli.it~t\tt Irittsforti~cr

st;it~t?ns urrtl~orit t-irrt;rtltt\$ pc)wet c~t~tpitt .

Page 120: SYSTEM DEFINITION STUDY PART IN

M\c step-up switching station wtvtvcs tlte i~utpttt Smni five coHectian transSontier ststions st

230 hV and tranafontts the toitage to SEW hV. I'ltt "brraAer and r half' sheme etnployd can sustain an! dnplc zi~ntit~sncy 220 hV switchlrtni fstitt without duzttc~n in station trutptlt. Ttte

wsi.twtron of the voltage b e 1 for the trltlntate bill& power tran~ttiimen tnter l i i~ witti ftle utility grid 3s WCII as tnr' rr?mbLtt? 3f tntcn.c\nn&ttn$ two or nlr*w r-f the :I)CXl MW swttctttng stattotah toptltzr

should 5e opt~mired t3ogd or1 detarld tnfr-rrttatim abititt the conneiting utrtity s>str.tn. I'tte

solutm sttown tn YI~IIY I .:.&I 2 ts ottc of seremi pc~srblz.

Page 121: SYSTEM DEFINITION STUDY PART IN

PRECEDING PAGE BLANK NOT FlUlZI# DlW24071-I

WBS 1.3.0 SPS SPACE CONSTRUCTION AND MAINTENANCE

WBS Dictionary-This element includes all space facilities. constructiofi and maintenance equ ip

ment. crew habitats. and the in-space crews.

Integrated Space Operatiors and Mai~tenance Concept 3escsiption

The integrated construction. maintenani~ and tras-portation operational concept for Low Earth

Orbit (LEO) construction of the CR=I photovoltaic satellite is shown in Figure 1.3.0-!. Space

opcrarions :rews and d l hardware and consumables required in space are delivered t o LEO by

launch vehicles. The crew laurich vehicle was assumed t o be an improved space shuttle with the

solid rocket boosters replaced by a reusable liquid propellant booster. The cargo vchicie is a two-

stage winpwing kehicle capable of delivering approximately 400000 Kg of payload per flight. Crew

flights occur every two weeks while three cargo vehicle flights are required every two days to each

constructiorl facility for the case of constructing one 10 GWe satellite per year.

The LEO constniction basc is nominally located in a 478 Km circular orbit at 3 10 inclination. This

base houses a crew of 480 with overtlow quarters for transients. e.g.. those crew members awaiting

transportstion to some other location. The primary purpose of the LEO basc is 8-onstruction of

eight SPS power generation modules and two antennas. The satellike construction timeline is shown

ir, Figure 1.2.0-2. The bast: also senes as a s tging depot for orbit transfer vehicles x e d to carry

constniction and maintenance crews. crew supplies and replacemcnt parts to tho GEO base. A con-

struction ire* OTV flight to the C;EO base normally occurs once every three ~ilonths. Maintenance

crew and replaccmztit components are also transferred to GEO eber). three months.

The satellite modules are equipped with clectric prupulsion systents and flight control systems for

the self-powcrcd trip t o CEO. Figure 1.2.0-3 shows a typical module arrangement as configured for

thc transfer. -l'llr~;stcr installation are loiatcd at thc modulc corners fcr maximum control author-

ity. Propellant tanks arc located 7t thc center of the module. Although the propulsion system is

pritnarily solar-electric. some chemical (LO2;'LH:) thrust ca~abil i ty is also provided so that control

authority can he maintained while flying through the Earth's shadow and during periods of h~gh

gravity gradient torque.

Thc GEO base isused for final assembly and maintenance operations. The final assembly operations

include module berthing, antenna placement, and deployment of solar array. The maintenance

operations include refurbishment of failed SPS hardware. Thc GEO base is also used as a staging

area for the satellite maintenance crews, mobile habitats,spare parts ( LRU's) and their orbit transfer

vchic1t.s. The GEO basc houses 60 final assembly crcw menibcrz and up t o 240 SPS maintenance

crcw members.

Page 122: SYSTEM DEFINITION STUDY PART IN

AND C6r#PONENls Cczm TO OTHER SFS'S

TO GEO W 6

SUPPORT AND

ARRAYS

BUlLO 8 ST% / ROTATE ANTENNAS I N m

L W L H O N ' S POSITION R E ~ ~ R S CREWS FINAL CHECKOUT a TO LEO COMMISSIONING

MAINTENANCc BASE li?UDULES FLY TO GEO Ut!DER OWN WWER. ¶M & t8 TRANSPORT ANTENNAS

CREWS Q BUILD 2 RETURN CREWS CARGWS TO ANTENNAS LEO

EARTH

ire IQI OAYS 361! 0 100 200 400 liOO 800 a I I I

1800 YST ANSFER

,wLE ,b --PQ-G&.--- MOD TO-MOD OOCKlNG AND SOLAR ARRAY

MOD 2 1 ------a DEPLOYMENT

nwojf YOKE lo

MOD 4 0 --.--- -----El ANT 1 I-i

Moo 6 1 ---- ----o ~ 0 0 6 ~ - --a

MOD 7 0 --.-a YOKE 2 [1

4ODAYLFOR MOD 8 MODULE CONST. 32 DAYS ASS'V ANT f I DAYS TEST G INAL 1' ;EQ

AND C/O AND CfO

n WO DAYS

Figure 1 ..\.a2 Btrt~turultak Stcllitc LEO Constnrrtiot~ Tinrcline

118 ORIGINAL PACE IS

Ok' r n R QUAI.rn

Page 123: SYSTEM DEFINITION STUDY PART IN

GENERAL CHARACT ERlSTlCS

6% OVERSIZING !R4DIATION) TRIP TIME * 180 MV$ IS?-?OOQSEC

MODltLE CHARACTERISTICS

NO. MODULES MOQULE MASS t t ( l f f ~ ~ ) m w e R REQD ~IOBKW) 4RRAY \ OTS DRY i l & K ~ ) ARGON i l J % l i ~ l LOZILH~ t i O & ~ ) CLEC THRUST (10%) CnEM THRUST 1 1 m

NO WITH ANTENNA ANTENNA

PANEL U P : 2CI- U h S l r n NO. THRUSTERS: 6439 1-

Figure 1.3.03 Self Ptbwrr Contigumtion Phibtuvtbltaic Satellite

NO ANTENNA

i 8.7 a3 IS 1.1 2.0 1 .o 4.6

12.0

WITH ANTENNA

2 23.7 a 8 1 36 2.9 66 2.8

122 so

Page 124: SYSTEM DEFINITION STUDY PART IN

The n l i l i ~ ~ t c ~ ~ d n ~ ~ t ~ crew: an' dt~prtctled iron1 the t;FO bast in rti C) fV-prcl~wllrd CRH 11itlCIu11' .i11111~

H tth 31% 0 r\'-prcyrc.lli.rl rrpl.tzi.tnent p.irl\ tltortulr. ilt.\t~nz~l f o r .III operat I ~ W J SI'S tI1.1t scl\cdkrlc\1

for regiilttr rtttlt~~tt.~r.ir~~r.. The ntalntetttrtict* CWH w111 v r ~ t i*a~.h SPS two ttnli'\ iwr \i'.tr and & 1 1 1

spend itrtrr d.15 \ wp1.1~11tg , irfzct~w ct)ntyortcnt\ twttrrc ri*tttn;ltip ti1 lhc 1; k 0 t\.ibc trr ; ~ I I W ~ * C ~ ~ I I I ~ tt j

t b - nz\t st's

WBS l ..i. 1 Low Earth Orhit Coimtnictian i)aw 3 i r j Opention

Page 125: SYSTEM DEFINITION STUDY PART IN

D t ~ t l d l l - l

~ l t E f P l l O O T H W WOUU ORlGIXAL PAGE lj

F ! ! 13.1-1 LU)- k b t a * * %&me

OF &klR QUr'JSrY

PART Ill MODULE FkCIUW

rzu.l O O L U A m A V urcvr DLeLOIllRR a*

,- 5,

PART Ill ANTENHA FACILITY F I U W T I m J n a N

M t * O I M V Y*

Figure 1.3.1-2 Construction Base h-uip ttent/Operrtions

121

Page 126: SYSTEM DEFINITION STUDY PART IN

Rwt 11, the sslrr amys were dapioyed from the "D" lewl of t k fdity. Cargo m m m c n t m- siderations led 10 retocating this operation to the "D" level). Tkc satellite mudule is supportEd ond i & x d by movaMe towers k t e d on the "D" h l of the facility.

The antenna facility b located wit11 respect to the module facdity in =h a way that the antenna is

amitruc-trd at r location where the completed antenna em he mated t o the yoke without any verti-

d movement. The antenna ~ o n s t ~ i k n facility (also shown in Figare 1.3.1-2) is rmafigured in an

qcrr-ended stnrcture that b f i e antenna bays wide which flows the antenna to hs cmslructed

wing both lateral and longitudinal indexing. The two c d bays arc. d to assemble t k piitnary

strusture and the inner bays are used t o deploy the scc.on&ry structure and subnays . ~ n d to

install the power distribution system and maintenance gantries Construction equipment op~ra t e s

fnxn b t h the "Bn and 'T" lawk of the antenna facility.

The antenna facility concept has been changed from that &own in Pan I I to refiect the "A" frame

(Vee Ridgy jc primary structure of the arttenna d~a-rikd in Section 1.1.1.1.1. 7his new antenna con-

figuration was chosen as a result of the maintenance analysis which sh~ws that this primary st=-

turr provides better a c y - for maintenance than other aitzmatirr struc'urss

Thz module constmcliotr scquence for the structure. solar a m y and power buses begins with build-

ing €he first end franxe of the structure. This coinpieted end frame is indexed forward one struc-

tufal bay ienpth. Machines can thcn fi>mi the rctnaincter of the structure in each of the hays.

Figures 1.3.2-3 mJ 4 show how the karns arc assrmbkd. The fist to* of fc1i.r Ba.<s is then

indeued fornard to 3l!ow sonstr.tctwn of the 5ezond row of stnir.tuml hays in p~ralle1 w ~ t h ~nstal-

lathn of S Q ! ~ ~ arrays in hay I thrciugh 4. Thts s, quznce i s shown in Figire 1 3.1-5 Solar am?: sn\ta!latron and 6-onstn~ction of 5tnicttii. w c u n ~~mcltdncoiisl? across the ~ 1 ~ 1 t h ~i the indule.

although neither operation depend\ on the other. At the completion of thc I b b ~ ) \ t four ri3us of

ba)s in It.n$thl. tile power hux\ drtd propcil.ir~t ranhs are installed. ~'onstruction of thc structure

and installat~on of wlar a m y s of the rz!stlining four bay lengths of the module dn. done tn a similar

manner to that prc\iously described. Thrusrer mdu les tbr the self-power system are attached to

each of the fnur comen OS the nlodule An dnne~litrg device gantry ir ~nsta l l~d on each nxodulc.

Ti= module constructton trmel~nc IS shctsn in Figtire 1.3. I+.

Coastniction of the antenna takes place in parallel with m d u l e constn~ction. The first antenna

is con~ltlztr*t durinp constniction of the fourth wtellitc nicxJule; the second antenna is cotnplcted

L ith the eighth rriotiule. The antcilna sonlrtrtiction sequence is shown in Figure 1.3.1-7. The

antrnt~;: is intitxed latt*rally through the f ~ c i l ~ t y one hay at a ttme. When a firil width of hays is

constructed the antenna is indexed lonpiti~tiinally out ot'tkz Siicility so that the ne\t sfrip of hays

can h\. aswnil3lc.d. Whcn thc antenna i3 con~pletzcl. i t wtll be located at the p m p r pcnition so that

it can hc 1natr.J to tlic yctkr. (see Figt~re 1.2. I-') in Sc'ction WBS 1.3.1 .I )

Page 127: SYSTEM DEFINITION STUDY PART IN

OIWNU: 8-1 e N A l a PAGE OP pX * ' ctrrAt,rrY

Page 128: SYSTEM DEFINITION STUDY PART IN

6EAM Ulf\CHINE RELOCATES, ROTA T L S 9@, AND INITIATE FABRICATION OF LATERAL BEAM UINIPULITO-@~W( LONG~TUD~WL BEAM AT EACH EM0

Page 129: SYSTEM DEFINITION STUDY PART IN

* Cae'1 €?&a FIUYa r COWST tMY 1 - I SfftUCTWLE a WPLUY =AR ARRAY AIliO CONST r YllOLIIlmAVlElWtn t W O t M L ~ R mExT 'f OF SntUCfUIIE

YOWJLa 8 tlvfTALlBLISfSATEWDOFId,lWYI a I#WtSLAtlLWSfN MID FRO,. TMWt

wen€% 1 M Y LElmTn ~ A l L ~ A R R * V C O I Y 1 U l l f m f M s n u a

MSEmc niRuma SUrCOC1T~ s-tUR-TAIL wR-wm -YSLI: EN0 F A M E ~ A S J V & t U O I F O F FncRlW .?EL€ F R W E S RIIYS 13

QCFLQY Set AR %BT.i\V IZAYS 1 4

ATTM;)rmRUfftn % ~f\rta)t8 S A Y S S ~ AbmmlUvd \Arm4 a llSgElYISLE f R a f S BaVSO 12

tNSTALL SOLAR ARRAY mkES BAYS S I

~ A ! S E M R L & f4AMESSAVO lS16 m W S T l \ l . t SC)LAR ARRAV W X t S tWYS912

f-i $%Sf ALL POYlrER W S SVSTLU ~=)~uWALL &LAR ARRAY BOXES 8 A V I 1318

OHUSTALL PROBELLANT TQNUS ; \ S P f M E F RrUtES RAYS 17-30

~ B S S E M I L E f RiWIES BAYS I 1 24 ~ I # S T A L L SOLAR ARRAY BOXES 8AYS 13-20

~ A S S E U B L E FRAMES BAYSM28 INSTALL 30LAR ARRAV BOX€ S BAYS 21-24

a irssfM€%€ FRAMES BAYS 29-32 M A L L m L A R & W A Y BOX€ b M Y S 2&28

OEPLOY SOLAR ARRAV BAYS 2 W 2

A S S U l L E TMRUSTER SUPPORT 0 ST U C N R E :INSTILL THRUStEHSl - 70 m y ~ a ~0 a TIME *WAILABLE TO

1-1 F WAl. UITEC&AT,TIw TEST.r;%HtC1ISUT

LAUNCH MOOULE To GEO

Fkum 1 ..I. i -6 Btduk Ct~nstructitm Timtlinr

Page 130: SYSTEM DEFINITION STUDY PART IN

F i r e 1.3.1-7 Antenna Assembly Sequence 126

ORIGINAL PAGE IS OF POOR QUALITY

Page 131: SYSTEM DEFINITION STUDY PART IN

As sttown in Figw 1.3.1-8 the yoke f a the antenna is ~-oratntcttJ in the madule rmstruction f=- itity becaw of its l a w dimensions. This requires the yoke to be made between the th~rd a d

fcnrrth m d u k a d &Ween ttae m n t k and eighth modules. Following yoke m s t r t ~ c t t m . ~t is

moved t o the side of the module iacility. At that time. either the fourth ur the e@tk module will

k cxmdnrr'td. During the mstruc-lion of these modules. the snteftna is ~mmfrtctsd so that it can

then b attached to the y&e. After fn-c bays of either the fourth or eighth module have k n com-

pleted, the iintznna:)&e combination can then ht attached to the module in 11s qu r t t t d Iixatron.

Ccntstmction of two mate row of bays pushes the antenna wtar te the facility w k r ~ it then can kr.

h l w d m r the n tdu le for its transfer t o GFO,

W a s Summary 'Ih9 mas of the LEO ~wnstruclirm base is suntii~sritrd in TaMe 1.3.1-1

Cost Suntmtry

The cast of the LEO construction base is summarized in Table 1.3.1-2.

C m Summary l?~e cfsw size t t the LF-U constniit!on base is sumriiantcd in Table 1.3.1-3, The iri.\s schedtrltnp

concerti that was used was as follows:

90 day staytime

6 drys on: I day off per wctk 10 h o ~ ~ work shift per day (5.1 5 - 1 3 work-rest cycle)

2 shifts per day ( 2 ctt.u.s) .'< operator pnductivit) fastor

WBS 1.3. I . 1 Facility

WBS Dictionary

Thrs eleniznt incliides thc LFC) base i~,-llltt inmework. crew n~rtcfttlt-s. ~ o r k ~tt~d*-lr 's . iaw<l hattci-

llnp d~stnhutlc>n system. and bas s~tP.;\ 'itr111

Eiemcnt Bicthrury

The general arr;lnpCtrtr*nt of the cot~stntcttc)ti PJX h.13 Pr'zn dcsinhcd 111 Secttoti 1.2.1. 111 surrtniaq.

thc base 1s d ~ v d c d into two mittor f;lalittcs wtth crrtc used t c ~ . .*nstnrct tltc uti.ll~tr .ttid tltr atltzr fn

ic?nstrti<t thc dntrnnds

Page 132: SYSTEM DEFINITION STUDY PART IN

- 1 *ASSE&?DtEVOKEL~ 0

ROTARY JOINT (BETWEEN W L E .COMPLETE M N N A 3 & 4 A M D t & W . ATTACH A N E W MOVE YOKE TO SO€ TOyoUE OF FAC1LFW

u ~ C O ~ ~ L L E T E I ROII. 4 CONIT fw 6 7 OF BAYS 9 ROTATE ANTENHA

OVER MOOULE ATTACH EYS TO UOOULE ANTENNA amSr 8

Figure 1.3.1-8 Antenna/Yoke[F4dule Assemvly Photovoltaic Satellite

ORIGWAL PAGE W. OF EQOI3 QUAUTy

Page 133: SYSTEM DEFINITION STUDY PART IN

FAc4LITV FRAMEWORK CREW MODULES CARGO HANDLING/DISfRIBUTION BASE SUBSYSTE~ MAINTENANCE PROVISIOMS

CONSTRUCTION AND SUPPORT EQUiWENT STRUCTURAL ASSEMBLY ENERGY C0LLECTION)OONVERSION INSTALL. POHfER DlSTRIBUTlON INSTALL. ANTENNA SUBARRAYMC. STRUCT INSTALL. C R A N E ~ I P U l A T O R S INDEXERS

DRY TOTAL

CONSUMAELES 190 DAYS)

TOTAL

INCLUDES 33% GROWTH ALLOWANCE. ' OTHER lTEWS 00 NOT INCL. GROWTH.

Page 134: SYSTEM DEFINITION STUDY PART IN

FACILITY FRAMEWORK CREW MODULES CARGO HAN0LING)DISTRIBUTiON BASE SUrnYSTEM M.4tNT ENANGE PROVISIONS

COFISTRUCTlON AAlD SUPPORT EOCftFMENT STRUCTURAL ASSEMBLY ENERGY COLLECTION CONVERSION INSTALL. POWER DISTRICGy)ON SUBARARY INS1 1L 4.

CRANESIMANIWLA? 3 R C lNDEXERS

SPARES115X) E> INSTALL, ASSY. h3 116%) SE 81 i (a1 PROJ MGT (2%) SYS TEST 13%) GSE i49b)

BASK HARDWARE

TOTAL X OF BASIC HARDWARE

Page 135: SYSTEM DEFINITION STUDY PART IN

TIbk t .3.t -3 LEO Coimuction Base ~Gew Size Estimra

QOAfiMRUCttQhf MOM1 WOOWE CONST ANTENNA C01118T SUBASSEMBLV MAltit L O G t S T ~ TESTWC

BASEoes MCEAT TRANSPORT A T K M COFAM DATA PROCESSW

BASE SUPPORT MGMT BASE UTlLtTlES HOTEL MEDICAL FLT CON1

ORIGWAL PAGE IS OF POOR QUALm

BASE TOTAL 478

NOTE: ALL DIMENSIONS IN METERS Figure 1.3.1-9 LEO Con,truction Base

Page 136: SYSTEM DEFINITION STUDY PART IN

The framework for both the ttitkiuk. and antenna fitc'rtities include upper and lower s u r f a c ~ s t o

which constrtrctiott equipntzrtt is rttached, the wtelltte I \ xuplttrrtrd and otl lrr base eclmr.nts are

attached. y

Ten prirna13 crew i~ t ldu les an' 1crc.atr.d ttt dn .ired wtteh' the greatest concentratton ot p rmr lnc l are tnvctl%eti wfttle pr r for~t i~t ip thztr i i ~ t l > Jutttk\ SIX trf t f t ~ . tttodules sene as crew quar t en sail four as

work c ~ t t t ~ r s . Other p ~ a ~ t r ~ t i ' d shirt alcrte work rnr~iitiles are also ptvsent hut *nr. only as sinall

work rludrtcb s i~nlr ' t l i l t~ '~ rrti'rn.J t o .is n'tilote work s td f t~ t t s o r cc~lltro; ..abs.

Dwhtnp pro\tslotrs for 411 trtitthportation \rhlcIcs arc locateit .rlotlg tllr h ~ c k edge of the ritotlitle

frtciltt) I'hr ~ t rh l t t r ~ m t k r \ ek l i l i oprr.ktlotlS center IS locdtetl dt the o p p ~ ~ s t l e Z I \ ~ of the haw t'rorn

the cre\t t11ixiitlt.s Jiri' t o tlti- rrqiiir,d prt\twclI.lnt tr.1tlstc.r opt.ratrorls.

Each of ttiz haw rlcritcrr~s 1s c1t.wr1tk.d 11% ~ d d ~ t ~ o t t a l detatl ln stihsrquettt paragraphs.

WBS 1.3.1.1.1 Framework

WBS Uictio~mr!

fhis e i ~ ~ t t i e ~ t t i~it-I~ttie\ .11: t ~ t tlte \trli,,tur~i clcttic'nts t l i ~ t it,ttil\r\\i' the t r - d n ~ ~ ~ i v k af the i FO base

Eiemgitt i)cwri;lt ion

i'ht. \ t rt8k.t ilt.11 tr.t:ilt '~t~rh t ~ t ' ttit' i t~ilrtrtiitlt*t\ 1 ~ 4 t i i ~ \ t p r t \ \ ~ d ~ 4 tlitriiltt~iig dtt,icltnirnt \urf,~cc for

all it>tl\trtl<tt~In cqiitytitr'tit .is t\~-ll .I\ ~ ~ ~ t \ i ~ n f t n p pro\tsicln for ilttter hasc ~*lr.rnr.nt\ s ic)\ .IS crew

t~ol iu lcs . i.ivc1 llattrfi~ttg .111tf tI~rtr,:\tlth~lt \! \tetii> .it~tl b.~\e stiI~s)sIc~it\

I I r i t t t i c I I I C ~ I I I t I OOtll trtl\\iS\ ttlr11;cti i i i thc \tt.tiw c r t .I "("' t h ~ t

J IC L t \ ~ i ~ ~ ~ ~ ~ t ~ - ~ l t<~g t s t t t~~ t ii 1111 t l l r~ .~ , ~00111 I , i t ~ ~ t . ~ l t I I ~ \ \ L % \ 111 l x > t l ~ t I l c t~ppct J I I L I I C ~ N cr ,111 t,icc\ (11 tlic

f.iill~t> .I\ \\.I\ \ / l k n 4 11 lvis\ 1t\11\1) 111 1 l$ilrc 1 .: 1 -') 1 . I C ~ tr\I\\ L * t r ~ l * ~ \ t \ t ~ l ' ftwr 15111 b C , ~ ~ t l \ r t ! t ~ t ~ ~ t ~ g

I I \ ctittrc icngt ti 1 tic I I I I \ \ . f l \ t b l t lL'~11ti~~~ ~ ~ ~ ~ 1 ~ ~ c t l ~ i 1 ~ ~ 1 ~ . l r . I I I L ~ C ! I . $ ~ ~ I I ~ , I ~ t ll~*t~ttwr\ \\ til~% .iw ,11\t> 15111

hednl\ itlc 15ti1 1 ~ . 1 1 t t \ dr: the \.ittttv t > 1 1 ~ .I\ tisCil 111 t f ~ c \ ~ t c l l ~ t i ' \ \ t f l i ,111 i~ttits~cfit.il \(nits h.t\inp

it \\,ill ~!II<.AIIc\\ ,I! 0 0 5 C ~ I I (tl 0 2 0 $11 1 i c ~ \ ~ ~ l t ~ t i g 111 *I 111.1\\ ot 5 Ag llcr t 1 1 ~ ~ t ~ r 1-111\ \i/tl7g .ityw,~h t o

be r t r I . I c~~~ i t ~ t ~ t i I I I I I C 1 . 1 . * 1 I I C t i i t~~iulc ~-olistrilct 1011

I.I.IIII> \\.I\ f o t ~ t i t i ii1 II.I\C ,~i*[\ t t \ \ i i l i .~l~~I> -!.:?()~M!III 01 15111 t1t.i111

Page 137: SYSTEM DEFINITION STUDY PART IN

WBS Dictionary This element includes the crew modules designated as crew living quarters. The crew module struc-

tun., electrical power. environmental control. life support, crew accommodations, and i n f o n n ~ t i o n

systems are described. Excluded fro111 this category of m o d d e s are tlle crew work modules. the

crew buses 11wd to t r a n ~ f c r persu~mcl ~ r r w n d tile hasc anti the s m ~ l l two-mat1 cotltrid CJ\>IIIS ltsed in

conjunction with the co t l s tn~c t io t~ equipne;*t and cargo hst~dling anti distribution ciliiipn~ertt.

Element Description 4 total of five primary crew modules have been incllided in the I FO cotlstn!ctiotl t~ssc . The n l t ~ ~ i -

ules Ilavt. ~ 1 1 Earth atniospllt*rt. en\.iron~nent ctnd h . 1 ~ bee11 sited t o ~cconi11ii1tiatt- crew hilts

between CO nd \MI. Accordingiy. the modules llave dimensions of I'm ctia1t1cti.r 311J 1111 t~ 2Znl

length.

A sun~n~clt-y listing of thest. n10Juies and their f i~nctions Itre presetlted in Table 1 .-;. i-l. .MI 111oJi;li.s

are self-stiificicnt in tenns o f environment;~l control yravioions anti t.iltcrgt,:li> puwtkr. Prim;~ry

po\vr'r is obtained throush a co111111~3t1 p twer sl+pply proviiicd try ttie betst*. t.'ive err'\\. qiiarter 111o~i-

t.ics have bc'c~t provi~ieri \\.it11 eacll s i ~ e r l for :I ire\\- 01 100. r l ~ e s e 1i10tIitlc's provide 311 of fl'e ~)t't-

\fork f u n c t i u ~ ~ s associated \\-ith living. t-11rthc.r inft>ml;ttion c n u c e r ~ ~ i t ~ g tlle sirins of t-;tctl 1l10tli11c is

prer;t.t~te~f in subsecluent p.trapaptls.

X s inriieated. a transient crew tji13rtet-s Ile~s t>t*t-11 yrrovitlcJ. Tl1c Ingi~. ~ssoci:~te;l \\iti1 tlli* trlt)iluli*

rciatcs t o ere\\. rotation pcria !z \~I tcrC tlltl ijvt*rl;~y-y-itig of tlle irLB\\.S cc~ttlti c*c.cur \vitItottt L~;~t t~i t lg

~nconventcnce in tcnns of qn:~rterinp cti.., . ~ t l ~ i .11s0 a l lo \v~ j i~ r ti111~. t o i l c ~ t l 111) the roollts o r I I I C P ~ L I ~ C S

ot' tile tlcpctrtin~: irtl\\. .-In ,tdtlitional fcatt~rc ()I' this ti\otik~lc coilir.rns it3clt' \vitlt .tri t.rtlcrptbtlc\ sitit-

ation H . ~ C ' T ~ one oi t11c pritn;ir\. <Ti'\\ q ~ ~ ; l r t ~ t - s II;IS ;I j.riltlrt. t ~ r irl rlic t-vent .I crew s ~ , l ~ ~ ~ t i ~ : I ~ ~ t l I,) ~ i i t l \ ~

fro111 tht, L.t:O b:tsrk ill) t o Cit.0 o r 11.~1, t o 1:.1rtlt . I ~ C i111.11~1e t i , tit1 (1.1 titli- to \\c';ttll~i.. v~lt icle trtjt~l~li*.

etc.

Flour arc;1 ret~i~ireti~:tlts asrioci.itt~d \\if11 .I 100 pcnoil t l l o~ t i t l~ .itrtl tllc ~ii\i.;inn ot' t'ituctious .Inlong

I l e k s i I 1 1 1 1 I I I ~ i r I . . I I . I'llc iikrlii,~tet1 .~rt-.I ;tlli~c;tttons .tri, I1.1si.tl 10 .I

I;trgc tityrec o n tlrc Ko~~h\vell Integral S~-;ICC St;ttit~tt Sttiti! (St\SQ-')')5.;\. I t sItoi11t1 ;tiso 1.c pc>itltt5t1

ou t t11;rt tllc ir~tIic:~te~i bre,is retlt-ct I I : I V I I I ~ c111 100 l ~ c t ~ p l c prcststlt \vIlicl~ is .I L.:I~C NIII'.I~ occitrs t\11c

(lay per \ \ . c c ~ *>..!it'tl f ~ r t i \ sliiits ;Ire t'l'-d~t!, .

:'lit sitc ot' 111' 1110~11111, to itj11t.iitl tllc rr'quirt.~! Ilcrar slxlcc is 1-111 in tli.~tllcfcr ;111t1 .tpl\t.t>\itll,ttcI!

20111 in Ict~!:th inc l i id i~~g the sl)lir.ric,~l 1.11'1 dt)11l~s. Tltc ntod11lc is tii\iJcJ ~ n t o TCVL-11 t i~*ihs \\it11 I I ~ C indiccitctl functions ilci hrnlcd 011 c ,~~. l l t1~t.k. C;cnt*r.~l .~rr.tngernt-t~t \\.itIl111 '3.1ih tlczk \\,I> nt.: per-

t'c~nnc'tl ;it tlris t i111c.

Page 138: SYSTEM DEFINITION STUDY PART IN

Tabk 1 -3.14 Construe tivn &se Crew Lloduks

CREW C1UAR1 t RS

f UNCl ION rF'flOVISI0NSI - - -

5 Pt RSON4L BUARTLRS HYGIENE

PHYSICAL F I TNf-SS R t CREATION

DINING

1 \tst 11 L1UHING C H t W Cic)TAIlON PL HlllnS

HOtlSk VIP'S

t V t t ic i t NCY 0114tiTt RS

?i;;S S-?9j?)

o AFfX BASE3 35 ENTIRE CPEU F E ! G ?RiSE!,:

o 7dSACLStAISLES -- 163 LlsL

TOTAL 1483 15533

Page 139: SYSTEM DEFINITION STUDY PART IN

Oca kdule Srbsysta Ckfiiiorr-Tho desigtl appr*xh used fsr each utbsystcnr was gwrslly the as & f d by R o c t w i l in their solar powreti tnregral Earth orbit space s ts t iw study

(KT4!S9-Q953) for JSC in 1970. A summary of these subsystt-ms is pmidej in TaMs 1.2.1-5 and

chcrigcJ bh.

StftcBtrr-Cw moduk ctm-ture primarily consists of aluminum slfoy. The gtessure compartment

is jtyieftsj for ;in operating p m r e 101OOnlmZ ( 14.7 psiaf. The outer &ell of each moduk con-

s ip6 of; d o ~ & bumper mkrsmctesroij protection *stern t h t was designed t o give a 6.9 pmba-

hitity of no pmetration in 10 years. Mso tncluded in the outer humpr system i\ the thermal rsjia-

tor for internal heat rejection. An aero*hermd &mud f ~ f the crew modules is net required since

they mill be launched within the payload s h d o f the bunch vehicle.

Eke- plower-The pr ime e k t r k s l powr sygtem is diswcd under the B;~x !kz%ystcm SCC-

tion 1.3.1 .I -5. h - h crew moduk hswwr'r incuVm?es an emergency power systrnt iunsisfinp

of fuel ce!b. Bistribtrtion, wiring and s~)rt i~al wwcr c'i#rjiticlnii~g tgyurpment IS si.3 tnddixl it: each

d u k .

En+irotlarmUt Control-MI ttlrtctulcs 'narc sn htepr;mir,t ECS. The systent proc~cic-s ssc Fartk

stmaphere cnvimnment. Oxygen rnaL-stip fbr leakage and u w is pm&?dcd ~itn-mgJ~ ekr'irni~ski o f 1

water which is &ta ind by rzdtit'tian o f €33- udng a Ssb3tit.r reactor ahi lc CO' i t 4 f is rcmcveti

Sit-n t o supply izridpe .inti ~pnrssurirat ic.n is stored as ;t c r y ~ ~ n r c . 0xygec.t for repri'ssirrizt-

l ion is stcrred as 3 zrycycniz -xhlle tltc t-ntcryenc'\ OX? grn 'i)\!zm wws h&\ pri.cst!re stori:. Ther-

~, ts I contm! of the rtroJuk\ I I IJL~S use o f mrtzr 3ntl fmon Icwps.

Lift Support-krth urine 2nd H.:\!I \ t ~ t e i are ~ ~ i ~ ~ t . ~ c f . The iirioz 1% ~ ~ . p r t w c ~ ~ ~ c l u..ing v;ip?r con)-

privslon whlie wash mater n.cu\rp rrtllt7e.; i ~ T i ' ~ ~MIOSIS. I)neQ dad ~~OZCII kh:d %.I\ ?tcztf -41~0

inzlirdeit under I ~ f e support arc thc wa4r 1n.111.1gcrttent dnd pcw~tra l h>sizne \>\tents.

CICIE. Acc~mmobtium-lnzlticizti unitrr ?hi\ <ttr.gr~r? Ar ts tht* per\c,n.al zquipmtnt. ftrrni\i~rnp\.

rccri.stion and ph~aical fitness eq,apn~ent. .Again thew systems an' Ic~z.itcd onl! 111 the crew

qitartefi.

Page 140: SYSTEM DEFINITION STUDY PART IN

e ELECTRICAL POWER

ENVtROMMENf AL CONTROL

0 CREW ACCC)IUMODATlQNS

INFORMAT ION SYSTEM

ALUMINUM ALLOY

LIETEORgiO PitOTEL'TION

P ( O ~ * O F O R ~ O Y R S .

a OOUBlEBUklPfR

PRESSURE CUMPARWENT

101~#t dm2 414.7 plirt

EMERGENCY - FUEL CELLS

EACH INMPENOENT

LEAKAGE

OXYGEN WATER EtECfROLYSiS

4 NITROGEN CRYOGENIC

RE PRESSUAtZATlON

OXYGEN HIGHPRESS

NtfRQGEN CRYUGENBC

WATER SABATIER REACTOR

CU2 REMOVAL MOLECULAR StEVES

THERMAL WATER AN0 FREON LOOPS

URINE AN0 WASH WATER REC3VERY

ORlf D AND f R02E N F@UO

W G T E MANAGEMENT

PERSOIYAC HYGlf NE

PERSONAL EQUIPMENT

FURNISHINGS

RECREATION

PHYSICAL FITMESS

COMMUNICATIONS S HANC

DATA PROCESSING

DISPLAYS AN3 CONTRQLS

Page 141: SYSTEM DEFINITION STUDY PART IN

lefemmtiog Sp&m-'ihe prinsipai systems included atre cu#nmunkatisns. data p=esing and d L plays and controls. meduk will have its awn internal cwmmunication system as well as con-

tact with the main csnrmunication center lor-ated in the operations module. The principal link

between the has and Earth or transportation vehicles is S-hand. Each mouuk has data prixessing

capability wi t rhk for its needs. However, again the principal data processing center is located in

the Opetations mod&, Each m d u k aka has the appropriate x t of displays and centrofs althr~1gi1

the Operations module contains ail displays and contrnis associated with overall haw operation.

G~SIIL? a d Control-Displays and controls for t h e e systems are located in the Opttntions mod- ule although the equipment itself is located thmughout the base and conseqwntiy are discussed under Base Sukyster~s .

R e e e f h Cotrbd-Again. this is 3 base level suhsystcnl and is discuscr.J under kc t ion 1.3.1.1.5.

Specid Eqripment-This is equipment that is peculiar to the maintenmze,'tzsticheckttut and train-

inafsirnul~iian modules.

Elementhats

The mass of the crew nidules are sumn13nsed in Table 1.3.1 .h.

WBS 1 -3.1 .1 -3 Work W u k s

WBS Dcfiition

l h i t element includes the crew modules used for operations. maintenance and training.

Ekmtnt Lkscription The work r?:duics have the same general caniig~r;rtic>n ard suhsystmls dcwrihd fdr the c r w

modules. A summary listing of the work mcduler is shown in Table 1.2.1-7.

The operations ntodulc wir'nts as the control r't 'nt~r for all haw operations sntt cons:ruction opra- tions. Typical base opzr~tlonlz to he zontrolled front this rnodirle incladc that a\stwi'jdti.d wtth the

priniary power sttpply and Right <ontrot systt*n, (attitude and station keeping). communication sys-

tem within the base as we11 as that with Earth, otlirr haws and transpi\rtatiati vchiclcs in trsnwt.

Overill clew scheduling and consu~nablzs management funstims are alse tncluded itrider base opera-

tions. Constructton operations cotltn~lled fro111 the tl~i*ditle include thaw filnitions 'jds.iatr'rf sith

~hrduli t ig. briefings. troublcd~wtin,e or identifying woriar,~u~idr, monitoring of t:tc astrlal con-

stntctinn operations being conducted and thc operations as?irx~at~11 H I I ~ I cargo hdndltiig atid dt.itn-

hittian. Another funct i~n provided by the opr'ratiot~r tndulc is that of hoi~stt~p tht* tcntral data

iilanapenirnt and prixt'stng center.

Page 142: SYSTEM DEFINITION STUDY PART IN

CREJ W A R T Efks

SYSTEM (€A) - ---=-

STRUCTURE

ELEC POWER

E#VIRON, CQ#f.f L1FE SUPPORT

CREW A C C W M O D A T I W

INFORUATIW

GUID & C W f

REACTION CONf

WEC1AL EQUtf'MEhiT

StiEtTOf AL

GROWTHI CONTINGENCY

TOTAL DRY

CtWSC1MARLES rw oaw)

OPERATIONS CENT € 8 1 r SASE Oi'LRATlOFIS

r CQNSI HUC t ION WE RATIONS

M4 IN T t NANCt , i t ST AND t CONST R\BCIION F QUI?M€NT

CtIt ChO;lT SATFLLt F E COMPONENTS

1 ?;AINING & StUlll 4ilC3N 1 Nt W Pt RSQtNFL

r NC VY CONS1 RtlCTtON OPERATIONS

tJNP1 f INEL1 1 CLINIC

Page 143: SYSTEM DEFINITION STUDY PART IN

An utty%xif~l tttcdttk has &'on etclu&J pnti~jini\ to ,*crvet the tnlutrre wqulrrtrttcnt% i \ t ttttr\'frtrrt\

mtt incJtrJrtt In r*?ket ntrrrtttks; at thr\ ttnt2, 1 \altrplz\ tr t \tiiR tl;ttctttrtr\ t t t i l t ~ l t ~ ,%Ittit< t\ pe i*rt*r

smns tn t m t s ot atedtzd, itentrl anti s ~ b P t ! pnrt.i\rc*:t\ an uzll r s t\$r tkc ri*tttp>rar\ it~tttdtittrt~ttt t%t

g ~ a b t t ~ l wht% ha\^ d ~ d whtli rrsl &it\. I\r*fattr*~t t*t the stihPd\ t r t * ~ ~ t t ~ t3thet PA& <I~*u t t i ~ a ~ t ~ e

a\rlf\s It\ be ~ ~ i t ~ i & l a c l ~ t ~ ~ t g * r ~ % ~ i t t ,lire 10 ~l'btk*eI\ \'t*~tlt~r'~l t\*lta~ff~ ihdt ~ t a t l ~ b k

Efnrral Mass tke tnam t l i the urwi tr\tsiuh.\ aw suttr#rtanifii tttt t~;tPl< 1.2.1 -ti

%W I & t i o m

llrrs c*bttlt . t \ t ta. tttd~k tlt -I' %!I.- t t t b bar\' It*clxtti\ I td iL \\ \tsattt. t t . t1 \ \p*i IZI \ i f~t \ Ir.\. aitri i .tip%%

hmltlttii; %-*iitit\trt*rtlzr\t

Page 144: SYSTEM DEFINITION STUDY PART IN

CREW QkI&RIERS OPLHATlr7MS MA3NTtNANCL 'IRAININC

S'tS?Ens -- iEAf C i N l t R t tS1 h C D B SIMUL MtSG - --

Sf R k S t t i R L

cc te nxvg~ ENVfHcW iONr '

h l k t St%Fi3i33F

c'ffEtO' ACir%?%!clPd 7 tONS

#Nit Cfi'i:Af ION

GUILl F' t=\X+! I

6 t A<-r l t l % t.%WT

3i'kCIA: P €?t!~i'X'k 341

i i . e I k t i 41

i;GQtt 1 H c.<%: I..$ kt-\

Z i l 3 *\I :?R\

t . ~ > \ > , '.. - i t i t t s $ X I t 1 i \ A b S t

Page 145: SYSTEM DEFINITION STUDY PART IN

F i 1 3 . 1 - 1 1 LtgklkNttrrorltttvdA LEO Consbuction Base

Page 146: SYSTEM DEFINITION STUDY PART IN

*

CWT(EBd

Sa 8 %fl

8

6 7 4

@.S7

d~

4

4

I2 6

QT

EOUIPUENT ITEM

MLLV CARGO m @ J G CORT HLLV CaRcrO EXTRACTWW SVS HLLV TAIJKER DOCKthDG PORT H U Y TANKER CAROO EXTRACTtON SYS O N TANKER OWKthlG -1 OTV TAMKER LO- SYS SHUTTLE DOCKBUG GROWTH SHUTTLE OOCKtNO K#n f+ERSWNEL TRAIliSFER AiRLOCW SYS GAMTRY C R H CARGO SORTING Lldlt)#U-u HYAIYCREWBUS W Y A l r l w B U L

-TUR!UTABLES CONTROL CABS FOR LOCiSTtCS EOI l fP

r HLLV CARGO HLLVfDN TAMKER ~UTTLEISHUT GRumM GAWT RY CRANES CARGO SORTER TRMISOlnErn

i

IYOREQD

4 4 3

3 2 2 3 2

8 Z

P 2 2

483

7 t 1 1 2 2

20

Page 147: SYSTEM DEFINITION STUDY PART IN

WBS Dictiomq This element incIud*:s the base clectriral power and flight -=ontml systems.

Element Dnrription As indicated ~reb30usly. several subsystems d o not d a t e specifically to anyone of the crew mad-

ules. but instead are a=iated with opr'ratinp the base as a total entity. Such subsystems includc

primar); power and flight co~rtroi.

Ektricrl Power-Bssic operating power requirements have heen grouped into the categories asso-

ciated with crew modules, construction equipment and external lighting as shown in Table 1.3.1-10.

rite average operating power level required is estimated at over 1600 KW. This load does nor

include recharging of the wcondary p w e r supply o r loses.

Under the category of crex module. considenble use was maJo of the estimates identified for a 12 man space station as defined by Rockwell. These estimates were then scaled up both t o account for the difference in crew size and the nuniher of m d u l s s involved.

Construction equipment pnwcr estimates were nlalte using both Bwing p t ~ e n t e d data and data

from recent space station studies Typical examples per machine includr the 15m beam nuchine at

5 KW. solar array deployer at 5 KW. crane/manipulator at 3 KW. All of these estimates include the

power f ~ r 3 two man control cahin.

Esterrial tighting cqtimate\ are Pdst'd (311 provktrng 2 l b lutncns:ni2 a i s~wcitied by WcDonnell nous-

ias irt tile Space Station S~s tc tns stildl tNXS9-149581. Typical constmction areas in this stud!

cowred 111: ant1 rcquircJ 10 I i W to provldc the sp i i t icd tllumin.ition. A total of 22 2rcd:, of

this size ti;r\e heen estimated for the SFS construction b a s .

T!ir total povcer requirertir't~t t i , br ttwd in si7ing the priniar) power supply IS 3725 KW as shown in

Table 1.3.1-1 I . The wcondary powe~ rechaqing toad ts for a nickel hydrogen system that produces

thc operating loads during 37'; of the orbit. T l ~ c allowanit for oversiring is that associated with

50 ~.rm cells and 75 prn cover slips. N o thermal annealing is assumed.

Thc primary powcr pcricration systrtn is solar arrays similar to those used in the satellite. with a

nickel hydrogen battery system used for rxcultation periods. An a m y voltage of 1500 volts has

been sc1cctt.d and sppcars t o k the highest practical when considering r'jstna I-s.

Page 148: SYSTEM DEFINITION STUDY PART IN

D18@24071-1

T.Mt 1.3.1-10 Bi& Operating Power Requinmcnts PhotovdClic SItdite

OPERATING POWER

CREW MODULES

ENVIRONMENT CONTlLIFE SUPPORT

INTERNAL LIGHTING

INFORMAT1ON SYSTEM

GUID. & CONT.

CaNSTRUCTION EQUIPMENT

SATELLITE EQUIPMENT

ANTENNA EQUIPUcNT

SUBASSEMBLY

EXTERNAL LIGHTING

SATE LLlTE CONST.

ANTENNA CONST.

SUBASSYNAREHOUSE

TOTAL

8 REOiJlREMENTS (KW)

OPERATING LOAD

SECONOAFYPOWER

SUPPLY RECHARG!NG

POWER CONDITIONING

POWER DISTRIBUTION

RADIATION DEGRADATION (5%)

SIZING

CONTINUOUSLY SUN ORIENTED ARRAY:

(SATELLITE TYPE CELLS. 140 w/rn2)

FIXED BODY MOUNTED ARRAY WITH

EARTH ORIENTED CONST. BASE

ARRAYS ON 3 SIDES OF EASE

MAX SUN INCIDENCE ANGLE OF 54.5 DEG

TOTAL ARRAY SIZE: W30000 m2 205m x 2 0 h FOR EACH OF (3) ARRAYS

Page 149: SYSTEM DEFINITION STUDY PART IN

Rtr sekcted tnstalldtt~\tt d[lpfi\$ik for the ;atfa\ ra ;t ti\eti bit! ttrr\\irtted ct\ttit'pt. ~ t t t t ~ t t att+

ltxrted on tkwc side\ ot' the ctu~strtictiotr base cto that tilt neccswv po\ir'r ;dt\ be get\t't.ttt',f t\\ 'in\

one arm! s rth the base .it s t r ) I~ws.%tton 1t1 i~ tb t t t'lgtw t .?. 1-1. d ~ t l u n pw\tt\tith, tlht\tratet tfic

Iwation c\t f \ r o <%f thehe aw~,)s kazh err%\ aiia has h e n \~:ed t t ~ ac,.o\tnt !or s,: ,ct~lt-t\cc s+:tsle p~.i l t tz> \* the ct\ml\urr'd t\et ttft'it t\ a t\ltrtl an+ t l ~ f I: a ~ ~ p r ~ ~ \ t t \ r a t t ' l ~ ft\r tltttes I S I,ayr' ,is an

am?. that I+ as a f ~ a\ z Pt'F H\ pait q1.1;~ \! stetrt \tttrttaltls, tRt\ C\;PW \\ \\\~l\t be ytolttt\ttt\ e lit\\\ - cwr, ia tltz eba ~\i iwurr satrllttz with lo\& tnaks dttii [<\st ci\\t ;ell\, the (w,\;ltt! I\ ~ i : : t i ~ \;rrall.

wht Cuntml-ittclirctc4 ut\rii.r the zategon of tli$kt z\%tttnd an. the ptirJatr,.r t t t \ tp,ttion t t t i t t t t i~

t?tw w t t ~ m such a\ IRt?. star t~ac&cn etlrt ho~tt+tt wr\tln 311d the ~\~y\tlf\t \ \ t \ \! \ t tw t ~ b pertonil

attrtudr and ~ r b t t nuit?tettrtr\Y ttratrcu\en.

.A he? t'dc'tt\t. ttt e \ tab l t~ t r r~ t~ tttz tlrglrt ,titrttr\tz \\,' thc I\.\sc attd tltc It~.itt~\t\ ,\1' .*tttttt,k ,\>t\tr,\\ .tnJ

\\tbtr &rtptna: tktttatrn is the c $. I\%attcbtt .it \.tnt\tr\ s t a y s t\t the c\\nit~-tt;t~at~ k1pir-c 1 3 . 1 - I 2 \hi\\\% t!?? < $ ioc\;at\ct\ tt\r -2ti'tdi kc\ pf\.t\<\ t!\i' \.\\tt\ftt:<t t r ~ t

HIS 1.2.1 . ( ' t t~~ ln t c t i d t~ f q ~ t i t r i ~ ~ i t t

Page 150: SYSTEM DEFINITION STUDY PART IN

Figure 1.3.1 - 1 2 Constmction Phase Configurations

ORIGINAL PAGE IS OF POOR QUUi"rY

Page 151: SYSTEM DEFINITION STUDY PART IN

NOTES:

LATERAL LOCATION OF F a F2 SELECTED TO MINIMIZE BASE STRUCTURAL DEFLECTIONS VERTICAL POSITION AND/OR

NVANTAGES OF SELECT E w S _ f G N

100% EFFICIENT '1V THaUSTlNG NO T HRUST GIhtBALlNG REOUIAEO GRAVITY - GRADIENT STABILlTY:

bNCONOITIOMALLY STABLE a 2/3 OF T*ME

a UNSTABLE EQUILIBRIUM - rn OF TII+lE

LOWEST DRAG FOR HEA\ Y CONFIGURATIONS POSSIBLE COMMON LOCATION FOR ATTITUDE CONTROL AND AV THRUSTEKS ATTITUDE CONTROL PROPELLANT C3NTRIBUtES TO POSITIVE AV ORBIT MECHANICS rORCES BETWE EN BOOIES MINLMIZEO Y E L c Z I W VECTOR" APPROACH CAN bE ME0 FOR DOCKING OF SUPPLY VSHICLES

THRUST MAGNITUOE BASE0 ON PREOICTEO CO LOCATIONS

Figure 1.3.1 - 13 Sekted Orbit-Ketping Control Concept -jK :<; 2 i . z { * > '

Qk' f ~ k i n ,;% ;'-;

CRITERIA

MINIMIZE IMPINGEMENT MINIMIZE STRUCTURAL p: : DEFLECTIONS ACCOMODAT E ALL C.Q LOCATIONS

- R _, -Y

*?

F i r e I .3.1-14 Typical Reaction Control Thruster Arrangement

Page 152: SYSTEM DEFINITION STUDY PART IN

Dl 84ktlOtt-1

-trkacriptierr fltg m3ljOr ~ n s W c f j B n equipment i tem a-&at& ~ 4 t h the ph~tovnttair satellite ate i\Iiatrated in

F i g u ~ f 3.1-t 5. ahmg with key cfta=te&fks such aa q u a t i t y , mass and ditnen~totts.

TAc hem mschine shewn is ~ u j n f y u ~ c l to allow t\ro bemi ntdcki~~zs to fanit all the tttdtn iri_~ditle

stfttctttre {ai'tttaf assembly machines within irantework not shrttut~l. Xcz~~rdingty it ttds hot11 fr;tn>-

fatisn mt ir~irtiansi npsirdity. The itimzngons and mass indicated art: for the 15111 s:g?tii'titi'd

bssnt a p p m ~ c h although machines fabricating tht.mtall) formed continiinus chord structure caulti

k attacked to tho m e frame and itsttd in s rimilsr mantier. Two t0nl twain niai.lii!i~s art. uscl! t o

hbririiti: the antenna priniar). structure. A two-man iot?troI cab IS dttackcrf to cdcit twant t t i~ i i t i t i~ .

Crmz'msnigtilator sbstcrns 3ix phmarily used t o iunrr the strticti~ral JOII I~S ot the satellite frdttic

tilthouplt rite sitc shr~wn is ntost cornnirtn. two 250 n1ett.r itnits ,IR -t.!so t~quln .3 t:i tile cotlstrtl;ttr)r\

of the anrcnna yoke as well as sr\-era1 20 tnrtrtr cranes. Two-rnan con:rrA iabitis with ttlatirptii ,tan

are Iwated ~t tilt. end o i rhe crane which is ttscli att.tilted to a tnot tng pl.ttftw~l

Fnur of tttr 3dar * m y tfrpftzytnznt n~acttines wiil be Icwdted on the "A" Ic\i\I o i i t l ~ IIIOJI~IC

cstistmctiozi facility. This ttldihine kill deploy the s01.w dwd? requireti fcr \~,ti-iwt~'~rcd tr.trt\it t t l

GEO. The nondepioyed array will be installed an tbc structriw it! tadidtton-yrt~tr'zt it c ivt l t .me3

b) this tti.tchtnt..

Power Pub deplo) ttli.tif tttdihiner ate itsCd to toll cut sttcet itiet.tl bits strips anJ ttci~i t1tc.c .;t r t p t t l

auppofitnp stnik.tttrcs Thtw riidctlini.~ .IW used en tilt. "A" lev *I of the tiloJu1e iaaltt! . t i~~ i nti ~ h c

--C" le\zl of the antrni1.i f;tctlttt, .

Page 153: SYSTEM DEFINITION STUDY PART IN

-- WAY MACHWE

[ I ~ 2 Q I - 1 0 O O O k # U)Sa-tSOO*.

caAM€lYIMIYUUTOII 8 UNITS tB000ks

##UI ARRAY DE?WYMENT '

rn 4UNITS r 120004~. ) L

,A*. I .

- & - - ' -'- - - I

F 3 I- 15 Major Construction Equipment Ph~tovoltaic Satellite

Page 154: SYSTEM DEFINITION STUDY PART IN

SUiLnRRAV

\ - 80M OEPLOYi-tENT PJWiRV

3-ECONPARV STRUCTURE rrSsEa;BLv

I GAMT RV

- WIRING INSTALLATION MANIPULATOR

SECOTJOARY ST RUCTllRE ASSE:.tBLY GANTRY

F i i re 1.3.1-16 Deployment Ptrtfornr

Page 155: SYSTEM DEFINITION STUDY PART IN
Page 156: SYSTEM DEFINITION STUDY PART IN

< M m E R R E Q P

Ei3JIPMEWT 1TEY ~ W T y a c ~ ECUJIWENT ITU1-E-T

115Y IKOEXINGSUPFURT MACH= 6 C 2 CARRIAGE 1 @%ASS laK K$ *BOOY 1 WJST S3-m)

WDEYlWGISUrPORT 2 CARRIAGE 1

(rsAss sK ~ l f *800# , 1 . (rn st0:31

r gUS DEPLOYMENT Y M m R E r wu~i3inl 5006BQOM 0 110M ARTICULATING

NOT REOP ffl YOKE ' AND ANTE- Y*O(St'&ES

I~#A!SU~ K& AVGFOR I (COST 225M) THE 3

1 1

SOLAR ARRAY DEPLOYMENT W I N E

(MASS 12'' w @xm@=j

----CARRIAGE,'CANTRYP BLANKET MAGAZIRE BLANKET FEED MECH BLANKET PACKAGE INST MACH BLMKET DEPLOYER

CARRIAGE BLANWET END HAIUOLER

MECH EDGE CLAMPER

CONTROL CAB (2 MAN)

4

1

1 1 1 1

1 3 1 1

CARRIAGE B O O Y

BUS DEPtOrYENT MAamEs ABUS BBUS CB1IS COLLECTOR BU5

CONTROL CAB U MAN)

b

1 1

1 1

& ?

Page 157: SYSTEM DEFINITION STUDY PART IN

aauRaav DET~-~K;.NT wm- * (;;Vl;TR\ %'aBRtZi;&

f LEVATrn

-- R ROO rrErYOER

-..---

Page 158: SYSTEM DEFINITION STUDY PART IN

WBS m w q This element includes all infomatinti systmis. structures, and machinery items dc\.*tzd to mainte-

nance of the L10 hast..

Ekrnent [kcription

No unique I r e mainter~nce prr~visions havt* b u n identified at this timr'. T'!c base logistics net

work and the available constniitron crane, nianipu:atctn appear to be suilicient to accomplish any

ne~%sar). haw maintenante tasks.

HigS 1 -3.2 Geos?;ncromus Earth Orbit Base and Operations

WBS Diitiomq

This e k n ~ c n t inclirdes tlic GEO-baed ois.rations. iazilily. construction equipnicnr. and tcaintenancr.

provi.;ions.

Sunimary Descriptnw

Tile CFC) !-a%= I\ A 2 t 3 b&?-~ t J r . pl.tlictnt\ tital t\ .ifl.iifrr'd t o .tnJ 111Jc\~d dircXC 111' wlar array

side of thz nt~*tt~lec. a\ *IIOH 11 !:I t-ipitre 1 . i . 2 - I . rhis piAti~w:i ha, fo11r wl3r am! deployment

madincr ti131 .arc ilwd to Jcpfo) thi' iin~icp:cr>cJ \c.c,Iar ~ r r d i s . Thcrc arc .ilw a aarrctk of ir;tlic

msnipulatc,r%. i c -gwt i i \ and SPS inaintct:.iil;c cqurprricnt ahurtf .

7he first opention to wtr'iirr %)nit' the ~ i ~ c ~ l i ~ I e \ ri'.ici\ GFO i\ that o i the krtfting (or dwkinpt 4 the

rntxfuleb. The moJi~l'\ arc ht.rt1ic.d rlc~ng a sincli. edge .is indicdted in F~gurc 1.3.2-2. The major

equipment 11-d to perhnn tlic'w bC:t!iirig tl(>zr.ition\ arc \I\o\\r\. Tlrc colt*-cpt cniploy \ tlic 11\c of

ictiir JcxL~ng >y \rcm- \\it!\ cazlt tri\ol\rnr .i ;r.tnr' arid tilrei. cot~tml i db l~s . Variation\ in the applied

:ension io th:. cabit\ .ill;~\-t\ tltc tnodulc\ I ~ L . ptrlli.\i ~ n . protlcic *tc>ppiilg control ancl prosidcs atti-

tude contrtri <y s t cn~ ~n\rd\irlp thni\tcn \rhiiii arc not \iii)\*il. TI114 herthing conccpt I \ dc\cribctf in

detail 111 VOI. L r>f !IIC l'.~rt ti f 111.11 Kcptlrt

During rtii- tr,in\~cr t'rorir €.I 0 to ( s t 0. tlic .inti.tin.i I \ .rtt.iclicJ bclcl\r the nirditlc utth a singlc

l i inp llni.. Once 4 11 0 I\ re.ti11t.J. t h ~ . .irltcnn.i I\ rc~t~t txi 11itt1 IW\I~IOII tc~llnvrcJ bk tllc tinal \truz-

tltrlf anti cfcctrtcdl cottncctton~. .I- i i~tiii . i t~J I>! t.rplir~. 1 .J.,'-.:.

Page 159: SYSTEM DEFINITION STUDY PART IN

NANCE SDRT lE

F C m 1.3.2 I CEO Find . ~ S W Y & ~ BmciOpcmtiacrs

Page 160: SYSTEM DEFINITION STUDY PART IN

Figure 1 3.2-2 CEO Berthing Concept Photovd taic Satellite

I - 2 7 m - 1

* *

@ ROTATE ANTENNA k 5;)) . SYSTEM INTO POSITfON I r'

MAKE S?.rdCT AND ELEC CONNECTIO&S

it/' a

,$,#*

/

/ I

' / I . c I

Figure 1.3.2-2 Antenna Final Installati~n Photovoltaic Satellite

ORIGINAL PAGE I8 OF' POOR QUALITY

Page 161: SYSTEM DEFINITION STUDY PART IN

Cod Summrvy Tltc cost US the GEO base is isin~marited in TaMe 1.3.2-2.

crew Summary The GEO b ~ x c'onstnrztion crew sire is stttntirarizcd in Table l.-?.2-3.

WBS 1.3.2.1 Facility

WBS Dictionary

%is element inciudcs the GPO base franlcwark. crew n1cdu1i.s. work nrcxiules. ~-3rgtr h~tldlltl$ di\-

tribution systems and base subsy~tettis.

Element Description

We o ten l l configurrrttc~n of the Gl-1) tindl ~ssetnbl? base 1s s l i o ~ t i In Ftgure 1 3..l--l. Tttr' I\dw has

over~II dlniensions of I JOOnl \ l h001li s I CX)III with t ~ c ) decks of opera:ion. Khe upper deck sup-

parts the c t e ~ and matntcn.~iisc txiotiulc.s .tnJ duching i ~ c t l t t ~ ~ s for tr.i~i~port&ticm \>\tc'tti\ .tiid PA!-

rods. The lower surfdce t ~ f thc faaltt? wppctrts the four solar an.+ deplo!, nicnt mrz11111c\ I ? t \ k . t -

tng crmcs uSd tn bertli~ng tlic moJulcs are J~SO dtt.~iflt't~ to the b,~?;r. ~ l t e t i not 111 tiw ~r ~I ie11 tile

GE'O base 1s tranficrrcd to atiotht-r longitud~ti~l Ii>cdttor?.

WBS 1.3.2.1 .1 Framework

WBS 1)ictionary

This clrnicnt mzlude?; all o f the stnic'turai elcnients that comprise the i r~mcwork of the GFO base.

Elemant Rescription

I'hc structurr' iraniework o f tlic baw ]lids bceti sited to priwitle a nat~tral l'rcyuetlc~- of zphr whicli

is greater than that of ;I singlc satcllitt. t i i ~ ~ d t ~ l ~ . flrc priat.try stri1cture ci>tisist.; nl' I C t i i 1~;11114 f'crnil- ing a grid pattern for both ttie upper t~nd lower siiriaccs of tlic b;tsc. h tot.11 t~ca~i i lengtli ot'

5 5 .tlOOtii iiits 17ct.n c s t i ~ i i . ~ t ~ ~ ~ i .

H'BS 1.3.2.1.2 Crew Moduigs

WBS Dictio~ury

riiis elcmr.:~t i~i~.ludes tlits i ~ l l ~ t r l t ~ t i c ~ f l crew ~ i i ~ d i l l ~ structure. t.lcctricnl power. e~l\ ' irc~nt~lcntd cot\-

trill. lifc sttitiwrt. crew t\;c~~ii~itotiat~i?~is. ;111ti itlit)niiatit~ti s!~stcttili. 1. \ c l ~ ~ l t * ~ l iron1 tliis clcnicnt ;trc

thc ire\\- mottitles nssoci.~tc~i \\.it11 flit. ~ir.tintt.n.tnc-c ;~ctit.itics.

Page 162: SYSTEM DEFINITION STUDY PART IN

TaMc 2% 2-1 GFO Final .kwirbly Base ROM Mass

t 0 3 ~ ~ FACiLtTY

FOUNOATiON

CREW MODULE

CARGO HANOLING'DISTRIBUTION

BASE SUBSYSTEMS

CONSTRUCT ION 81 SUPPURT EQUIPMENT

SOLAR ARRAY INST

CRANE.MANlPULATOR

INDEXERS

DOCKING CRANES

DRY TOTAL

CONSUMABLES (90 P l Y S I

TOTAL

Tat& 1.3.2-2 GEO b.insl -\swnlhl! Base 80'1 Cost

FACILITY

FOUNDATION

CREW k?001'LFS

CARGO HANDLING DISTRIBUTION

BASk SlJRSYSTEkfS

CONSTRlJCTldN E(Y11Pt.3FNT

SOLAR A R R A t lM5TALLATlOhr

CRANE hlANIPULATOH

INDEXERS

BEHTHING CRANES

165

35

15

210

CASlt.2 HARDWARE

SPARES

INSTAL L, ASSEMBLP, C 0

SE&I

PROJECT MANAGEMENT

SYSTEM TEST

GSE

Page 163: SYSTEM DEFINITION STUDY PART IN

Tabk 1.3.2-3 CEO Base CoMbucticen Fi9aporrer Estimate

EASE MGMT

CONSTRUCTION MGMT MODUcE LY)NST ANTENNA CONST SUBASSEMBLY

. MAItJT LOGISTICS TESTfQC

BASE OPS MGMT TRAM!PORTATION COMM DATA PROCESSING

BASE SUPPORT MGMT RASE UT ILfTIES HOTEL MEDICAL FLT CON1

BASE TOTAL

Page 164: SYSTEM DEFINITION STUDY PART IN

TR4NSORTAT tO#W1NTfNWEI &NOCREW W A R T EHS COWLEX

-WHKL€MABiTAY LDCATW B @ B E 8 f d F

- - - - A 1 FINAL m V CREW HABITAT 1 CARGO0NOOCKfNGPOP.T 1 TANIER OTV MEKING WRT 1 REFUR6ISH;WLNT FACILITIES 4 REFURBCR~YHABITAT

15 MAtIYTCOMP0WOQC)ctlYGfOllfS 7

p 75 +$;-$? 4 fidOlltLE REPAIR GREY! MABITAT POFITS

Figure 1.3.2-4 Gtr'O Fitul Aswn\bly t2aw

It30

Page 165: SYSTEM DEFINITION STUDY PART IN

Element rescription

The CEO a construction crew size of 65 and only a minimum of construction operations so. consequently, all functions can be incorporated into a single crew module. Transportable tnain-

tenance crew modules are also based at the GEO facility. Ttirsc niodules are disci~ssed in section 1.3.3.3.

The crew niodules of the G t O base are similar in design to the crzw quarters modillzs used at the

LEO construction base. The major modifications to the LEO modules are as follcws. 1 ) insorpora-

tion of an operations deck in place of one of the three personnel decks since only 65 rather than

100 people are housed in the module. and 2 ) add an eighth deck which serves as a solar ilare radia-

tion shelter. Assuming a shielding requirement of 20 to 25 pm;cm2. the shr!ter will add an acidi-

tionai 1 15,000 Kg t o the basic module mass. Within the shelter will be provisions for up to five

days and controls t o operate the coniplete base on ,tandby status. Suhsystents used ~ i t h i n [he

modules art. the same as for the LEO base niodules described previously.

W B S 1.3.2.1.3 Work Modules

W B S Di1:tionary

There :re no work niodules at the GEO base ottirr than thc' refi~rhish~i~ent mudillcs tliai are

address4 in Section 1.3.3.

W B S 1.3.2.1.4 C a ~ o Handlin_p/Distribution

W B S Dictionary

This t l e n ~ ~ r t includes all of thr farcility track systr'nl. transportation vehicles. and sarpo handling

equipment.

I lement Description

The logistics track network was previo~~sly show11 in Figttrc l . i . 2 3 . Tlic logistic'\ r-clt~ipnir'nt is

surnmari~ed in Table 1 .324 .

WBS 1.3.2.1.5 Base Subsystems

W B S Dictionary

Tliis clcmrnt includes tlir' t ~ s e rlectrical power and tlight contrt?l systcnis.

Elenlent Description

A11 operating electrical loact of '(10 Kw lids ht~cn cstiti1;ttcd. l!sis ofs,~tcllite typr solar ;irrays results

in an array size of 1 700 square mr'tr'rs. Flight control in tenils of attitude contr:>l. station keeping

and tr;tnsfcr of t l ~ c base to tlic lonpiturlc locatio~i 01'tlic nest s;ttcllite will 11i:tkc oi;i 10- - l.!13 - propulsion system.

Page 166: SYSTEM DEFINITION STUDY PART IN

Tabk 1 ..I.?-( Chgu Handtins and Distriitinn Fquipnwnf CFO Final .;\ssen~hly tlsse

EQUIPMENT ITEM NO. REO'D

OTV CARGO DOCKING PORT OTV CARGO EXTRACTION SYS OTV TANKER PORT OTV TANKER CARGO E X 1 SYS OTV PERSONNEL DOCKING PORT PERSONNEL AIRLOCK SYS CARGO SORTING MANIPCCRANE CARGO TRANSFCRTER 10 MAN CREW BUS TURNTABLES CONTROL CABS FOR LWlST lCS E W l P

- -

MASS (EA) 1@ Kg

Page 167: SYSTEM DEFINITION STUDY PART IN

WBS 83.22 Cem&mc*n Eqeiplrrcat

WBSDictiottrry This e b n t includes all equipment items duectt): arsocia?d with the fabrication and assembly of

the satellite. Excluded frcm thk tfement are the equipment items asociated with cargo handling

and distribution and refurbishlent equipment.

Ekrrrest Des!riptir*n

Ihe ody piece of CEO base construction equiptnent that is different from that described for the

LEO base art: thc four module docking c r i with chvtaiteristi~s shown in Figure 1.3.1-5.

The construction equipment located a t the GEO base are summarized in Table 1.3.2-5.

WBS Diabmq This element includes aU information systenrs. structures. and machinery items devoted to va i i l tc

nance of the CEO base.

Element Desaiption 30 unique GEO base maintenance provisions habe heen identified at this titne. The logistics net-

work and available construction crane:manipulation seem to be sufficient to attend to any neces-

sary GEO base maintenance tasks.

WBS 133 Sat&& Wmtenancc Systems a d Operatiom

WE! Dictionary X~is element describes the satellite m~intenance mission conc'e?t.

Mission Concept Description f i e reference satellite maintenance mission includes semi-annuat v~sits to each satellite by four

rzpair crews that work cantinuously on the satellite until finished. The mdtntenancr operations

associated with the firs: visit to the satellites occurs from the beginnins of one cquinox te.g. sprinsl

to the beginning of the next (e-g.. dutumn). The second visit to the satellites begins ~t the start of

the autumn equinox and lasts until the beginning of the nest spring equinox.

Typical flight operdions assxiated with one GEO final 1s5emhly base and the operations associated

with one repair group and one ri furhishrn*- * * group assigned to rnc* haw are descriiwd. Other fin31

;t&c..nably baxs would have comparabl*. c,wr :ions.

Page 168: SYSTEM DEFINITION STUDY PART IN

T d c 1.3.2-5 CEO Btsr Canttuctiom Equipment Retordtric S.tcili&

s?5 -1

EQUIPMENT lTEY

* DOCKING CRANES

(MASS ; ~ 6 x Ud (COST is-?rr + - --

tSM If4PE XINCeSWPORT MACII1IJ:'S (tAM"J 1 'l Kd [COST SJ:31 -- -- ma CIN!i)ULATCR/CRANES

(LL1SS 7x K 3 (COST Sl&?q1

I a SOLAR ARRAY DER0VL.ENT 1 LWC11:NE

CARRIAGE G O O M

WItdCH SYSTEM DUCKING PROBES CONTROL CAB (2 MAN)

- .. -

CAfiRlAGE BOOIt

1 - a CARRIAGE

ELEVAlOR BOOM TRANSVERSE &OOILA CONTROL CAB I1 MAN) MANIPULATOR ARMS

-- -- GANTRYiCARRlAGE OEPLOYMENT CARPIAGE BLANKET END HANDLER MEW E X E ATTACHMENT MECW CONTROL CAB (2 MAN)

SOLAR ARRAY ANNEALlhG 1 bwwE

1 fTW1 1 b

ALL COST REFLECT AVG UNIT COST AFTER APPLYING LEARNING FACTOR OF O J .

ORIGINAL PAGE 23 OP RNIR illiA1,Try

I . 1 . * 1 . I * 3 :

Page 169: SYSTEM DEFINITION STUDY PART IN

One m i n t e n a c e operations are begun. the GEO construction base s e w s as a major staging depot

for the mainte*~ance crews md their h a n t ~ a r e in addition t o its role of ~onstnicting: the satellites.

initial operations -hkd with a typical PO day pticrf are shown m figure 1.2.3-1. Four

mait crews and four refurb crews are transported t o the GEO final asssmbl) hsx. Each crew is

p m e d with its own orbit transfer whkle. At approximately the same time mother o*it transfer

vehicle delivers H y s t m tube mociule components t o tttz uwd in the n'lurblshrnent of failed t v k s .

This vehiile wouid atso transfer other replacement components

Refurbishment crews remain at the CEO final m b l y base. repairing failed Llystriw tube m d u l e s

that have previously been delivered hy other repa~r crews. Repair crews transfer t o the \;ttelItte

designated fur repair taking with them their habitat. The sc~x>nd stage of the nrbit transfer r r h ~ l e

brought the crew to GEO is used for the tranairr t o the satzll~te. Thc ~ i o n r f stage o i the

orbit transfer vehicle 11s-d t o del~ver the lil>stron titbe components t o the C t O fin+! aswtnbl! baw

is tlren 1 d r . d with refuhirhed kl)stron tube mrdulcs and transfemd t o the first satellitr' to bc

r e p a i d .

At the completion of reparw on the fint satelltte. the cwa and hahltat tr.ln\ier to tlir tiekt utelllte

t~ k repaired. The other orbit transfer \ e h ~ i l ~ ri'titmz tl\r tailed klystron tube rnrxiulzs back t o

the GEO final assemhl) base where tiley will rrfurbt~hed. Ihe OTV then returns btch to the

LFO c.unstruition base. Pr~or to this trn~e. hoae\er. tnothcr orbtt tr.ulsfer \zhtcle ha\ zamc trim1

LEO construction bsz t o tlir <it0 1jn;ll aswmbly haw d(ii'\ertng &idltinndl Ll:\tron tube ienlpo-

nents and IS then dispatched ulih cc~i11plett.l~ reitirht\lteii LI?\trot~ t t ~ b r ti i~~itrlc\ to thib \r.cc>nd \dt~.l-

ltte that 1s to be rcpaiwd.

This c,c.le is repeated for each utclltte to be t'pathfd.

The tjnal crpcrsttons aqscxttted a ~ t h A typtctl "(his) pcrtrxf an' ~Ilu\tr,rtr,i In tiplw I 3.;-_'. .\tr~*r

the 2Uth satclllttr' has k e n n.ytrr.d. the <rcu and I~.&it t t rrtiirn 1%) 111~- t;l-O tlntl t\\s'tiibi> iusc

where the hahttat IS left St-r the ni'\t repttr ircw Illc ttitttdl ,.re\\ tlleii return\ h ~ i h 1 0 the I 1 0

construction base and e\cntutll> back to I-arlh. 111e rrftirbt\:ltt~.~nt crew ha\ il\o i s l t l ~ i * l ~ t ~ d Ihr'tr

og (!a> %td) tlnlr and also returns bdih 1 0 t .trth

1-our new i N W > +lid four new ~I~Tf*t \h t l i r~ l t i T C H * Arc tit'-11 tr.tti\~crn',I to !IIC ( ; I 0 tt11.11 . i \ ~ i t i l~ l \

base The zomplctc c!cIt- IS repeated agdtn l71t' (rcS\t \11e .it tlic (;t.(l titi.11 .f-.\cnibl\ 11.1~- mill ha\c

a m.~\itnunl operat~ttg stre of _; 10 t 240 aswk 1.i1r'ri urtil rCfi~rir~\htnctit .IIICI -0 \\ ttfi qtcfittc .nwtit-

bl? t a d at the ttriit' 1 1 1 ~ iour rcparr crc\t\ Rtum .if flit* i.nd c > l tftcrr ttwr r x t ' duf) thc t.rrSw \~i'c \t t l l

be 550.

Page 170: SYSTEM DEFINITION STUDY PART IN

a T U - K L ~ N 8 i i Y O O U l . E

t A L L O N S H A V E W ~ - ~ ~ * #OIROPrZCUllYfRR€WREDATGlEO

? ~-r#meEmfEEW sA7ELLCIES CQ'mE)ITSCOtKO BE OELIWEfED VIA SELF FQWER I#X)Ulf

~ e r ~ ~ i l a , ~ F O R € o ~ N a o m ~

QTV *I4 T-90OAVS

OCREIV HABiTAT CPEW SU€ - 3-

GEO - - - Fl..4CL ASSvBASE

w esrr

QTuzz LEAVE QTV a28

KlW QTVrZB

OLD K N LEAVE O N :a OiO KTM

OTvU7 *KTM COYWWEIVTt

LEO CONST 3ASE

M S E

N N U A L FLT SUMMARY (100 STELLLTES)

0280 O N FLTS TO GEO **00 O N FLf S GEO TO CEO e350 HL1.V FLTS TO LEO 0# WUTTLE GROWTH FLTSTO LEO

Fiure 1.3.3-2 Sekctcd Maintenance r.lission Concept

166

Page 171: SYSTEM DEFINITION STUDY PART IN

The mnmf number of orbit transfer vehicles and launch vehicles !lights which occur tn the mainten-

ance of 100 satellites are a b indicated. h n n g this time p n d , maintenance cqwrattons will cum-

pietely dominate the CEO transportatinn operatims rather than assembly of satellites at GEO.

CIeW The maintenance ere\ size estimate is summarized in table 1.2.3-1.

Repair Crews

Dtrzct 1 60

Indirect 80 Rehrbishment Crews 3

Direct D

1 60

I n j trcct 60 480

b ~ a i n t c n a n c c crew assigned t o a trpicrl (~t.0 hru. Thtr srlc can epar r

and wfurb the cqu~r dent ~i 40 SPS\ per y car. clt her GFO baseti's woxtld

( j > h a ~ same crew s i x .

Thew repair crews woitld be at c~perattonal SPS's i'\ccpt w hen at the t;FO

base s t the time of crew rotation.

These crew rnzmkrs would hc rtrtiuncd at each (;kc) bas

HBS 1.3.3.1 Satellite-Based Mainttnanct Equipment and Operations

WBS Dicti~nary

This r'lzmcnt ticl lodes all of the \tntitltrt?r. rnictrn~atwn \>\tct:r\. rid c*qttiptttr':it rtr'ni> btltlt tnto tIlc

satcllrtc to factlitate tn3tnIr'ndnce work.

Etemtnt Description

A riumbzr of major conlponznts oi tile satellrlr hare bee11 anal)?cj for thctr tiJttire cof falture\.

ntcrtti ttnir br'twrcn t~riurz. power lo\\ pcr f~rlttre. .tnd ti~\.ill? tttc po\\rr It>\\ fwr rllc iclttijlO-

ni'nt habtng the pri'.ttcti'st Impact 111 term3 of p w c r IOSS JIIJ ti1 Illc t~titr' rcil\rrwd ti> ti\ t t ~ e fatIitrc\ I \

the Lly\trcrtt ttibr' I ~ I ~ I J I I I C . \ .IS t t~dti~tr 'cl III tjgtrre l..:..J-;. 4 tiot.!i '11 -(dkj tubc\ arc c \ t ~ i ~ ~ . r t ~ ~ t l t i> i.irl

per )ear n'st~lting rn an arinir~l prruer oirfpitt /OS\ o f SW.O(W) l i m A ~ I I C ~ I I I . I I I I . ~ I ~ I ~ ~ - I I . ~ ~ I L + ~ N.I\ tIk-n--

t;3rc i(x:t\ed c m l ) on the LI? strort titt*r' mnciiilr' .inJ I\ dc\irt\.ctl III Sc~ t ton I l . 3 . I i

Thc rqurj~nient used for anrlztlittp of solar 3rr:iys is inr.1udr.d 111 titc s.ttcIlitr-P.r~~~,l r i~ . t~ t~ t~*t i .~ni~-

cqitiptncrit ;tnJ o;>r'r;ttions. Thic s?-stcn~ is C~CSL.I.~~~CII ill ! kc f i~ r l 1 ..;.?.I.:.

Page 172: SYSTEM DEFINITION STUDY PART IN

Fipum 1.3.2-3 Item Requiring ~lainttnrnc-t

Page 173: SYSTEM DEFINITION STUDY PART IN

W B S D i c b a q lhis ekment includes the description of the antenna items requiring maintenance. the level of

repbament, the repiacement concept, logistia prmisions, and the maintenance equipment.

Lcrd of Rtpbcerrartrt-The level o f replacement sdected is that of the klystron tube module plus its

the& contrd system as shown in Figure 1.3.3-4. Actual removal of the tube module involves

access through hofcs in the radiator t o reach the distribution wave guide attachment bracket which

secures tk module to the distribu.ion wave guide. Once this attachment is released the module is free t o be removed.

Cosccpt The selected k l y s t m tube module replacement concept uses vertical access through the cubic

secondary structure which is attached t o the A-frame primary structure.

The ovenll concept is illustrated in Figure 1.3.3-5. The primary structure is an A-frme design

forming ridges that ailows free unobstructtd movement of the maintenance gantry moving hori-

zontatfy across the antenna.

The antenna will haw a total o f 10 channels in which maintenance gantries can be mounted.

Attached to each of the gantries are the maintenance vehicles which reach up through the secondary

structure to reach the failed ktystron tubes as shown in Figure 1.3.36.

Additional detai! of the cubic secondary structure and the maintenance vehicle is presented in

Figure 1.3.3-7 with a maintenance vehicle shown moving along ic the directior. : :he channel. The

gantry itself is designed to transport all of the spare Gqstron tubes necesszry for a given shift. The

rnaiqtenance vehicle consists of a hinged boom and a two-man crew cabin with manipulators. A

small klystron rack is also attached to the boom to elirniiiate the need for the manipulators to reach

back down to the gantry for each tube that must be repaired. In the case of a 36 tube subarray as

many as three tuhes may require replacement.

Using this concept a tube replacement time of 45 minutes is expected. which includes rernoval and

replacement of two diagonals (in lower and upper surface of secondarq structure). removal and

reptacem3nt of one klystron tube module. and movement to the next fiaied hlv ,ti-,)n t-ibe estintatcd

at a distance of 2 subarrays away or 20 meters.

Page 174: SYSTEM DEFINITION STUDY PART IN

S€LECfW1Y; TUBE PLUS RADIATOR

ACCESS HOLE IN RADIATOR T WAVEGUIDE

Figut~ 1.3.3-5 Vertical Access For Tube Llain tenance

Page 175: SYSTEM DEFINITION STUDY PART IN

LlAINTENANCE

MAINTENANCE GANTRY

PRIMARY STRUCTURE

, I *

1OCHANNEI.S $ . PER ANTENMA

F i r e 2.3.3-6 Vertical Access For Tube hlaintenana

STRUCTURE

MAINTENANCE VERTICAL AND DIAGONAL MEMBERS

SECTION &A

Figure 1 J.3-7 Vertical Access r.laintenance Vehicle

Page 176: SYSTEM DEFINITION STUDY PART IN

To t-nablc t11c ~io~.hi i tg ill t1.c 1 .ir1oi&\ I ~ I . I I I ~ ~ ~ I I . I I ~ ~ C \> \tt-111 c l ~ t ~ i c t i t ~ .111tl ti> ~~ . i l i \ f cr cargo J ~ C > ~ I I I ~ the

at1tcntl.t. the .iti~cttti.~ stiut,tttr.. I I . I ~ twt.u dc\ipnc.d t i r ill, I r , x ) t . t t ~ * .I i.trgij iit\tnt.t~ticirl \>st~111 a11d has

~ t ~ ~ c ' t i ~ r a l ~ d i f ~ t t ~ l i s 10 .tilo\\ ~ i i . t t t~ tr '~~ .~ t l~e p~ritrii*s 10 tti po \~ t io~ lcd \it tlie) c.111 ttc ni~intstncd and stippl~rcl tt rtfi tiibu Ll? st rrut t llhC ~rlorlttlt\

Page 177: SYSTEM DEFINITION STUDY PART IN

,r KLYSTFtOAI TUBE PALLETS (4)

4 A

Fire 1.3.3-8 Sltdlite Maintenance Systems

C)RIGIXXL PhGZ li r SECONDARY STRUCTURE DCx)H Q17am

PRIMARY STRUCTURE (Rl f f iE BEAM)

MAINTCNANCE

CARGO At40 CREW TRANSPORTER TRACK

IN LOADING POSlTION KLYSTRON TUBE PALLETS ((/SAT.)

CARGO OTV m a ZJ

Figure 1.3.3-9 Satellite P,iaintenance Systems

Page 178: SYSTEM DEFINITION STUDY PART IN

Figure 1 -3.3- 1 0 Antenna Glaintenance System Installation

Page 179: SYSTEM DEFINITION STUDY PART IN

while near the edge o f the antenna. the subarrays have 4 o r 6 tubes per subarray. Consequently it

will he noted that the middle channel has three maintenance systems conslstinp of d g a t i t c arid

repair vehicle.

With this equiptnznt distribution and worki~lp 20 hours per day. the niiddle channels require slightly

more time than preuioudy identified for repair--3 1:: days per satellite. The addition of 1 2 day t o

the schedule. however. will not appwciahly alter the prior analysis.

It should alu, be noted. the outside channels requtre far less tinir' t o repair and less equipnlenr due

to fewer failed tubes. Consequently when the cwws asstpied t o this p ~ r t i c u l . ~ ~ taqulprilent . an ' f ~ n -

idled. they can then be used t o rrpalr other components on tile satrlllte such 3s the d c J c cc~n\c ' s tes

nlentloned earlier in the dlscussic~n.

Mass and Cost

hjass and cost characteristics f i \r the p z r n l ~ n e n t l ~ ~ns t r t l l~d an tenm m~tntrnctni.e eijiilprncnt 1s

shown in T;~blc 1 ..I..;-:.

WRS l .2.3.1.2 Solar .Array Annealing Equipment and Operations

WBS Bict ionrw

T l ~ t s elenlent incltidt.s .~li h d r d ~ ;trt reqtitrcd f o pro1 I& the c .~p~ \y t l~ ty oi d~:tir.dtng r . i t i ~ ~ t ~ t w ,It.p. .IL~.I-

t ion ,.ram the solar cell5 Suk-t.lzmt.ilts ~ticliidr the .~nrieJtnp d t ' \ ~ i e . support str i ic~ure. atid , I I I \ I ~ -

Ii~r!, cclutptnent

Element Description

Lascr ;i~ttl~?liiig war chc?st.n :IS the r r f e t ~ ~ \ i c appro;tci-\ t o rectrvcr r;liii.~titw inti t t~ed pcrfi>nil.~ilze

dt'pr;id;~tion of the energy ctrnveixiot~ system. Sirnillation P h ~ s ~ i s . In i... under Hocirrg s ~ i \ ~ ~ a a t r . t z t .

has ~ t i ~ i t ' ~ ~ f i i l l > ~ i c n i ~ ~ ~ s t r a t i ' i i lawr ;tnnealiilp III the lat>or.ttor). i'.iblr~ I ..;.:--; lists the b.151i .~~ltlr'.il-

inp paratiicten l i ~ i ' i l in the 131-orators tcsts.

Thc d e s i p ~ ~ assurrtptiotls tbr the lascr devicr. tlllit tist'd in our 31161) sis IS C I V ~ ~ I in l'.il\lt' 1 ..;..:-4.

With thcse assuniptinns. several r>ptiorls were in\-cstig.:tc~i ktr the tri~n\t\r'r o!' .~ntrr';~ling dc\-ices.

nirthod of sn~iealinp. .lnd t.ffcct o n systetn opcratiott.

-rile option c h i ~ s ~ ~ r i for this sttriiy \vas t o \isc ant‘ ann~.aling ,Ic\icc g;liltry per s.itcllttc ~ l l t~ t f i~ l t ' t1:tgiti.i'

I .;..;-I 1 ). '4 typical a n ~ i ~ i ~ l t n g J ~ V I ~ L p;tntry is also sllou-n tising ic>rt\ -t'ot~r laser : t~~nc.~lcr>. I.I\c

g;intry \vnul~i intji1x t o its t in t position. ;it tllc cdpc 01'tltc s,itcllite. ;11\11c:tl that scctiou 1 1 5 ilrt-tcr

widtll x O(tO 111 Ierl$tll) ; ~ n d tlicn rnove 011 t o tllc n c ~ f scctiot~. 111 Illis t\l:\I\1\cr, ir ~ ~ j u l d fr.t\cnc the

iviiltli o f rIic scttcllite :~nt~~-:ilirig C J I ~ C \),I>, \v~tic sccriot~s the ltiotii~lc. \YIICII OIW ski\\ (ji I I : ~ s (S\ !\.IS

I I ~ Y I ~ ;i!iri~*i~l~~ii, tlic g:ltitry will ii~tlcx t o ~ I I C titsst row of I1;1ys .~ r i J pcrt'or111 ~ I I L * :~I!IIC~I!I~I$ tyvr.itit>ti.

lltesc s.111 i, opcratiir~ls re rcl~catcrl 1111tt; ttlc L*cri~lplr.tt. n~kkjt~lc 11.1s lrccil .ir!trc.ilr.~~.

Page 180: SYSTEM DEFINITION STUDY PART IN

Table 1.3.3-2 Antenna Built-In Maintenance Equipmertt

EQUtPMENT ITEM

o Moinmnmca Gantry 81 Manipulation

PER UNIT NO. REQUIRED *eSS (KG) COST ($10~)

o Crew Modt~le Docking Port 2

0 Crew Bus

o Cnm/Manipule:or

o Component Transporter

o Turntable

Items required on each antenna. Multiply by 2 for t o l l per satellite.

Table 1.3.3-3 Laser ~ k e a l i n ~ (Spire 3ata)

Laser T y r - C02

Pulse Power - 50 watts

Beam Diameter - 0.5 cm

Pulse Length - - 2 scc

Tmax Cell '550°C

Power Density 63.7 wlcm2 (pulsed)

Table 1.3.34 Design Assumptions for Laser Annealer

W SCC Annealing Energy Density - 127

cm2

Power Der t~ i ty - 63.7 w/cm2

Pulse Length - 2 sec

Beam Area - 500 cm2

Tmax (Active Region) - 550°C

Laser Efficiency - 0.15 w-hr

Laser Energy Consumption - 0.2355 c,2

Page 181: SYSTEM DEFINITION STUDY PART IN

ORIG(;INAL PAGE W OF Y t s m QC&"~"Y

SATELLITE YOOOtE -

muSCAIUlfff m . - W G m T

#TAIL 'A" WAJL -6"

TI). C C 7 h M Y lV?. U.R MEALIER

Page 182: SYSTEM DEFINITION STUDY PART IN

Thz mtr): system travels r~ tracks provrdrd ~3n tk ute"llitu prtalsr) ~t r -~c. turaI tt\rattwr?;, tn thr.

u p w r S U ~ ~ ~ L Y beants, ntnnlng acre the satzllrtz udth.

Within thc' gante. thew are 41 l ~ x ' r a)\rcrn\ Factt l a r r sy\Wrrl is pinltwilr.d to ailow the laser to

scan a IS nvtctr squ~n' wxticm. l l w 15 nlctrr w:tlun was < h o r n to be ctrn\atent u r th the array

blanket strsncnt vldth\ W'tth sll o f thz Idw \)str'til\ irn t siltgtc' g&iitry opetairn$. rt wiU take

;rppmxim;tt:lv 2.5 hours to anma1 ;1 I 5 meter WT~ICXI ow ba? UIJC. f h t a mtrlts i n 3 t imr 01' I fU

hctitn to anneal one P ) of solar array.

WBS 1.3.3.2 Atueik Mamtemme System

0)'BS ~t~

Ikis ekmrnt inc!ude\ the nw1ntzn.tnc-e n~~klult\ atid iantponrnt p.all~-t intdules that are trans-

prtd t o ~ywr&trcmd SPS; fr~qi, t hc t i t (1 bau- II~c- ,lz~*t '11 OlX'\ uWrl ttr trdny.rcrrI r i t ~ h - mirct-

\~k\ ~ I V ~ n i t t t d ~ t i it1 k . f t c ~ ~ i I 1.

F a t Iksr.riptitm

Th. mrintt*nsnc~- in.- ia.dulz its ih~mitr.rtstii.\ am dltrtsrt In I ipirrc 1 -; .:-I _' i c ~ t ~ trt ihcW

nt~sfulr.\ JW lr.tnywrtCd It* ~*, i . h Sm %\tti.~i llrc w-nit-~rrntr.tl r~r.iirttcnanii- I. 1'3 bc rk-rt\m.red.

tFz ~~~~~~~~~~nt p ~ l l ~ . t n i td i~ l r ' anti st\ ih.tr.iitt-n\tt\ \ . I IC dttw il 111 t rytiri. I .:..:- i .: i okrr c r f thew

t i t rd t i l~ \ J K i tr~ziy*t*rtc-d .t\ J u;'t b\ ~rnc t l I \' it! C ~ i f l SPS tt lizrt thr. trl..:rtti-n.ittii. I, t: tw i.wrti*nrszd.

Page 183: SYSTEM DEFINITION STUDY PART IN

Po*m Rcquaedflrrcr - 212 k w

PblCI R ~ ~ ~ t m i . i G * n ~ y = 9 35 * Nurnbn ot *try B n h - 8 h ? e a a & t l b madultt

Tcrtd Pomr Pkgsr4nm~nt * -E tAw

Y m + to A n n d Sda~ &ray * 147 drys

ts*atmcr c w u r r e w crmrha\ d dl d t

onftv m n c r k n !

REPAIR

W E H m I T AT P€R 6tl PEOltE

MOOlFff 0 CREW QblaETERS

H 0 . 0 0 0 ~

S.30 MlLLioN IWESIYIENI

IS% WltM CHARGE

CANTRV REQAiR VEHmE IEA)

5.000 kg

$.a MICLItW fFU

15% C N I TAL CHARGE

TRAmmRTATiOIY rn EARTH TOGEOSECF M n f R - w h

Page 184: SYSTEM DEFINITION STUDY PART IN

TYPICAL ULVSTP.C?N TUBE f-a,, ="'iii.~ PALLET (so w : ~ ) i /

ORlGWht PAGE &I Gt' Rh 1R ~l l , ! i .m

Page 185: SYSTEM DEFINITION STUDY PART IN

WBS l A.0 Space Transportation

T h i s section of the dwunient addresses the description of the spac transportation systrtrz. BOth

launch ar~d orbit tnnsfer vehicles for cargo 3nQ personnel are included. In addition. launch facility

requirements. propellant praductton and delivery systems. and opentions~support 3re ~ I S L ' U S W ~ ~ J 111

the following sub-sections.

Transportation Summary

The space transportation system includes J heavy lift launch vehdz (HLLV). a mcd!iizJ shuttle

personnel launch vehrzle f PLVt. a personnel and suppltea hl&-thrlr~t orbit tmnder \chicle (OT\.). and low-thrust orbit transfer system tOrSt lnstallzd on the SPS nidules c.unstructr.d ~t Lt 0. Iht. tow-thrust CTS modules art. reustbl. snd JK rr'turi~e-I to LEO P! a \eht-c.ir' rin~tlar :o the pi-wnr.rc.1

OTV. .I\ t-rhicle :light utilization and cost sumniar): is presented In Table 1.4.0-1.

wBS 1.4.1 Carp Launch Vehicle

The Iaanct~ cor.'ipuratiorl of the SPS i J W 0 vehir:li' is shown in f'ipuri 1.4. I - ! v i th the oviSr.rii

geometry noted. This wrk-6 hum concept use-; ! h LCtf - LO, znkinzs oil !hc Pmstzr and I4 st.!,:d- - ard SSME's on tht. arPi:r'!. Tht. LCH4 10% !x:mtc'r i ' ty i~~es c'lilpioy a SL. gci~i'rdior i?;'Ii' ail&! ;-:i* - viJc a vacuum thntst of 9,'9 s IC" nt-wtc.tq.; caci,. Thts SSME's et: tk2 orhirtr pro\-idt' a tacuunr

thrust of 2.W s 10' ni'\vic?ns t 100'1 Iwu.zr !z~c'l). The ,:ornitla1 I (@: powr'r !evel tilt. t!lc SS%ft'> jr 'le;~~d bawd on engine life znnliidcr;ltit?n?i which icdic.ired a h t t t a 3 fac;ni risduction in Iifc j i

tliz 1 W ; *wet level is cscd.

> Sw (Orbitcrt =- I &tfi!11-' ( I i .5biI 11- i

1 -, Sll f Orbiter, = 2220rn- . . :hO it- ,

iii'dt sink t h c n ~ t rfOt.;.<t!c3n g%tcn l ir pr.3\dcd 011 tht. !:t\bfi.r and lhi. S h i i l t ! ~ r Kc\i.~ntc S.rrid~c

1,isulation {US! t 1s ustJ o n thz orhrtcr.

I B S 1.4.1.1 Launch Vehicle Chu~ctcristics

WBS I .4.l. 1. I Vehicle f)efiga Ch~racreristicT

Page 186: SYSTEM DEFINITION STUDY PART IN

'CAN 8€ CHARGED AS A CONSTRUCTtON CGST

Page 187: SYSTEM DEFINITION STUDY PART IN

3AU3S3kl 33NVVlt10333d r)r!?ili 4 33VlSNIVW.

(67 Nt V i V 0 SWY171V) -..-- t --- .- --- - - I W L b 1 K d .dNY:IIIU lI'I11-

WL'BW

1 oos't~i: ow? * VJ ON- 11 1st &*A s : : i w

- ?id NYn LJ !J 4illt.V- 1 4 w r c o - i - - M'9'%0

m1'm

l i d UU- I t r 3 . 2 M TSifi113 1HVlS

l / d Nan1 3U t l i lM- 7 1 Cav56C OLOlAVcJ 11?J-lH331.\ A V l N 3

UO!13YY 3 SSTW -51 - avo3 AVd NtrgU38

irVO7'wd lN33SW Slb'31J! U3lIBMO

-80 - - -

iW0 i OW'VZP 40L'GEP

. f ~ ~ ~ ' L i Lz01) U3ZialXO t13118lW -.

fhDt'8i6 00L'WL'Z - -

i i~ l i 73n3 UJrl lBW OVO'iAVd SS31-Am10

SLti3lW if315cm ;k-il U3ZIQtXO 83-

1%!31113M U31SOOU rY) Ja m ~ s

/ WBZl.9 Ma* L

U3 tS008 ism j

%ySS?l$: v-3 @I!% *9s-o#1 1-1 'f i W e 1 c s l i t ~

- -

oarstLt'r 1 - m,'arb'or

Page 188: SYSTEM DEFINITION STUDY PART IN

WBS 1.4.1.1.2 k n t Performance Characteristics

The SPS launch vrhicir asccttit perfornla~i~ct char~ct'nstics are tioted in Table 1.4.1-2. A '3g' nlsxi-

muni a~ct'fc'ratic)ti tfiru\t prcrfilz srts u\zd ciui t o ttic ntantizd c.ipahilrth atid a130 t o tiirnittiizz the

load condrtions on the orbiter. The booster \t+tng \rlcwtth of 21 '0 ni set IS wt,ll w~thin the "heat

sink" capsbtltt? ot 1 he alttniitittrn Iitantltni airfr.tnie.

WBS 1.1.1.1.3 Reentry Characteristics

The reentry charactenst~cs tor the boo.iter dtld nrbitcr arc. ri,ltzci rn T.ihlz 1.4.1-3. i tic tiia\trnuiii

drceleratton for the booster IS 4.2- g ' ~ J ~ S I ihz \i~hsottic trai~~tciolt altttuilz I\ 1 '.St) km. 111t. orbrttLr

reentry has k e n iimited t o a noniijl l o ~ d factor of i .4i g's irritrl !!tz siibsor?~~. trati\ltloti shtch

occurs 31 .in .ilI!tr:J~' r ~ t 13.b: hill.

WBS I .4.1 .Z Booster Stage

WBS 1.4.1.2.1 System Description

Page 189: SYSTEM DEFINITION STUDY PART IN

FIRST STAGE

T/W AT fGNlTlON r 130

MAXIHUM DYNAMIC PRESSURE * 35Stkh I%@

HAXIk~Uhl ACCELERATION 3-(h

STAGE BURN TIME - 155.24tle

RELATIVE STAGING VELOCITY - 2170 drrc (7.120 fpr)

DYNAMIC PRESSURE AT STAGItVG - 1.16 kPa (24 @I

SECOND STAGE

WJlTIAL TIYJ

MAXIUUM ACCE LERkTf3M

STAGE BURN TIUE

Table 1.4.1-3 SPS Winged Vehicle Reentry Characteristics

MAXIMUM DECELERATION cmurnoN q - 10.77 kPa h = 32.61 km v, = i 3 n m/mc

'YORhqAL LOAD FACTOR = 4 s $s

MAXIt*lUr*l DYNAIAIC PRESSURE COND1TKMI

q = 13.29kPa 22.96 km

V,d = 686 mltar WRMAL LOAD FACTOR = 1.49 0's

ORBITER

MAXIMUM DYNAMIC PRESSURE OOFIDlTlON

q - 13.17 k p !, = 15.55 km Vd = 361 m h r

NORMAL LOAD FACTOR - 1.41

SJBSONIC TRANSITION C3NDITION

I = 13.62 km

a-6.4 dag

SUBSONIC THANSITION CONDITICIN

h - 17.86 kn. a - 1 5 ~ ~ 0

Page 190: SYSTEM DEFINITION STUDY PART IN

Wing The wlrig b o x 1s constntcted ot ' 0 ' 5 - I '.: .~ lu tu~nu~i i ~ r t d rile I e ~ d ~ n g edgt,. trdritnp edge. and

rle\on\ art' c~ns tn tc t e t i i ) t OXL-I\' titdnrurii A 4g entr) c o n d ~ t ~ o n ~ n d a 2.5s s u h o n t c riiancllvrr

conclit~ctn Bert' co!l\ttirr,d tit \trtrrp t iic 8% inr: str:~c.tttrt'. t i c *nstJnt t c = 10'; w;i\ u\cJ. Tht. H tng

mass is 130.700 hp.

Ver:ical Tail T'lir' vt~rtical tail was s i~ t ' d ibr a boost nias qp condi t io l~ uf 1'7 kptr. Tlie box stnrc-

tirre is 7075-T72 a!urninurri and the rentaining tail stnlctiire IS hAL-I\. titanittni. l l i e riirtss of tlte

vertical tail is 11.')00 kg.

Nose Section Tllc nose sCition zonsists o i a t'isr>ii slicll s t r ~ t i i ~ ~ r t . plus a :ii.ployiible no.;tS cap. 1 % ~ shell sfr i t~. turt~ espcriznces niaximunt corii~~res:~ive 1o;iding of 35.200 X : C I ~ ~ fcir\vard anti 24,000

K ' c ~ ~ i aft ~ l i t r i t t ~ tltt. hoo:,t i p condition. ~I'ltc ~ i ie ; t red tfiicl;!tes~ 01' t l ~ e 70'5 alun~ini~tt i skin-stringer

pariels is 0.82 cm :br\t;trci and 0.hS cni aft. rlic sr11~3rcd t l l i i h ~ ~ e f ~ : . t/lc 7075 a~itniinitm nose cap

is 0.35 z n ~ . I'hc nose sec.:inn niass is 2b.800 kg.

Oxidizer (LO?) Tank - f l i t . oxidimr tank i s :in all wcldcd 22 I ')- rS7 aliittiinitrii preshtirt' vessel wit11

iutctpal sidewall stificninp in tile cylinciric.al s ~ . ~ t i o n . ?'tic stoeurcd thii.knehh of the sidcwall p;ttiels

varied fro111 0.7') CI:I forsurd to 0.9' ctii ; t i t . The doriic nlcriibrant. tliichncss varies between 0.28 c.ni atiJ 0.40 cril for u;:ptVr donic ;trtel tv t \ \~*tw 0.47 i l l 1 ;1rit1 0.8 I i i l t t'or titc Ict\vcr do t i~e . Tlic

tank tlirtss irlclul!i!~:~. ~ l i ) \ l i b;ifijis is 36.100 kg.

Intertank ~ f l i e intertank is ap!~roxin~;ttcly I S.5 nlct,.n Ions and is cc~nst~-rtc,te~i of 7075 ;tluriiinrrnt.

Thc intzrtanh cxperictiic> :I n~a\inttlrn coniprcssivc Ioaliitig n i 3 0 . I(3i) S i t t i at tilt. boost 3;! c>nstBt

conditinn. rile h!~~c.ar~-ci t l l i ikr lc~i n i tllc >kirl-:,tringcr panels is (I.-(? i l l ) . Ihr . r i l~~ss c t i tlic intirtank.

whicli inc.ctq3ttrati.s [ l i t :11rl~rc:i111cr c n g ~ n c support :,tru~.tLirc\. is 38.000 hg.

Fuel (LCH4I Tank f i~ t , iitcl ~ . I I I ~ , i:, 311 ;1l1 \ \ - t~l~icd 22 lC)-I-S- ; i I ~ t t ~ i n i t ~ ~ i prc\\itrc vcsscl \vitti intcgr;d

si~l~.\\-all s!~!!i.!?!!:g i!i tl!c ;!-li~tii~.ic.rl \ t . i t i ( l r i . I Itc \riit*;ir~*d illiik:~t.\\ o f tl1c \itlt.\vall ~ u r t ~ l s is 0.S')

(111. TIw ~ I O I I I L * ! i ~ i - ~ ~ ~ I l r ; t r ~ c tI~iil;t~t>s\ \ ;lric:, I ~ C ~ \ V C ~ I I [).IS L.II~ ,111tl 0 .40 ~-111 ior t11c itppcr t i t ~ n ~ t ~ ;~nll

l~c t \ t . t~~r i 0 . 8 ;tnd 0.40 c.111 ittr tllc lo\\ tr ~ t t j r t l c* . '1-t~r. t,titk tlias:, i ~ ~ i l u t l i ~ l g \lo:,li h;ritlt.s is 22.000 kg.

Ba.w Skirt l ' l i ~ , lxi\t, \hirt . ; ~ ~ i ~ r - o \ i ~ ~ ~ ; i t c I ~ ~ Is).- n ~ ~ t c * r \ I O I I ~ .I ! I \ L-ctn\trttc.lL\d 01' -0-5 ; t I i t~~~in~i t i t .

'l 'l~c uppi*r 14.4 ~itcti,t.s c * \ l ~ ~ ~ r i i * ~ i i c \ I I I ; I \ ~ I I I L I I I I ~ . o ~ i ~ p r c \ \ i \ t . ftl;itiil~g\ ol'30.000 S 'i t11 !'or\\ :~nl ~ n t l

44.500 X L.III ;it1 , i t t l l i * I>,NI-,I -:g on\'t L X ~ I ~ L ~ I I I O I I . i l ~ t , \tllc;irtsJ th,c.knc\s oi t i l t - shin-:,lrit~pcr p;~nt,Is

I . 1 0 . 1 I ? 0 . ) 1 I 111~ ' It,\\.c.r i..: Illi'l;.'r\ c\lk'tir'n~.c:, .i ~ll;~\in;tlrll i o l l l l ~ i r l ~ t ! i<? l l l -

pressi\c 10.1~1it1g o f .; I . I00 5 i l l 1 .11l,l \lir'.ir t l t ~ oi I h.')OO \ i l l 1 c i u r i ~ ) ~ t l ~ c t;tnk.xi prc-ignition zori-

i i ~ t ~ c ~ n . . I . I I ~ \ I I I L , A I < L I t l ~ ~ i . h ~ i ~ , \ \ oi' f l i t * \ k ~ ~ ! . s t r i ~ ~ g c r ~;IIIL.!\ I \ 1.50 i.111 it1 tlic \llc.ir-t>itt ~ L * ~ I O I I .inti

il.04 L. I I~ o u ! \ ~ t l ~ ~ I I I C ~II',;I:-OL~ I rc?i{111 '1'11h- 17t1:,~s sh1r1 I I I ~ I , . . 18 4-.20O kg.

Page 191: SYSTEM DEFINITION STUDY PART IN

Thrust Structure -The thrust structure consists of tour major beam aswmblit's plus intcrhc.;trii stahi-

lizinp nicmbers. Sistc'en thrust posts art' incorporated in to ttte heatit ~tssemblies. 7075 rtluminuni is

useit througliout. The stnlctlrral elements arc sited for the ignition condition usitig a dynamic

tnapnifi~lttion factor o f 1.25. Shear flows in the individual plates \dry frotii 15.300 N:cm t o 61.300

N:cni and tlie web plate ttiicknesws vary front O.4h c ~ i i to 1.85 cni. -1lie average cross ;ire2 of a

thrust post is 186 sipare centimeters. The thrust structure muss is 23.900 ks.

Aft Body Flap--The constatit chord body f lap provides the booster stagtg witti pi!<li trim colitrol

and thermcllly shields the tiiain zngities duririg m t r y . l'he tlap is cori~trttc.trd of oAL4L' titttniuni

and has a mass of 2 100 kp.

Fairing Structures -1:airitig struzturtas coniis! of t f t ~ ~ing-t0-1~0~1!. t.tiritigr; loL. i t~J tw t l r for\\ 3rd ;it111

aft of tilt' box cvrry-tiirii section. (lie tail-to-bo~iy fairing. aiid tllc engine sliroud base region t ir ir lgx

'The fairings are z o n ~ t r i i c r ~ d of b.=\L--tV titattilim ;tiid ha\< 311 cstiniutcd niass of S3C)O kg.

WBS 1 .J. 1.2.1.2 loduced E~ivimnmental Protection T!ie in~luced cnviro1iriietittr1 protection sut3-

system consists o t tlie tlear sink ;tiitfitions rec;tiirzd to in;tint;iin the airfralitt* nlttcr \kin \vitIiin

~ l i c~p t r t t~ l t . temyi.r.itiirz limits. plits tile base iteat shicli!. Kclrs;thlc Sl;rt;~ce Insitlati(~n is the tlicniial

protection systzni on tiit. t>;lst> 1ic:it slii~~ltl. l'ltc Iirr~t sink ;tdditictns wcigli .:S.:C)O kg ;mil t l ~ c bast

hedt s t l i~ ld 8 100 kg for a total sys!zni niass c>f 4(3.400 kg.

WBS 1.4.1.2.1.3 Landins and .L\uxiliat?. Systenls In aciditinn t o Irinding pc;ir. tliis slillsystcni

incltitlr's a I;tridiitg drag d~*\-ic.~, .tn~l auuili;tg- .;!stenis for ttppCr sr:tgc s~.r;tr:itinti .ttiJ t:osc cap t!cjllc\: -

nicnt latcliinp. Tile landing gear \vcigl~t is csr~tiiatcd ;it 3.2' : ot'ticsign 1:tntling \\tight. -1'ot;il s.111-

s! .;ten1 ni;t>s is 74.c00 kg.

WBS 1.4.1.2.I.1 .\sr-ent Propulsion 1 ' 1 1 ~ ;t\zcnt proi~ulsior~ si:l~s! stcni cansi3ts of tllc tilaill

cngincs. aiccs>orics. ~iniI1;tl pr~l\ision.i. ;ttitl t t ics I'ttel .tnd o\l~Iirt.r .ib ste111\. ? ~ . I I I I ~ ~ O [ V I ~ \ I < ) I I % [>SO-

vicicd 11). s i u t ~ ~ c n ( I ( > ) Iiipli ~ l r c s ~ i i r ~ ~ L O - - L(' l i4 gas gcSncrator z!t'lc c t i g i ~ i c ~ ant1 tilt. asscwi;tti'~i t.ttih

pri'>~iirii.itioii . I I I ~ p s ~ q ~ ~ ~ I I . t ~ i ; t i~I: \ <I-1 \! \ tC1i t . 1 I i t I 1 r t ~ r ~ \v'>rc3 usc~i i l l t l l ~ .

.rtirrlysis:

Page 192: SYSTEM DEFINITION STUDY PART IN

Pressurization gases arc Ileatixi C;O- for tilts LC), - t;itl/i ;ltlcf 11~~;tt'ti C;<'tIl for tllc I.('Ilf rank. 'The

total rt1;iss n!' tllz tilnk pressurifntil.)~~ d n ~ l propcll:rnt cfcl~ver\ h! s t ~ ~ t l l s 15 1 . 2 0 0 kg.

WBS 1.4.1.2.1.5 Flyback Propulsion l'hz tl!.b;~ck propu1iic)li suhs>stt.111 ~ .o~is is ts 01' the rtirhreatli-

ing ~.ngi~li.s. ;~cc.c~sori~?; . Il~c.1 >yste111. 1.1t1h;i~r. ; I I I ~ tb~lginrB init;tllat~ort n;i~.rlles. ducts. at111 tloors.

Flyhack tllntst is prc)vidi'~i 11)- t \ v c l v i b I 12) turhc!ict cilgincs. ea~.il having a S.L. static th r t i~ t t:f

.;ib.l)l)C) S. 1'11~, 11) I)acb ittc-l ix Kt' 1 . 1.11~. clr! 111;1ss of tllc sttll>! >tc t~i is 5-,400 kg.

RCS Propulsion 1'11~. rtb;iCtlon ~.t111f rc)l .!.\tctu i r~xluir'd ior .;tag', ori~~r~t;tticvl prior t o etltr!. an11 for

cottrrol littr~ng t n t r ) . I'iic sut>s!.steln tlr) m;t\z iz 5 i 00 kp.

Page 193: SYSTEM DEFINITION STUDY PART IN

WBS 1.4.1.2.2 Booster %lass Characteristics

The flyhack booster rliass charac'tcristics arc \IIOM.II it\ Table 1.4. i-4. I'llc' strirctur..:. i~ct;tc'c~t

rnvir;~t~mcnt prr~tection. ascent and ausilitity propulsion, and landing subsys'rnis acz.-)unr for F11': of t t ~ e dry r~iass. 'Illc ittducr'd zt~virr~tlttlent ~ r ro tzc t io~ l subsystt,rti t~lass i n ~ l u J t c t i ~ c vdditional

s l r u c t u r ~ l tl1icknr.s~ required for the "11~:1t sink ~*;1p3bilit\'" : i~ i i j thts bast' heat shield.

WBS 1.4.1.3 Orbiter Stave

WBS 1.4.1.3.1 System Description

Page 194: SYSTEM DEFINITION STUDY PART IN

Table 1 .4. 1-4 Booster h i a s Statement

PROPULSION

STRUCT'JRE

LANDING fir?:) AIJXILIARY S\'STE:.:S tNVlROr:'.:Lt~TAL

4% PROTECTION 6%

DRY MASS BREAKDOWN -

HAS (kg1

STRUCTURE 360 800

INDUCED ENVIRONMENTAL PROTECTION 46 400 LANDING ARO AUXILIARY SYSTrMS 3)W ASCENT PRC"ULSION 204600 AUXtLlARY PROPULSION 60 €OJ PRIP.lE POWER 4 300 ELECTI:ICAL CONVERSION AND DISTRIBUTION 4 203 HYDRAULIC COIIVtCSION AN0 DISTRI;IUTION 10 900

SURFACE CONTROLS 10 300 AVIONICS % COD EI~VI:;OU;~-YTAL CO:!TI;OL 200

~ ~ 0 k ' f l t i - 68 - 600

DRY t.lASS = 785 YO0

RESIDUALS AND RESERVES - 49 800

LANDING f:e\SS 846 700

LOSSES DURING FLYCACK 86 2C'

STAf<T 1 LYCACK b 1 A S = 032 :'3

FNTHY IN-FLIGHT L3SSES .' 7L"J

STAR- L~:TI,Y t:fCs = 835 6: J

IN FLlGliT LOSES l'r;li':> TO EF!TRY 27 C3U

STAGIhG h?A%: = BG3 TtifIUST DECAY PROPELLANT - 14 500

INERT h l A S = 978 100

Page 195: SYSTEM DEFINITION STUDY PART IN

VerticJ TIJ-The vertical tail was sized for a k t max qB condition of 177 kpa. It is constructed

of bAL4V titanium. The mass of the ver tkd tail is 12,300 kg.

Nasc Seetiam-The ncrse section is constructed cf 6AL-4V stiffened sandwic* rwnstntction.

fncfuded in the nose =tion are the exteriar winrtshiekls and the nose landing gear support bulk- head. wheel well 9nd d m The titanium sandwich is 3 cm thick and haz a m e a d thickness of

0.13 cm. The total mass of the nose =tion is 9200 kg.

Cfew Moduk-The crew module is an d l weided 22 19-T87 aluminum pressuretight vessel with

i n t egd stiffening. lnduded in the crew module are the interior (redundant) windshields. hatches

for ingress and egms. and support provisions for other subsystem elements located within the

module. The m d u l e accommodates a +man !light crew pius a 6-man passenger group. The crew module mass is 2800 kg.

Fucl (LH2)Tanlr - The he! tank is an id1 welded 6AL3V titanium sandwich pressure vessel. The

core t h i c k n ~ s is -3 cm. The m?zared thickness of the sidewall sandwich is 0.41 zm. The dome

sandwich smeared thickness varies between 0.2 1 cm and 0.26 cm for the upper dome and between

0.22 in1 and 0.28 cm for the lower dome. The tank mass is 2 1.230 kg.

Intertank-The intertank is constructed primarily of 6AL4V titanium sandwich. It provides sup-

port for second stage pp3loads and the paylad hay doors. The smeared thickness of the sidewall

sandwich varies from 0.13 cm to 0.25 cm. The intertank mass is 25.900 kg.

Fayload Bay hors -7I le paytoad bay door is 24 meters long and has a surface 3wa of 253 square

meters. It consists of two panels that open at the upper centerline. Each panel zcnsists of four

equal length se-mznts. The forward &meter x-ment incorporates deployable radiato~s. The door

primary structure is of honeycomb and iramc construction employing composrte materials. The

door mass is 5 100 kg.

Oxidizer 4 LO2) Tank-The osidizer tank is an all welded 2 2 19-T87 aluminum pressure vessel con-

sisting of two elliptical domes. The dome membrane thickness varies between 0.53 cm and 0.63 cm

for the upper don~e and between 0.f.2 cm and 1.00 cm for the Icwer dome. The tank mass includ-

ins slosh baffles is 20.300 kg.

Aft Skirt The aft A ~ r t i s approlimstely 12.2 meters long and is constructed of 7075 aluminum.

The skirt expenetices ~ n a x i n l ~ ~ ~ n compressivt. loadings of '6.200 N,cm forward and 33.800 Nicm

att during the bcwster 3p contlitioti. llic \11ieared thickness of the skin-stringer panels is 0.71 cnl

forward and 0.8 i cn1 aft. Thc aft skirt niass is 19.000 kg.

Page 196: SYSTEM DEFINITION STUDY PART IN

l"hW Se\rcturc Kite r l r n r r t structtrrc i.t~~t\t\t\ of an I I I ~ L ~ ~ I . ~ <<we i m ~ l u n l u ~ t h a ceuittunn k a n r

system at t i> k w r t <:td I r t t 1itrti.r p n t \ art- tilis*rl\\ritr~i t~ttib tfte t w c r N Y ~ H I ~ I crf the ~vnc frllabm and tiwr tltni*f p h i \ an- ti~ittrlktrdfr-tt 111tt1 the I - ~ ~ C - I ~ O F I I I k ' s t t %?!,\~cI ,-\ i i ) ~ t t t r t ~ ~ t t ~

TO75 dunrinunr 041 -41 t\tart~uttt \tnik-rttrt* I\ uWd I'tts- \taictural el~rtt~rtt-. .in* \ I Z C ~ itrr ttte

I ~ I E I ~ M I icl~td:ttc*~t t~ \~r lg J J? t~s t t r t ; tn~pttitiCitic*it IJz i i r t ,%i 1 2 5 . The ~ l ~ , t a p - tiont[ws%tw I~tadtng

BR t k uppf SVlk~11 c*f the <c>tlc tnr\ttiitl 1% 1 :.'hk1 \ i t 0 dttd thc .tii*rdgc unrdwri l~\tii,lc'\\ ot ttlr

alunllnutti 4,111 ptnzl I\ 11 JQ L I ~ I tltc a \z r .p cntw r.r'!ttxtr ~ n ' a 01's tttantiaii thnist rt%t is 23 square centitni*ten. ntt- tltnzbf \tnrL*tur%- n~.t\> I- lil. tikt h;:

WBS I .J. 1.3. I . 2 Iiwtwed .rln~iro~rmentsl &o?cu-tiam 111: rndir~rii I - I ~ ~nt~t~t tc t t t .~I i * r t ) t o i2,\11 s t b

s)stcrtt it*~\\i\t\ tit t f t H t - u ~ I r i ~ St11 laLc l~r\iil.ttttwt ( HSl t ~ * r t iltz z\tcrttrt utrt.r;c\ '>I' thz u ing. t.111.

dntl hd\. t :) J I ~ J W ttri..~~ \lticlrt ~tt\itq.t*rtlltlg HSI. t-; I 111t~rrt.tl e~ \u l .~ l io r t Ittr t l t c n t ~ ~ l i ~ n t r t d ttt

w r t ~ ~ t t ~ t I I I . I 4 b r c I . I I I I I lit. 11\.1\w\ c*t tlrc ftrrt.p*~rig arc-

44.s1)o kg. h~ I I in) LC. .1t1<i i t w h ~ . ~ L - . ~ ~ Y I I W I \ , \ I ~ I \ ~ I I I ~ .& ~ O ~ J I W ~ W \ tL- t t~ ~ t t . t ~ \ ,)(

SS.iotf Lg

Page 197: SYSTEM DEFINITION STUDY PART IN

Resmritatiiln gases are heated C'&_T for the LO. tank snd heated GH: for the LH2 tank. The dry

mass of the tank p-rihatiun md propellant delivery sptem is 1 7 . X ~ kg.

WBS 1.4.1 .J.I .5 OAIS Ptoprreion The orbital maneuver system cc#rl;iats of four (4) ASE engines

and =ctsmies, altd a ~ ~ i g t e d tank pres~~trizatrnn and prepelbttt dctivcn and storage zkmcnls. The fc4iowing engine <haf;i<teristii> wety used tn the analysis:

Btopellan t 10: LI1: Chamber h e s u ~ t 3.800 kpr

Area Rttio ,'MI t 4UIl. 1

Mixture Ratio F 1

Titrust (Viz) SQ.iMt1 S

S p z i tic I t l l p u t ~ i. Vdib 4'1 szc

WBS 1.4.1 3. I .6 Other Syateni.i Iftt. rfr.ttt.tttlitig \~ib\> \tt.ii~ rti.i\w\ It.i\t. iyi-11 t*\fitit.sti*ti 1t\111g

t l t % t o r ~ ~ ~ i irr Shuttic pn.~it<tck1 ut.tgltt\ I h t * ~ w h y \tatr\ ~tictu,ic KC'S prtpptiihi~tti. pritttc ~.-YIIT.

c*lt*'*ttii~i i ~ i * ! * ~ c ~ n t t ~ t ~ . i i l c i < i i \ t~ t I '~ t~ t t~ t i . it\ tir.tttiti ~ c * t t \ ~ b i t * i ~ .lilt! t~ i \ t~t I~ i t t t t r t i . .k-rt-\tift.~cc\ it-titrtlI\.

.t\tt*tirz\. ti\ trt lt i t l tcri l~i ctltitrrrl. pcr\t-t~ttt-i pro\ I\I~!;I\. ~ w n t ~ : ~ t l t ~ i . .ttiti [).I\ :i-.ici . ~ ~ c ~ - t i i t ~ t t ? c I . i t t c ~ t i ~

RcS Rt~yuhioir 1 trr ri*.titttlti i o~ t t r t * i >\\tcttt ~%rt-\it lc\ t c l r \t.tgt- ~-rni.r!t.iiit-n aii-\-rl*tt .~tt<i jlrte*r tr-

i .~ i tn. dti'i tt-r 'i-lttrt-l c iur tn?: r t i t r? I IIC \a i l> \> \ t i - t i i ,ir? t:t.i\\ . : ~ ~ O O hg

Prime Pcmer Malor p - u ~ * r s~~t i r , *~~\ %-E)II\I\I t11 .!ti t)- t i * ~-tl\\t-ri-iI t i i ~ * l cell \till\! \tctit 1vt-1 ttic - - c t r ; . l t r . i i .I I t i I I ' I t i t t I I t r .111 r 1'11~- \in t i i t i c t i c t c t i ! t c i I 2 5 0 0 i g

Page 198: SYSTEM DEFINITION STUDY PART IN

Avibain The autenicb sibsystem includes elements tor guid.tnL~, nuvigiticln and crlntntl, con'tmuni-

cations and tracking, displays atid contrds. instntmentation. and data prtriessing anJ %?S~arr. The subsystem ma= is 2400 kg.

EaviroMatntal Csntml The cn\irunrt~entai control subsystem tasintatns a hahtrable zrw~mnniznt

for the creu and paurngem. and a zotidtttoncJ thentlal en\mrtlrilrnt titr thi. ;. toniia. I t prcwidcs

the basic 11tc' support functiuns ior tile crew and pakwngen. and thrm~al runtl*d for wvrtnl sub- systems. It rilw ptsvldrts iitr rur 1%-h. p m r i w t t a n . l31z suh\>sts.nt itlass including clcwJ I c ~ p

fluids. IS ,'*M A;$

P& bu%urr?i Iltr fixed I r k suppwt s) sten1 and ~.zt?itwtueI accaniaiikfstions l i ~ r the 4-n~tn

flight crew are inclt~ded in this categon. lke uibsysten1 t t ~ .COO kg.

kmtnmel rtic 4-11;.1n tlrpllt ~ - n ' t a inct therr g a r and ~ C C ~ \ \ C V I ~ \ &re tnclitdi.J in this cstcgt*:ctn.. ( 7 % ~ 6-mm puswngcr grmp ~t iJ titi'tr g a r . J~.ic'\\c\tXc'\. .irtti f>.~g~?agc .tri' ;c+n>~tterccf cart of tilt* pa! Icuu. I

The subsl \ten1 rtum I\ 1 200 kg.

WBS 1.1. I . 3.2 Orbiter Mass Chsracteristnx

The orbrtcr nr,i\\ ~lt.ir.i<t~*iratu\ aria \\ho\tn In f.rbfc I 4 1-5. Stn~ctur t~ . ~ ~ - c ~ i r r ~ t \ for ~ppro\imatrly

5Q; o i rltL. \t-\gi. d n tlt,i\\ I71i. .!w*i*rlt i~rtq~ui\~ctn atld t h i * n ~ t ~ l ItrcNt.q.trc+n tllP\l \tCnlt .trc art

$cfdlt,~t~l,i! ' 1 . or' tilt* t in lira\\ I * 1 I f c ~ r ' fhc tfli'rt t l ? . ~ \ i H ttlt ?hi- rt*~ll;tltltfi'r rncilidl~lp

residii,il\ .irtti rcwni-\. p ~ * r ~ b n t i ~ l . I I ~ L ~ p . ~ 10.1ti i t ~ . ~ - < t r ~ ~ i ~ i t * ~ l . i ~ ~ < ~ t ~ - . ~ i l c l 111111gi1t lc>\x*\

Page 199: SYSTEM DEFINITION STUDY PART IN

- T* t .4.t-5 Orbier b7aS Sttaenoctlt

smucnIRE IYDU#D LNVlROtWENlAL W O T E m L M l M U G A N D A U X ~ AICeWTmOPULS#WY AUXILIARY PROWISON PRlYlZKIIRER ELECTRICAL COtiNEFtSIOM APID DSTF~IW&O~II mMtMILlC CO1NERS#HI AND DgTRIBUTfON SURF- CONTROLS AVtONiCS ECLSS A8D PERSOWEL PftOV OROrCTH

DRvWAsS= PE-@$EL AND PAYLOAD XCO&WOkT&O:JS RESIDUkL WJD RESERVES

LAPIDING MASS ENTRY If!-FLIGHT LGSES

Aux mSTEf.6 START ENTRY klASS =

4% UWIROTJWENTAL IKF LtGHT LOSES PRIOR TO ENTRY PROTECTION INERT MASS -

Uw

DRY W= BREAKOOWN

WBS 1 .4. 1.4 Launch Vehicle Costs

WBS 1.4.1.4.1 DDTSE Cvsts

The UIITGrE cost for the tligitt hardware and its asst>ciated proitnd support equipment is shown in

Figure 1.4.1-2 for both the booster and orbiter stages. Tlic total devcllopnient cost for both stages

is S 1 1.2B. Syste~iis test. which iiicludcs a11 the grolind and ~liglit test Iiard\vare in addition to the

test labor. accounts for in excess of 5V; of the total lieveloprncnt cost. The booster DDT&E cost

includes a new rocket engine ancl airbreather eripiiie devc'lopriieiit. Tlie orbiter DlJfScf. retlects use

of the Space Shuttle's SShlF's and sorne of the other siibsystems wliich were modified rattier than

new developments. All costs qttotcd are in 1977 dollars.

Since "System Test" is siich a large portion of the Dl)T&k cost .t further det.111 breakdown is s h o ~ t i

in Tahle 1.4.141 for both tlie booster and orbiter:

Tlic "Systems Tcst Lahor" entry ini lut l~s tile labor for hotli ground ;tnJ flight tcst. A five ( 5 1

flight development test program is planned for the vehicle. The labor iticludes all tlie zffort to

modify eqitipment. build test fisti~rcs. install instn~mcntation an~ i to c 'c~~~duct tlic tcst prcygmm.

Ai~prusiiiiatsly 25'; of tllc systetlis test labor entry is a t t r ih i~ tah l~ to tlic tliglit test portion and 1 1 1 ~

rcnictitidcr is as\~~ziatecl ivitll tile ground test a'-iivity.

Tile Para~netric Cost Irlodrl l!ctailcd results for hot11 I)O'T&f. i~nd the 'fFli ;Ire tahii13ted in T a b l ~ ~

1.4.1-7 ant1 1 .4. 1-8 for both the hooster and orl?iter stapes.

Page 200: SYSTEM DEFINITION STUDY PART IN

TOTAL VEHICLE DC)T&E = Sll.2E (LESS FACILITIES)

Figure 1.4.1-2 SPS Vehicle DDT&E Cat

Tabk 1.4.14 SPS Vehicle Systems Test Cost Breakdown

'INCLUDES REFURBISHMENT OF DYNAMIC TEST ARTICLE INTO A FLIGHT TEST UNfT.

ORBITER

S626M

$1 236M

(slO4M)

( s s 6 M )

m 6 6 M )

S 7 W

$2570M

SYSTEM TEST LABOR

GROUND TEST HARDWARE

SrRUCTURAL TEST ARTICLE

PROPULSION TEST ARTICLE

DYNAMIC TEST ARTICLE

FLIGHT TEST HARDWARE'

TOTAL

BOOSTER

S767M

S1620NI

(S170M)

(S725M)

(E72SNI)

S907M

S3294M

Page 201: SYSTEM DEFINITION STUDY PART IN

SUB ELCRENT HEtWOD SOUR- B l E N D SUP1 OTS ROD ROO MURBER 1RM TO CES FACTORS FROH % X CHPlX J

1 PR06RAH COST ELEHEUT 0 D D f t L SUDS 0 0.00 0 0 0 0.0 OPCODE= 0

UNXT SUBS 0 8.00 0 OPCODE* 0

1 ODT4E FICTOR 5 0.bb 0 Q 0 0.0 OPCODf= 2

U N I T FACTOR 3 0.06 0 0 0 OPCODE* 2

3 SPS IOOSTER-YIN6ED 1 DDTIE SUBS 0 0.00 0 0 0 0.0 OPCODE= 0

U N I T SUBS 0 0.00 0 OPCODE= 0

4 FLT VEH DES t DEV 3 D D l t E SUBS 0 0.00 0 0 8 0.0 OPCODf= 0

UNIT SUBS 0 0.00 0 0 0 OPCODE= 0

5 STRUCTURE

7 T A I L 33990

1 BODY

9 NOSE 65120 1BS

Q DDlaE SUBS 0 0.00 0 0 0 0.0 OPCODE* 0

UNIT SUBS 0 0.00 0 0 0 OPCODE= 0

5 CDTKE CLR 1 1.00 30 0 0 0.0 OPCCDE* 1

UNIT CER 46 1 .OO 45 OPcaoE* 1

5 DDTKE CER 1 1-00 30 0 0 0.0 OPCODE* 1

U N t l CER 46 1 .OO 45 1 84 OPCODE= 1

5 DDTbE SUBS 0 0.00 0 0 0 0.0 OPEODE= 0

UNI r SUBS o 0.00 o OPCODE- 0

1 DDTKE CER 1 1.00 30 0 0 0.0 OPCODE= 1

UNIT CER 4 6 1.00 4 5 OPCODE= 1

ORIGINAL PAGE W OF POOR Q U A L ~ T ~

Page 202: SYSTEM DEFINITION STUDY PART IN

I1 FUEL TANK 78980 L IS

SUB ELEHEWT NEIHOD SOUR- ~ L E W I S U ? ~ 01s 100 no0 NUM~ER LRN COST TO CES F A C ~ O ~ S FRO^ r x C ~ P L X x (000)

0 DOT&€ N/A 0 0.00 0 0 0 0.0 OPCODE= 8

UNIT N/A 0 0.00 0 OPCODE= 8

8 ODTSE CEU 81 1.00 30 0 B 0.0 OPCODE- 1

UNII C E R 8 2 1 .OD 45 CPCoOE= 1

8 DDTtE CER 1 1.00 30 0 0 0.0 OPCODE* 1

UNIT CER 4 6 1.00 45 OPCODE= 1

13 A r l FUELDTAWUASE 8 DDT&E CER 1 1.00 30 0 0 0 . 0 5040 L ES OPCODE= 1

UNIT CER 4 1 1.00 4 5 OPCODE* 1

1% DXIO lZER TANK 87450 L IS

If AFT SKIRT ltCS1O LBS

8 DDTLE C t U 8 1 1.00 30 0 0 0.0 OPCODE= 1

UNIT C E l 8 2 1.00 45 OPCOOE= 1

8 OOTLE C E R 81 1.00 30 0 0 0.0 OPCODE= 1

UNIT CEO 8 2 1.00 45 OPEODE: 1

14 THUUST STfiUCTURE 8 DDldE CER 1 1.0 30 0 0 0.0 $7970 LBS OPCo@r= 1

UNIT C F R 4 6 1 .OO 45 OPCORE* 1

17 A F T BODY FLAP 4 9 5 0 18s

8 ODTLE C E R 2 1.00 30 0 0 0.0 OPCtlDE= 1

UNIT CfR 47 1.00 45 o P c o n E = 1

18 F A I R I N G STRUCTURE 8 DDTSE C E R 1 1.00 30 0 0 0.0 2057Q LBS OPCODE* 1

UNIT C E R 46 1.00 4 5 OPCODE* 1

Page 203: SYSTEM DEFINITION STUDY PART IN

21 YlM6 EXTFINAC f C S 20 DDt&E CPI 8 1 1 .10 30 0 0 0.0 ?i)bzo LBS GPCORE - t

U H t t C € & 8 2 O.10 $S 1 Q* O B C B D E - 1

12 T A t l E X t E i W A l T P S 20 D@f&E CEI I 1 0.10 30 0 0 0.0 Fa10 1BS QFCQbE. 1

U N I T C E S a 2 8.10 4 s 1 84 DI'EOPC* 1

tf Baev EXTERNAL r p s 20 ~ e ~ i t C F U Q 1 0.10 30 B o 0.0 8360 1 BS O#'iC?:?E= 1

UNll C f t ? 6 2 0 . l e $ 5 aftuDE* 1

2 7 iANOlNC I AUX S V f DBtSt SLit3S 0 OPCODE- 0

UNIT SlIBS 0 O F C f l 9 i - 0

COST t 100

Page 204: SYSTEM DEFINITION STUDY PART IN

SUB ELENEN? n f T H O D SOUI- BLEND SUP1 07s BOD Nno N U n 8 E l L I N COST '1 0 CES FACTORS FRON X X CHPCX X t 0 0 0 )

!8 H A I N IAHDING GEAR 27 DDtLE CER 5 14630 C I S OPCOD€= I

U N l T CEU S 0 OPCODE= 1

2 9 NOSE LAWDIN6 6 E I R 2 7 PDT&€ T E R 5 1 5200 LBS OPCOOE- 1

UNIT CER 5 0 OPCODf = 1

SO S f P A R A t l O U SYJ 4600 1 BS

31 DRAG DEVICE 7680 L I S

33 R O C K E T E N G I N E S 2.171PE6 f H 2

2 1 ODTLC CER 5 OPtODC= 1

UNIT C E R 5 0 oF+caOE. 1

2 7 DDTIE CER 5 @PCODE= 1

UNIT CER 5 0 OFcOnF= 1

1.00 30 0 0 0 .0 6 7 t 2 1 8

1.00 4 5 4 8 4 21,016

AGGREGATED VALUES :0*557

32 DDTSC C F R 6 4 1 . 0 0 30 0 3 0 . 0 OPC( IPF= f

U N l t T F R 8 0 1 .OO 45 16 8 9 O r C O r ! t = 1

AGGREGATED VALUES

3 4 ENGINE ACCESSORIES 32 DBlSE CER 5 1 . 0 0 30 0 0 0 . 0 1 5 1 3 LBS U P C O D E - 1

UNIT C F R 50 1 . 0 0 4 5 1 6 8 9 UPCODL= 1

AGGREGATED V A L l l l S

36 AUXILARY PROP

32 OD781 CIR 4 0 1 . 0 0 30 0 0 0 .0 (7 t 'cnL~f: 1

UNIT C t R 76 1 . 0 0 4 5 1 6 84 OPCODE= 1

AGGREGATED VALUES

Page 205: SYSTEM DEFINITION STUDY PART IN

Tabk 1.4.1-7 (Continued)

37 RCS f 108 CIS

SUB ELEMENT METHOD SOUR- BLFNO SUPT OTS h,., HOD NUHnER LRN COST TO CES FACTORS FRO8 X % C f i P L X k (000)

3 D D T ~ E CER 20 0.56 30 o o 0.0 SO: OPCODE * 1 40 0 . c b

U N I T CER 7 3 0.54 6 5 4 8 4 5 , 8 3 4 OPCODE* 1 76 0.46

AGGREGATED VALUES 19.543

38 F L V B A C I PUOPULSION 4 DDTLE SUBS 0 0.00 0 0 0 0.0 217.467 OPCODE* 0

U N I T SUBS 0 0.00 0 0 0 87,534 OPCODE* 0

4 ODTLE CER 2 6 0.61 30 IS 75 5.0 13.741 OPCODE* 1 i t 0.39

U H I ' CER 7 3 0.61 C S 2 84 16,468 OPCODE* 1 57 0.39

AGGREGATED VALUES 30.50q

40 ELECT CONV I D I S T 4 DDTSE CER 14 0-21 30 0 0 0.0 26.011 10230 LBS OPCODt * 1 1 3 0.73

U N I T CER 59 0.21 45 1 84 20.192 OPCODE = 1 53 0.79

41 HVD CONV L OlST 4 D D I 6 E CEQ 5 0.75 30 10 9 0 5.0 48.689 26COO LBS QPCODE= 1 40 0.25

U N I T CER 5 0 0.75 45 1 84 28.113 O P C D D E - 1 76 0.25

42 SURFACE CONTROLS 4 D D T l E CCR 5 0.75 30 10 90 5 . 0 15.882 6270 L BS OPCODE= 1 40 0.25

U N I T CER 50 0 . i 5 4 5 4 8G 6.671 OFCODE= 1 76 0.25

AGGREGATED VALUES 2 9 . 0 4 6

4 D D T l E SUBS 0 0.00 0 0 0 0.0 49.417 OPCOOE* 0

U N l T 5 I lBS 0 0.00 0 0 0 25,112 OPCODE* 0

54 G.N.4 C 43 D D f 6 E CEQ 1 8 1.00 30 2 5 75 5.0 :3+640 957 LBS Of'CO1)F = 1

U N I T C E P 6 5 1 .OO 45 1 84 9,457 OPCODL= 1

45 COMN. t TRACKlNG 63 DDT&E C t R 16 1.00 30 25 75 5.0 14,724 Sl? 1 0 5 OPCODE= 1

U N I f C f R 6 1 1.00 45 1 84 7,391 OPCOOL* 1

Page 206: SYSTEM DEFINITION STUDY PART IN

TaMe 1.4.1- 7 (Continued)

NAHE SUB ELEMENT HETtlOD SOUR- BLEND SUP? OTS NOD NUNBER LRW COST T 0 CES FACTORS FRON X X CNPLX % ( 0 0 0 )

46 DISPLAYS 8 CONTROLS 0 DDTtE N/A OPCODE=

UNIT N/A OPCODE =

47 INSTRUHENTATION 4 3 DDTLE CER 594 L BS @ P C O D € =

UNIT CER OPCODE =

48 DATA PROCESSING 1 4 5 2 L BS

4 3 DDTLE C E R O F C O D E =

UN IT C E R OPCODE =

C DDTIE SUBS 0 0.00 C 0 0 0 .0 OFCODE= 0

UNIT SUBS 0 0 .00 0 0 0 OPCODE- 0

50 CABIN I PERSONNEL 0 DDTLE N/A 0 0.00 0 0 0 0 . 0 O P C O O f = 8

UNIT N.'4 0 0.00 0 0 0 Q P C O D E = 8

4 9 DDTLE C f R 9 1 . 0 0 30 0 0 0 . 0 O P C C D E = 1

UNIT C E R 5 4 1 .00 4 5 ClPCIIDf = 1

52 AIRLOCK

5 3 PERSONNEL PROV 4 DDTtE SUBS G 0 . 0 0 0 0 0 0 .0 O P C @ U E = 0

U N I T SllBS 0 0.00 0 0 0 o r c o n [ = o

5 4 L I F E SUPPORT SVS

Page 207: SYSTEM DEFINITION STUDY PART IN

ORIGLNAL PAGE IS OF POOR QC-

Table 1.4.1-7 (Continued)

SUB ELEHENT NETHOD SOUR- BLEND S U P 1 0 7 s M l tu MOD NUtlnER LRN COST TO CES FACTORS FROM X % CMPlX C ( 0 0 0 I

55 PERSONNEL ACCON

56 A 0 ENGINES 8 2 5 0 0 THR

36 DDTSE CER 4 3 2 .00 30 0 0 0 . 0 OPCODE= 1

U N I T C f R 8 7 1.00 6 5 OPCODE- I

12 89

AGGREGATED VALUES

5 1 A /B ENG ACCESS 8 8 0 LBS

38 DDTSE CER 5 1 . 0 0 30 0 0 0 . 0 OPCODE= 1

U N I T CER 5 0 1 .OO 4 5 1 2 89 OPCODEa 1

AGGREFITED VALUES

38 DDTSE CER 2 1 . 0 0 30 0 0 0 . 0 OPCOFT= 1

U N I T CER 4 7 1 .DO 4 5 OfCOPEa 1

12 8 4

AGGPLGATED VALUES

38 DDTLIE CEP 4 3 1 . 0 0 30 0 0 0 . 0 OPCODE= 1

U N I T CCR 76 1 . 0 0 4 5 OfCO@E= 1

1 2 84

AGGREGATED VALVES

6 0 DUtlnY UBS 0 DDTLIE N'A 0 0 . 0 0 0 0 0 0 . 0 CFCDDE: 8

U N I T N / A 0 0 . 0 0 0 Q DPCODE= 8

0 D D T I E Nr'A 0 0 . 0 0 0 0 0 0 . 0 OPCODE= 8

S N I T N.'A 0 0 . 0 0 0 OPCOI)E= 8

0 DDTLIE N /A 0 0 . 0 0 0 0 0 0 . 0 orcon i = a

U N I T N ' A 0 0 . 0 0 0 OPC@DE= 8

6 3 ASSft4Bl.V t CHECYDUT 3 D D l l E NfA 0 0 . 0 0 0 0 0 0 . 0 O f ' C U r ' C ~ 8

U N I T rACTOR 4 0 . 1 5 4 5 O P C [ l D E = 2

Page 208: SYSTEM DEFINITION STUDY PART IN

suo E!FBEWT WETHOD SOUR- ELEND SUP' 01s WQ WOO ~UIWXR LRW COST TO CES FACTORS FROPI X X CPIPLX 5, t 000 )

3 DDlSE CEP* 0.00 0 4 % 0.0 OPCODE= I7 85 0.00

U N I T N / h 0 O.O@ F OPCODE= 8

3 D D i i E SUBS 0 0.00 €4 8 0 0.8 1.293.844 OPCOOE= 0

urat r SUBS o 0.00 o o o o OPCODE= €4

46 S Y S T E M TEST LABOR 65 DDTLE CER* 4 0.00 0 G tl 0.0 766 * 968 OPCODE= 12 33 0.00

UNIT N/A 0 0.00 0 e @ b OPCODE= 8

4 7 6RQ TEST HONE 65 ODTlE SUBS 0 0.00 0 0 0 0.0 l.b2C*104 OPCODE= 0

UNIT N I A 0 0.00 0 9 0 0 OPCODE- 8

68 STRUCT TEST A..;ICLE 67 ODTtE FnC UN 5 1.00 0 0 0 0.0 CPCODE= 3

UNIT N / A o 0.00 0 GPCOttE= a

i t ovn TEST A r r x c i E 6 7 DDi8E FAC UN 4 1.00 0 0 0 0.0 OPCODE- 3

UN IT tvJA O 0.00 0 0 O OPCOIE= 8

70 PROP TEST ARTICLE 67 DDTLE FAC UN 4 1.00 0 0 0 0.0 OPtOOE= 3 6 -1.00

7 -1.00 UNIT H/A 0 0.00 0

OPCODE = 8

71 F l T TEST HDYE 65 DOT&€ r 4 C UN 4 1 . 0 0 0 0.0 O ~ c O D E - 3

UNIT H/L 0 0.80 0 OPCODE= 8

3 DOT&€ C E R * 4 0.00 0 0 0 0.0 o f C O D E = 1 2 32 0.00

UNf f N I I 0 0.00 0 O.?CODE= 6

Page 209: SYSTEM DEFINITION STUDY PART IN

SUB f i f ~ f w r R E ~ W D B seut- rirwn surr ars t, noo wunstt i r r t ~ CES ~ A C ~ O ~ S ~ R Q N r crtrit x

Q ~ n i i e r * c r o e L.BO o Q B 0 . 6 nrreht- 2 P: t . B O

L I .?B l t N t l U - A ll 4 . @ @ 0

i i r C Q P E 3

Page 210: SYSTEM DEFINITION STUDY PART IN

Tabk 1.4.1-8 Mta D D T ~ and TFU Cost Estimrte

c= W i a g d Orbiter)

I DDTtE SUIIS 0 0.00 0 0 0 0.6 OFCODE = e

U N i l SUBS 0 0.00 0 OPCODC= 0

F t T V f H OES L DfV 3 DDILE SUBS 0 0.00 0 0 0 0.0 OrC30Ez 0

UYI T stras o 0.00 o GfCODE* 0

5 SICUCTURE 4 ODISE SUBS 0 8.00 0 0 0 0.0 OPCOPE: 0

UNIT SUBS 0 0.00 Q 0 0 OPCODE = 0

5 DDlLE CER 1 1.00 30 0 0 0.0 OPCODE* 1

UNl T CE P 4 6 1 .OO 4 s OPCODE= 1

8 BODY 5 ODTSE f U @ S 0 0.00 0 0 0 0.0 nPconr - o

UNI t 5URS 0 0.00 0 (3PCDOt. 0

9 NOSE 22220

8 DDTtE C f U 1 1.00 30 0 0 0.0 orcoot= I

UNIT C f f f 46 1.00 45 OPCODE= 1

Page 211: SYSTEM DEFINITION STUDY PART IN

e DOT$& C f l 2 1.00 10 0 6 6 . U OPCODC. 1

UNl* t t 8 ? 1.00 4 1 OriTQDt- 1

i f FUEL f&WU ~ i r e o i a t

I ? . 3cr

lZ*Q19

8 OQT$E Cfl 1 1 0 50 8 B 0 . 0 QpCQDt* 1

U N t l CEe 4 6 1.08 4% CPC@Pf I

16 F A I R I N G SlRtiCTU1E 8 bbI!kf CER 1 1.09 10 8 0 0.0 3 5 19 i l)S Or' fOP€ * 1

U H I I C F R 4 L 1.00 * 5 I a* OpbIJFf * I

Page 212: SYSTEM DEFINITION STUDY PART IN

SUB ELEHEWT NETWOO SOUR- BLEND SUFT 0 1 5 WLI ~ 3 0 i l ~ t t e f r LRN COST T O C E S F A C T O U 5 FROM X 5 ClFLX [ X 6 000 )

i D O T & € SUBS 0 O P C O D E = 0

U N l I 51185 0 O P C O B E = 0

21 YEWS Errfanit rrs 3 3442 SQF

2 0 D D T t f CFP 8 3 O P C O D E = 1

ilY!T CEP 84 OPCODE= 1

Z Z T A X I EXlfPWAL T F S - 7 2 8 2 SPF

2 0 D D f I E C E U 83 O P C O D E = 1

U N t T CEP 84 O P C O D E * 1

23 BODV E X T E R N A L T P S 62COS SQF

24 BlfE H E A T S H I E L D 1 6 9 7 S0f

20 DDrtE C E R 8 O P C O D E t 1

UHIT C E Q 5 3 O P C O D E = 1

2 6 P U P G E . V E N T . & Q U A I N 2 0 DDTdE C E R 40 23lC L 6s [?PCODE- 1

U I ~ I T C E R 76 OPCODE- 1

2 7 L A N D I N G i A U X SYS OOTLE SUBS o OIICODE = 0

U N I T SUDS 0 o P r c m E = o

Page 213: SYSTEM DEFINITION STUDY PART IN

ORIGmAI, PAGE tS Ok' RwH QUNaTY

nrm sus E L E ~ E W T n~rnoo soul- rirno surr ors NOD noo NUHBER LRW cost TO CES FACTOUS FROM t 1 CNPiX f 1000 b

L I BAtN IANDKWG SEA1 27 ODT&E CEU 5 1.00 0 0 6 0.0 711s 1 SS OPCOOE* 1

UNIT t E R 56 1.80 (IS 4 8* OPCODE= 1

A66UE6ATED VALUES

?* -56 LANOlllG 6 E A I Z t ODtl lF ECR 5 1.00 SO @I 0 0 .0 44BO i I S OPCODE* 1

UNlT C i U SO 1.00 65 OPCObt* 1

36 SEPARATIOW SVS o DOTIE N ~ A o 0.00 o e o 6.a OPCODE* 8

UMIT N/& 0 0.00 0 OPCODE- 8

4 ODTlE SUBS 0 0.00 0 0 0 0.0 OPCOPE. 0

UN I f SUBS 0 0.00 0 OPCODE* 0

33 ROCK f T f NCINES s t o a r s r r o 0.00 0 0 0 0.0 BPCODE= 5

UNIT i 0 0.00 0 14 8 9 aPCaDE= 5

AGGREGATED VAlUES

56 ENGINE ACCESSORIES 518 1 BS

32 OOf&E CCR 5 1.00 30 0 0 8.0 bPCODE* 1

UN17 C F R SO 1 - 0 0 45 1% 87 OFCOO€= 1

AGGREGATE0 VALUES

5 5 PROPELLANT SYS 2994 LBS

32 DDTSE C E R 6 0 1.00 JO 0 0 0.0 O P C O Q E * 1

UNIT C E R 7 4 1 .OO 6 5 14 6 4 O P C O Q E * 1

AGGREGATED VALUES

34 A U X f l A R Y PROP 4 QOTZE SUBS 0 0 .00 0 0 0 0 .0 L?fCODE* 0

UNIT 5118s 0 0 . 0 0 0

Page 214: SYSTEM DEFINITION STUDY PART IN

SUB ~ ~ B I E N T nttnoo SOUR- DCCND SUP? QTS NOD noo wunrrr CUN COST 10 CfS C k C J Q R S F f @ O ? l % X CMPLX t ( 0 0 0 )

6 OD?&€ CEU 2 8 QQCODP* 1 CO

U M l f C F I t 3 QPCODE* 1 t i

5? res Z l b S 1@9

0 . 6 30 S 75 5 . 0 0 . 3 9 0 . ~ 1 CI 2 a* 9 . 19

AGGUEt4TCO VALUES

*a ELECT t 0 N V a OIST 4 l i b 0 tas

i t HYD eorv r arsr 8 8 0 0 1 US

6 2 SURFACE CONTUOlf *I52 1 BS

I o n r r ~ sans o @f'EtrOt - Q

U N I f *.LIPS U Ofi'CflPt - 0

Page 215: SYSTEM DEFINITION STUDY PART IN

ORIC5'4L PAGE IS Oh' PWR QUALfTY

NO NAME SUB ECERENT WETHOO SOUR- BLEND SUPT OTS MOD WOO NURBER 1RN COST TO CES FACTORS FROM t x C ~ P L X % r ooo r

I& b tSPLbVO 8 CONfUOlS 4 3 DDTIE C E I 18 1.00 10 25 75 5.0 36.087 ,1520 1 I S OPCODE* 1

UW11 CER 43 1.60 45 1 8% 14,125 OPCODE- 1

47 INSTRUIENTITXON 4 1 DDTIE CER 1 S 1.00 3 0 2 s 75 5.0 3.360 516 1 IS OPCODE* 1

UNIT C E I b 0 1.00 45 1 84 2,621 OPCODE- I

48 DATA PR9CESSING 43 DOTlE CER 17 1.00 SO 25 75 5.0 7.612 1452 1 BS GPCODE- 1

UNIT CER 42 1-08 45 1 84 5.862 OPCOPE. I

41 LNVXRON CONTROL 4 QDlgE SUBS 0 0.00 0 0 0 0.0 56 COO OPCODE. 0

UNIT StlBS 0 0.00 0 0 0 10.508 OPCODf = 0

SO CABIN I PERSONNEL 41 ODT&E CER 9 1.00 30 0 0 0.0 17.066 ssoo LBS O P C O ~ E = I

U N f r C E R 56 1-00 45 1 64 4.851 OPCODE= 1

51 EQUIPflENf 49 DDTtE CER 1 1.00 30 0 0 0.0 18.125 59CO L I S OPCODE- 1

UNIT C tR 54 1.00 4 5 1 84 5.154 OPCODE = I

52 AIRLOCK 41 SDTiE CER 3 1.00 30 0 0 0.0 1.228 ,110 L IS OPCODE* 1

UNIT C t R 4 8 1.00 45 1 84 50 2 OPCODE. 1

SS PERSONNEL PROV 6 DDTIE SUBS O . 0.00 0 0 0 0.0 5.170 OPCODE= 0

UNf t SIJBS- 0 0.00 0 0 0 1,565 OPCODE. 0

54 L I F E SUPPORT SVS 53 D D t t E CER 1 1.00 30 0 0 0.0 3 . 5 5 7 770 1 BS OPCUDE= 1

UNIT C E R 54 1.00 C S 1 86 1 ~ 0 3 4 OPCODE= 1

Page 216: SYSTEM DEFINITION STUDY PART IN

sua E L E ~ E N ~ ntrwoo rout- O L E N ~ suer ors nw reoo tsumr~t i t n ~ O S T t o C E O rretets ~ r o ~ s s emerr f t 10e j

56 OMS f w e t W c S 38 o b r a ~ * a 0 . 0 0 o a o 0.a QPCQPC* 5

U Y t T .C 0 0 . 0 0 4 89 O Q C O P t = S

1ESRf S A T E D V A L U E S

A G G R E G A T E D V A L U E S

3Q R h T L E C E R 8 1 2 . 0 0 30 0 0 0 . 0 r ? i ' C O B t - 1

UNIT C E R 8 2 2 - 0 0 6 5 DPCPD€= 1

b I DUIINV Y O S

Page 217: SYSTEM DEFINITION STUDY PART IN

ORIGWAL PAGE I8 OF RWR Q U m

Taw 1.4.14 (Cunttnwdl

SUB C L E ~ € N T n~twae sour- BLENO sutt otr nao noo uunsr~ CRH COST to CES F A C ~ O R S FRBN % t C ~ C L X * f t 0 0 0 )

3 oetaf SUBS o 0 . 0 0 0 o o 0 .0 BPCUOC* 0

UIPtT SUBS 0 0 . 0 0 0 0 0 r)PSPPf 0

66 svstfns TEST LADOR 6s 00t te EER. 6 0 . 0 0 o o 0 0 . 0 OPCODE 1 2 5 5 0.OQ

UNIT N-=A 0 0 . 0 0 0 OPCB13f 8

6 7 P P t t f f A C U Y 6 1 . 0 0 0 0 0 O . @ OrconEe z

UNIT N I A 0 0 . 0 0 0 i l i ' C O D f * d

ra w t r t F A C UN 1,:s o o o G . Q t l P i l l P l 3

U N I T N 4 0 0 . 0 0 J O c C O E I - 8

Page 218: SYSTEM DEFINITION STUDY PART IN

?l F C t VLW D O & 1

re earrr csc r x s

SUB E L ~ ~ E H I N E ~ ~ O D sour- rc~wa s u ~ r erz NQQ neo ~ u ~ r c t crn CQST T Q CLS i4c l0rs Fran % % CRPIX t I OQO J

Page 219: SYSTEM DEFINITION STUDY PART IN

WBS 1.4.1.4.2 Ruducth Cost

ORIGINAL PAGE IS OF PtWR QUALITY

The initial unit production cost for both the SPS cargo vehicle booster and orbiter is shown in

Figure I .J. 1-2. The theoretical first itrrit cost (TFU) for the booster of $82 I .SM lttllt Sb2S.SM for

the orbiter were developed using the t3oeinp Rmmetric Cost M d e l (PCM). n ~ r following is a brzrlkliowt~ of (he TfX: cost hy t~l;?ior subs! steitl :

Subsystem

Stntcturc

TPS

%lait1 Prcrpulsion

Landing and Auk. S! s.

F1) back Propulsion

Otker Subsystems

Bc ~ s t c r Orbiter

2 I f : I hi?

N .A 10'7

245 ,,-- ,h :

1.3:; 41 ;

1 1 ' ; N .-I l*t 2h:f

The gmutld support zquipti~ent TfX: cost is ~ s t ~ t ~ ~ a t e d to 1 % ~ S 102 .XM and S I 31 Obi ior tllc booster

atid orbiter respectively.

WBS 1.4.1.4.3 Average Cost Fiiaht I1 Satellite Yesrl

The cost flight bre.ll;~ta\vu sl1o\vt1 ln t:igurC 1.4.1-4 is thc ;lvcr,igc i~ r r tllc 400 ycr yi'.ir I.tiinci1 r..itc

J I I L ~ 14 yts.lrs of cywr,~tion. 1-111. t . 1 ~ t11gl1t i t ~ ~ t i ~ s follc~\v tli,: SI~iit tie l!scr ('11,irg~- I't~li,.> g i~ ic l l* l~ t~~~s

\vitt~ tile foll~)\vil~g ;tti'iitiotls.

1 . :\t?lortiz.ttion of t!tt flcc.1 protli~ction iOst>

. inc-lusion of the rate t ~ ~ o l i t i ~ t'erst r l i i~ t c > ~ I I C lt;tril\v.trc tlu;tntitics rcqi~irt-il.

St r te Flcmen t llesign Life Refurbisl~nicn t Replet~ishnieti t

-\trfr,itt~c I t11glt i .IL,~I 100 11ig11t ~2 0. I Ss . per fl~gllt

.:O3.( trf protIi~cttt>~t

L'~\SI

Page 220: SYSTEM DEFINITION STUDY PART IN

I BOOSTER

tpoe 7

COOSTER BOOSTER S CAGE GSE

ORUTER

ORBITER ORBITER STAGE GSE

wmA' UNIT COST 600- (Shl)

(00-

200-

0

Figure 1.4.1-3 SPS Launch Vehicle Production Cost

PROG INT & hlGU r

TWOSTAGE WINGED VEHICLE

PRoG IMT & MGMT

7 , ,+ER >'- BEMBLY

OTHER

LANDItCG & AUX "ST\-

MAIN T

PLACEMENT OF 1 SATELLITE PER YEAR (400 FLIGHTS)

14 YEAR PROGRAM

ANDCIO

CWSTER SUBSYSTEMS

,

, : k E E O N +- ASSEklBLY

NO ATTRITION

LANDING ti AUX SYS

MC.IN \

PROWLSION

6

\ - -

---- PROPULSION

TPs

STRUCTURE -T--

AVERAGE COSTIFLIGHT = f13.447hl

Figure 1.4.1-4 SPS Launch Vehicle Average CostlFlight (One Satellite/Year)

---a

\ -,,-,

\ - - --

-

-, AND C/O

ORBITER ' BUCSYSTEMS

i

f 4

STRUCTURE-

- 4

Page 221: SYSTEM DEFINITION STUDY PART IN

ORKWAL PAGE IS OF POOR Q I ' . W

rhp effrct i\f J tagt t lift' J I I ~ d t tnt iot~ r,itc vdnattons dre \hottn t t ~ t - t p r r 1.4.1-c Hdzt8d otl ~ I I C I P

tretrds the n . ~ ~ o t ~ ~ t ~ ~ t ' n d t ' d podl.; for Jeagn Itfr .rnd Itttrtttt~rt rate dry St@ lligltta .inr! 0.1 ' rc>pc~-tl\;l>

t:l~gtit tt.trd\\arv pn~ittc. t iot~ anti zpdn's I, ttlc largest \tt\gle ttt'rlt \itti, the hw\tr.r .!nit <jrt\ttcr.

accounting b r 55'- ~ I I J 45';,, t . t . ~ p ~ ~ t i \ e l l . Pr~lpi'lfd~lt ctlst . i t~toi t~~ts te\ I " ; elf tl~t* total per tltgttt

<<>st

WBS 1.4.1.4.4 DTwt of hunch Rate on C'ost F!ight

.innuat bunch Rate Cost Flight Tr~nspart Cos? 5 kp ( S lbtllt

400 1:ll$l1t> 5 : .: 44-11 .:I '1 t14 .:S)

1~111) 1:ltgftts 3 111.'21\t . - ->..:i f I 1.51ji

Page 222: SYSTEM DEFINITION STUDY PART IN

Fire 1.4.1-5 Effect of k s @ Life a d Attrition Rate

*-AGE W W E D VE HiCLE

% +

tS - AVERAGE C06TtFLrnT )w

Uoo FLIGHT LIFE- WO AlTRITKEd)

m 7

TWO-STAGE WINGED VEHICLE 11 YEAR PROGRAM

W T T L E h#) A T T R l T m 3W FLIGHT DESIGN LIFE REFURBISH1ClEN 1 CYCLE

AIRFRWE EACH 100 FLIGHTS ROCKET ENGINES EACH SO FLtGHTS

m 1 SATELL1TEIVEAS

u 15 4 MTCLLITESA'EAR

a a

JAId 1!!78 10

fO ' 5

0 400 600 w. 000 2,000 5,oOo ANNUAL LAUNCH RATE

l2

4

Figure 1.4.1-6 Effect of bunch Rate ~ I I ('cat . :*r Flight

L c a m m E o

- DESIGN LtFE AtiO AlWtITIOT4 CRITERIA

1 - 1 I - 1 U J -

0.1% 02% 0.4% G b f t 0.S- 1.W ATTRIT ni;) RATE

Page 223: SYSTEM DEFINITION STUDY PART IN

ORIGINAL PAGE lS OF POOR QUALITY

Figure 1 -4.1-1 Luncher"Th,-tor Concept

Page 224: SYSTEM DEFINITION STUDY PART IN

W t ~ h r l zngttt.: nr.~ttit~~tr.t~i~*c I\ ~ t r t i ~ i i - ~ t e ~ i t t ~ bc fire tt~dtibr j ~ ~ r t t t ~ t : ot' the t*otbtrr crjwrdtlorl\

Page 225: SYSTEM DEFINITION STUDY PART IN

SYSTEM VERlFiCATiOW TEST

OW-ORBIT STAY TIME 24

CWO WORBCT CZL- s- 1 i&La

a Wlffi OPERATIOIS

YOVP TO lrMINTENAME FACILITY 0 2

f RANSFER TO FACILITY WIYER ='I

CIUW AND REDUCE CM DATA O 0 0

W T A L L ACCESS EOUtPAAENT 0 PERFORM SCHEDULED AND 8 M

UNSCHEDtJLEB MAINTEMANCL t I 12

W A L L PAY LOAD

SYSTEM VERIT1CibTK)M T EST b

HOVE TO I N 1 EGHATIQIU POSIT ION -2 a

Figur~ 1.4.1-9 Orbiter Ptrwssing Timeiim

Page 226: SYSTEM DEFINITION STUDY PART IN

@&'FALL tST STAGE OIO LAUhRHEWeREcm &

F i i 1.1.1-10 Integrated VAicC Qmatiotrs T m

Wns? TI& 1.4.1 - 9 V&kk Tirmrmtwi Andpis Summary

VLHKLE CC?F(CEPT STAGE aff INTEGRATK)# TOTAL ONLY AN0 LAUNCH WS TUWtI'AROUND

WtlYGflVlNG

tlOOSTE ti 63Hourzs %HOOFS

ORIiTER JO HOURS 127 HOURS

BALLlSTlC tl4LLtSTIC

--------

iKIOSTtR W tsCIUItS 34 W R S 127 mWf?S

WPER STAGE 102 HOURS 10 W R S 132 HOURS - 1

Page 227: SYSTEM DEFINITION STUDY PART IN
Page 228: SYSTEM DEFINITION STUDY PART IN

The wemll vehicle getmetry of the personnel !sunch \rlitcie is hewn M Figure 1 . - I . -1 . All ~ t a j o r

M y secttun tctr.tttuns are ttiblcd m ttte kd!, statton ni~itihcrittg systrttt. Tlte ~LXX.IZP stage u 22.41 111 it1 lettg~h ~ i f t t s S.40' nt dianieter st tlte k'r tntt'rfxe and 1 nta\ittttltn rftaneter of

l R . t Q @ nr. Four 44) booster zit@t;lrres are iirountr~f or\ .I ' C#IK tn dl-meter f t ~ c buc3stt.r stage pro-

pellant rank wlttntes arr 1035 niZ !or LO: attd .iJ? rii3 tctr C * j t i t ; .

The kf ct\rrall Iettgth i t t :' Q? ~n r ~ l l ~ - ~ ~ r \ the dinrier Ietigttt a\ ct~tktp~rt\l t@ tltt iurret\t Shttufttc FY du+ to the wductlcm In pn>ptll.ist 1,tsrf t 'r~tii -0,; 0-5 h? t i t 54' O.:S hp.

WBS 1.4.:. f h ~ t e r Stage

Page 229: SYSTEM DEFINITION STUDY PART IN
Page 230: SYSTEM DEFINITION STUDY PART IN

Auxiiiuy Reputdon I'tte auxiltat) ~rr lpul~trrr \) ktrrtr somat \ c r i t t r t b latid~ag hystett) ,ittd reaction

cantntl sg\tent. Ille landing \ystcrt\ \tda sitcd t r l yn-si it! . tttr trrmitttll drii4ler.tticr~i and 10 prrw~rr-=

fed storeable ~~n~~l r ' i l i t i t i'npnn? verc \eirctrd. Ihr hrseitttr. I.indittg zrlgittr ia the .-ttsn~jet Ftrgrnc M d c l AJlf i5 I bhich uses X -04 t'l)34tl pn~ixi.lla~tts and ltds ;i thrust rartp %if betmeen

and sb72WX. Ihe lvttding systettr t in ntari\ ts c\ttt~\atzd t o jt. 5 i Q 2 kg. IKr w.i.action control

systztn (Kf'S1 prt\titlt*\ for \t.i.ur' itrtcnt.ittntr prtctr to c t t t ~ attd ~c~tttrr>l Junilg the n8rntry. Four ($1 sets of thnrstrrs (4 titnnters sct\ are rttstallcd on ttti. tetticli. Ihe csti~natrd it!as\ 13i the KCS systet11 1s 3 24 kg

WBS 1.1.2.2.3 Buc~\ter Cost Estimate

Ttte t * :Hs btl~l\t~*r 1)l ) I 'Xi .i~hi I \ t { ' I ~ I I < t \ \ f c x t t ~ ~ i . i t ~ . \ 11.1tc 1wt.11 ~lt*\t.lt*p~-~i I I ~ .I iiran!ir*r \ittitI.ir 1')

tl1.11 i te~r tk . r i 111 k;tti*t: I 4 I -I I flc- Illf I S t .ilrti ~ r r ~ t r . i l j\rtkfll<tl%~ll ctl\t t;rr tttr boirstcr arc

dl't\tli I l l I .it\IC I 4 : 4 \ l j l l I .\ t \ , ) \ I \ ) I \: 4"E 111~-11itlt~\ t l l \ ~ b.l\i.. \l:ig<- ~ I ' . \ I ~ I I ,111,l , ~ ~ \ ~ ~ l ' ~ ~ ~ n l c l l t

I . I t . I I L r ~ ~ ~ . ~ l ~ t I I t 1 I r ~ i t i I \ ~ - I I IZ IL* \ for tltgllt

lc\l .iItb all, Ilit!~.~! I l l I I i L * \ \ \l<'lll t\ '\I ~ ' , I l i * + t t \

Page 231: SYSTEM DEFINITION STUDY PART IN

tandtng Systrtit

RCS

Page 232: SYSTEM DEFINITION STUDY PART IN

OR

IGIN

AL PA

GE IS

OF PcM

,ll QU

ALlTY

Page 233: SYSTEM DEFINITION STUDY PART IN

Pry

Q

O

a a

Page 234: SYSTEM DEFINITION STUDY PART IN

ORICiINAL PAC;!?

OF POOR QU

~

Page 235: SYSTEM DEFINITION STUDY PART IN

ORI(XNAL PA

GE IS

OF

~t K)R

QI~A

J,ITY-

Page 236: SYSTEM DEFINITION STUDY PART IN
Page 237: SYSTEM DEFINITION STUDY PART IN
Page 238: SYSTEM DEFINITION STUDY PART IN
Page 239: SYSTEM DEFINITION STUDY PART IN
Page 240: SYSTEM DEFINITION STUDY PART IN

The ~wsirrent STS External Tank IETI was mditkd for the urkshrn applirxtiun. In addition t o

the propellant reduction whk* results in a maifitr w c r d ET. the b r toads are introdused

into t k aft portien of the LH: tank rather thrn in ttrz intcrtmk &- Rte wefslf ih-s to the ET are noted CSI TaMe I .4.>l and t k ~ritinmted ch;tnges in mass are show?. The m a umxt;ainty

of the c*an* we* srrcwntttit fa ;ts f&ows:

o 5% uncertainty i)n Cktrwrs 0 iE tiecertainty m arkfitions I , a m t h )

7he mass ~ h a ~ t e r i s t k s of the ET rekxt the remits s f i~kwpmting the changes ~ o t r t j in rhe previous xvtion t l.4.1.3.1 i. A niaa sumnlan for the Estemal Tank is shown in TaWe 4 -4.24.

The D D T i t zmt estimate for the ..,crlification\ t o the Extsrnd Tank haw k e n rsthnativt to k !&OM. The initid t 1 itnit c a t was&temtincd bscd on a m r e w of the Shuttle User f h a n y Polrq

cmt cstunatrts. The Shutrte User Change P~ l i c ) identrfm an €-I' initial itnit cmt o i SZ.4QbM

( i 9 t S S ) and urhxljuet~t unit\ ha4 c#r a Q 1' tn~pro\zment i U T \ c n e w tiat9 wcre escalated to

197 7 Jdbh mJ the cost inIp;lits due to t11c nlchitticatinns assessed. The result is A ti~t't*w?k'al tint

unit ccsi of E4 SWM. .-\ "1'; ~ t n p n ~ \ ~ n i c n t zune was uxd to determine thc c a t o i ;r+lrlitional

units required ro ati \ l j the prograin requtrzniznt.;.

WBS I .4.2.4 Vdide P c r f o ~ ~ n c e

nis personnlntl zsrrtcr \ e h ~ i l ~ pcrfc?nr~.:ttic w ;r\ c.ilculafcd h a d ott tlic fi~llaw~ng ground rules

o liennedy Space Center (KSC1 was the iarirld site (I~titude = 2b 5") AV Rc\r.~r\\ = Sc'; hi'i

o h l i w r ) <h.t)!t

,4ltrtudr. - 1'' Lrit ciri.ul.tr

Inclinat~on = 3 I"

Page 241: SYSTEM DEFINITION STUDY PART IN

IkTE R f AX); ZtU%k bthi'tflht 1) P.\hL-LS - SKlX S f G l S ~ ~ O R I ~ 1x1 t tiror at :w ~LCYC;L I t t ~ v s ~ m ~ t r u STAB FR.AM~ etfttrt SKR rtikt*sz ~t *u DkLt It SRP FttKk S f t It TtlriiS #iWF\ f i l l \ 51 RI\i;t R SUTtOS

MOW&\ St48 E K I U L S

cxr s a w l \ Pet S\t .R%\ I c.t t .

PKL s\t R %\ 1 i.$):

S\ ' I )R~KI \ . S R H t .1 t

It11 # I t.il \ \ \ . I i 1 \ I1 t l'b i

- t a t

- If* - Jlo - 6:s - 4th + sir - 43

Page 242: SYSTEM DEFINITION STUDY PART IN

StMctutrs

LO, Tank Intertank LH* Tank -

'Ihcnnal Proteetion hpulsion & wch. Sys.

EftrTtrical Sys.

ORB A t k - h a t s

Change Uncertainty

ET Inert Mais Un*ables

ET Mcco Mass

Page 243: SYSTEM DEFINITION STUDY PART IN

T;W P' ignition = 1 .:4 Maximum Dyn;unrr Pressure

Maximum Acc~iemtiun = 3.0 g's

Bum Time = 54 1.9 s~ ' r )nds

$lie p c m n z l carrier psylrr;td perkmance tr sirtnt~tarrtcd tn Table 1 3.2-7. .4 net paglusd ot

7-: 550 Lg IS delacred 10 fhe 37' Lttr irrb~t r h c irrbtter c\tArit\ tt~t~lu~fttip the sitttc,rl*~tdl jctft\~*n 01'

the FT and the resulting \elticle m a s ;\? cwnt an. rrt~tcci on Table I -I.,'-'. lhe Shuttlz orbtter (HIS

system [urfontts the majortt? of tlte tmbttal mant.\r\rr\

A t-ww carrying mrdulc for trat:.;pcwttttp per\otttteL III t I ~ i Shutt li. ~..trpo ha! lids I r r '~*~i tlrftticd t e

~'~tdb1ts.h the n ta s :snd iihf of t h ~ \ rlrm:*tit 111 t l t ~ I rJtl\~hWtdttOll S\ \fettt 1%'. ~ i i c ~ l i t l ~ i r l t i i i l \ t i \

shown in E'tpttrv 1 4 - 2 .A c n . ~ SIN 01' Clt ~iir*n per iltpht \\.I\ b.~\i*lt~~i'd tc*r pttrlBrBsr\ tit' thi* \tttd! .

Four aPrta\t ? IC ' . I~ I I I~ t-I \ttlplt lc\cI \\a\ tllc \eIt.\.ti*tl .irr.ttiSi-ttti-~it l lli' ~ ~ \ U T T I T \ c I H t\ttlti tw t ~ \ i t l

for Itfe s i i p p l r t i.yutpti~i~t~t J I I ~ P.tg=ugc.

WBS I. 4.2.6 Penonnrl Vchiclc Coht per Flight

Page 244: SYSTEM DEFINITION STUDY PART IN

L DRY r#L\SS I . VEHICLE ELEMENT

#Kl%rrR

dtRtiCTURE

WRUAL ~ T E C T ~ SYSTEM

LAIYOtffiSYsTEW&acr

aSC€IYTPROCULStON

MIUrE FOIVER

POWER CQ#VR,ST

ECS

AVIONI~

GW3WTn

ErnFINAL TANI

ORDlT€R

DRY MASS - L

SfOO#0 STAGE SEOOENCE

E W N T

STAGE AT Oms

JV RESERVE

DRUP ET

P€RIGEE B U M

APOGEE C I R C U L A R l U Y i

RCS TRW

-TRIM .

DEPLOY PAYLQAO tm. - n sm ko,

DKIFIB~T AV

1 *@KG

tlu4-m)

sQ6t

laat

6.a

47.14

.SZ

1.73

YI

2.7i

14.98

! 26.73

( a=

( a 9 7 1 i

MASS AFTER EVENT

id KG

111.29

183.90

rW?2

15C17

148.94

1-

147-

tam

ntt

Page 245: SYSTEM DEFINITION STUDY PART IN
Page 246: SYSTEM DEFINITION STUDY PART IN

WBS ELEMENT - - - - - -

TOTAL PRcIGR~IW OPERATING COS

PRQGRAM DIRECT PRwR 4P.4 SUPPORT PHClQI?CTtON & WARES

i l R R l f k R BHODiKltlON OHRITt I.i SBl\'3tS ,=ME S H<WSTCII AIR5 RAhtt BCklSTF A t NCINLS CRCS nt I 41 ~n i;rf:

L\fEN3ASCt H4HDb%9Hk - E f. TOOLING c;R~?CIFJP tV'S Six

GUOUK:? OPS <:st Sf'4HCS P R W t 1 LANT OTHFR ---- - -

DIRFt'T IVI INS3WIR CIVIL TL RVIC'E SUPhl!3 T ~ .L INT~ZAC TOR

INPIRE('1 MtlNRW't #

CIVIL St RVl i ' t SltWdti 1 i'tW 1 H a \ i ' l O R

---- ---

Page 247: SYSTEM DEFINITION STUDY PART IN

Hardwsrr. E'lemrnt l.:tlui\ .iltXtlt Units

C3Hs Booster ..\irfranic

CJHX Engines

Orbiters

SSMESs

ET

,'h units

172 units

10 units

1-20 trriits

3584 itnits

The average cost of the ten orbiters was establahed at S55OM each.

The average cost per flight of S 1 2.b 1 QM iticl~tdcs Proprani 1)iwct t '57 ). D~rcc.: %frtnpc~\ver t I 2': 1

and Indirtit M\id~ipower ( 1 2' ; 1 cclteporles. Tlie Prugrani Ljlrezt rlrrncnt hrc;rkdo\% 11 1s .is l i ~ l l ~ w s .

Progmnl Support 10 '

t'rrxiuct~on a id Spdrc\ -3 e k\pi.ndJbli. tl.~rdu .ire

fooltng ?

round Opr.rdtions S! stclur 20 ,

WBS 1.4.3 Chemical Orbit Transfer Vehicle

Page 248: SYSTEM DEFINITION STUDY PART IN

MAIN FNGINE 121 470 K N (105 K LBF)

APS THRUSTER

56M -

I--- STAGE 2 = 1 STAGE 1 -I

r PAYLOAD CAF'ADILITY = 400,000 KG O N STARTBURI: P,4fir'i = 890.000 KG

STAGE Cl!ARACl ERlSTlCS (EACH s PROPELLANT - 415.000 KG

INERTS -73,!)?0 KG (INCLUD1;dG NONI~LIPULSE PHG?ELLANT)

283 OTV FLIGHTS PER SATELLITE

Figure 1.4.3- 1 Space Based Common Stage OTV CEO Construction

ORIGINAL FAG5 IS OF P(Y)K QUALITY;

Page 249: SYSTEM DEFINITION STUDY PART IN

The second stage cotiiplztrs the boost from In\\ Earth ~ v l x t .:\ \\L.II .?s the rt'ni;~rndt~r c ) i the oftler

dc!ta V requlrertletlts t o place the paylo.id dt C;FO anii ,,I\(> p r o i d e s the requtred dclra \ ?o rctt.rn

the stage t o t t ~ c LEO stagirlg depot. Sttbsystetii$ for t ' ~ c f l s t ~ g c are ~ ~ i e n t ~ c . t l 111 des*gri ..ppr~?.iiIl

The prinas.v ri!ffewnce IS the us2 of foui ;.Ilglnrs 111 the first st;*@ due to ttiru$t-to-\\eig:~t n1clitlrt\-

mrntz A1.o The wcorrd stage ftfqtttres dduitlo~la! d t i ~ t l ~ a r > pr0p~ils1011 dite 11) 11s tliati ii\t'rlrig

rc.quir:ntc..ttc itlclud~ti_u docking of rtie pa) loall tc, the constructtot! bdse at CFO The \ ~ * l ~ ~ z l ' ~ I . I \

been sired to del~vitr 3 paylr?d of 400 COO kilograms. .4s a resttit. ' I I ~ stage startbitni rii.iss \\ttiioiit

payload is arproxiniatell 890 000 ktlc~p.:nis -.r.~tli the t e h ~ c l e i ~ w l n p d , ~ o\er3ll ienetli of 5h t ~ . r ~ t e h

Structure and hitll~chanisms

Main pr~~yttllatit contttiners arc ~vr lded rilutniniim tvittl integr.tl stiifetii:ig as rcquir,.~i 11) i.trr\- t ' l . , i~t

loads. Intertank. forward and aft skirts. and tiintsi structures enilrlo!, graphite.cpo\! i< ) r r lpo~ i t e~ .

,411 Apollo &>yut tylw cic>cki~ig systet~i is provided :tt the i r ~ ) n t clid of e.tCh stage for doiliitig \vitl:

pa! loads. rcflteling ;;inken and orbital h;tses. Thc stage-to-stage ducking :;yst:tii pravt.!es for cf\)L.l.-

ing the stages t:yether with !light !tr;ttis c..~rric~i tlirottpli fiill-tiianictcr strttzttircs. Propcll:tnt tr;tllsf'cr

connections allow either stage t o be fticlcd independently with tlic stages etther sep;tratcd c r ci i l~kt~tt

tcrgether. Strtlcture of the two stages is iii;'1itii3i to [lie ex!~*~it prriiticritile.

Main Propulsion

Xisin enpities rtre baseti 011 ::lliittIc cngii;t~ tt'i1111010gy. oi3t'r;ttrtlg 1, it11 ;! h t r i g c ~ I - t . . ~ t ~ ~ t ~ t i > t i c > ~ ~ i > c l C ;it *

20 Alii:m- (3000 psiat zhanibcr pressure. 3 LO: LH: nti\tiirc mtio c f 5.5 t~ 1.0 and 3 rctr3ct3!~lc

nor.7le with c'\;tcti>ii~i~ c'\;>3tisttrli .trr':i r.ttio of -100 pro\ iliing a ~l ' i '<if i~ intpu!\rs of 4-0 s ~ i t > ~ l t f >

Xdvanccd ln\v SPSti pt,nips art' used to n ~ i n l t ~ i i ? ~ k e ~ l prcssurt-s. .-\ (3 Jeprcc squ;trc pinll7al piit t crtl

is en!plo!-eti. TIIC c~ lg~ t i c s itre c;~p.~lilc t>ft)p~r.ttirig 111 .I t,iriA-lic;tti I J ! ~ (1-i l l ' tll,',lc (1\ii111ps 110t turrl-

in€: miscti-ph;~sc propel l~nts) for cliill-~icnvii ,tnd scli- i~lI; tgi~t~ ;i t ;I zl~t.c'ifit- I I I I ~ > I I I . ~ L of .;ic) sc~-c~ritls:

00 seci>nds i t i n l t ) in sclf'~ill.tgt~ig lllOtiLb I > .t>sittl~et. ~ i c c d ~ * J prwr II> hot~is1r,ij\ptilg 10 fi111 t l~ rus l .

Throttling t\ct\t.ecn tank-1i:;iti ~ J l c ;illti i t t l i tllrt:<[ is not rcqi~irctl Jt.iili yrty>i.ll:tnt \nltssuri:.~tlcj:l

cierive~t ir<:tn c'rtgine tap o f f ,il'tcr .it\ ~ n \ ~ o ; i r r i hclium yrcpr~ss~s t~ . t t i o t \ .

Page 250: SYSTEM DEFINITION STUDY PART IN

Elccgicrl Power

Rimary ekctric power is provided by fuel cells baed on shut,ic technology, tailored to the O W requirement. Reactants are stored in vacuum-jacketed pressure v e l r P r d u c t water is assunled

retained onhoard t o minimize payload c~ntai~ninat ion potentd. NiCad batteries are employed for

peaking and smoothing. 8 \ DC p w r is rough-regulatid and f i r e d with fine regulation pro-

vided by p w e r \sing subsy\tems as needed. A potential inert mass saving (not assumed) would ux ICBW pressure reactants provided front main propellant t ank . Eiestric power systems for the two

stage; ruz idznttzal except for reactant capacity and harnesses.

Avknict

Avionics functions include o n k r d autonomous guidance and navigatian. data management. and

S-band trli-metry 2nd command c.ornmutltattons. Satigation eniployes Earth honron. star an3 Sun

sensors with an advanced high perionnancc inertial measurement system. Crossstrapped LSI com-

pu te r~ provide required computational capability tncluding data managemelt. contrd and zonfigu-

ration cwntmi. The command and telemetry system employes remote-addntssahle data busing and

its own muitiple~ing. Although thz clrionirx slstems in the two stages are idrntizai. wftwrre for

each stage is tatlored thc stage fitnctions.

Thrmut !Em.iroclmental Control

Main propellant t m b arc insulatz-' bl- aluminized niylar multilayer insulations contained within a

purge hag. Thz insitlation system is ticliuni purged on the srixlnd and during Earth launch. Envi-

mmen ta l control of the avionics systems is accomplished using *mi-actiuc louvzn.3 radiators :and

cold plates. ?.ctivi- tluid loops and radiaton arc requtrrd for the f1.i.l cell systems Superalloy metal

ha= heat ahic.lds are en?pl<tyt.d fa protect thc base arras from recirculating zn~ini. pli~nle gas.

WBS 1.1.3.3 Performance

Pzrfc~rnlanic. charat-trristics associated with the conimon strte LO2 LH: OTV arc aliowri in Figure

1.4.3-2. Propcilant ri.yiiirzmznts arc' ifiown as a function of the paylo3d return and deiivery czpa-

bility. Perfoniisncc ground ntlcs used in thc'se paranirtrics arc as fc~llo~vs (valrics :irr main

pmpcllanr quantities,:

Page 251: SYSTEM DEFINITION STUDY PART IN
Page 252: SYSTEM DEFINITION STUDY PART IN

Stiiit~tlap fi*\i*l t i t i - r - \ t i i l t ~ t ~ s JW j ~ i * x * t t t c d t i t iahii' I 4 .:-I for this \i*lt*itrti \ s t ~ ~ l l i i r . OIY -\

U T I ~ I I I g n ~ w t h i, tLht\ tr ibt 111 ma\ II.C\I iathzr th.111 l 5 a\ i r t 1-51 S t*.tw.rt r*n If t i - ~ t t t l p a c t r t tt1.11 t h ~

SYS I O h - I f f - - 1)1'\' w c r u l t t br. a *cc*rrti +x-t i~r . t t tc*ti \ i .h~cli Ua\\ c \ t l r r i i t < \ for tlrr \?\ t is tr t \ rctltit

hi. d e \ t g t l ~ p p r l u ~ h pti.\i\~rr\l> d r w r t l w d

1 \ ptL-.1l tbrI311 t r . t r i \ t C t t y w r . i 1 t t t i r \ t r t t t i r I 1 0 t i* <;I t t* i t l t t - k t b ~ ~ ~ ~ i ~ t - t ~ \!.isc C i I \ ~ r c t l l t i \ t t . i ~ t - ~ i :ti

I t g i l r t - 1 4 ;- : 1 t i t - itt.tt\1t1t! (*I tlii' t l t1 l . t \ t t * r 1 1 c k ~ \ ? i z r p t t t r t i r I 1 0 I\ j v t ~ \ t , l c ~ l I > \ S t . i p c I 1 t . 1 p I

1 1 i ~ t 1 \c-l*.ir.itt-\ ~ i i t i rclur%i\ t t * 1trL- \ t . lg i t rg ti'-pt*t i t t l l t - \ \ i t r g .III k - I l ~ p t i . ~ . ~ l r c I i l r i 1 l-tr.i..i-~tis t b : l ~ l SI.tgk-

ct*ii~f31c1~--. t l r c ttr*t*-! .111tl i t t i t \ t I lL* lt*.i\t t t i t t * .I 0 t ~ , t ~ ~ \ t ~ * t . IZ IL~ i- tx.~\t t tg t * r l v t . .I\ \\c.II .I\ iiitt-..ttt~?:

t l l ~ !>.I\ 1r*.lc! l l l l r ' ( I / (1 .ltlrI [321 ~ \ ~ 1 1 1 1 1 1 1 ~ l f l ~ ~i'illll!l.l! ~ i i l \ t ~ f \ r ~ l l \ l l l . t l l i ' l l \ i i \\ 1111 l ! l ~ ( . f 0 ~c*I l \ f111c - 1 f . t < 1 %*/it?\\ i i l g t ~ t t t t * \ . i l t t t i t t i ' p.1\ It*.ltf. \t.ig<' 2 &Z\t*\ l t b i * f ~ I t I 1 l . t r ) t*i:ttt\ 111 ~ i ~ ~ i l i i l i l l g 153 tilt.

1 I O \ i . tgi t lC tti.g\c*t \ ti;t.itlc*rI r t i t \ \ t \*t t i \ t t* t t l i ' i i ~ i l i . . . t t ~ r l g ,*\<lit\. t1111c. . i l l t i t1clt.t \ I \ ~ I C \ ~ I I ~ C ~ ~ 111

1 d \ i c 1 4 .: 2

.\ tr3t.11 I111\\it-i1 ( i t11~f t t ; r ' tt:r L'.I\'~I \ t t p i I \ f l t r ' ~ ' t t I ~ t 1 t t? 1 t+!tlt~ 1 4 .: 4 \ I i i * ~ i t l g . i l ~ ~ * ~ t ~ \ ~ t i i . ~ f ~ f \ Z I $ ~ I

I r ~ ~ t i r \ It11 I L . ~ I I ~ * I I I ~ ~ .11i\! r \ - l t i r t > r.-\~ilt-. I I I -40 I I ~ * I I I \ ~-l.~~-..*,l IIIII.> !v i t* r ,* .I g i i k - t t St.t$l- I ..&ti lv I.=II\C.~!

\ {*I< .I! st.!$< .! I l t \ \ \<* \ i ' r , 11.1\ .111 t'!.l13\r.ri ~ 1 1 1 1 ~ ' $ % I l t ~ t i f \ ! ~ f t t f C t i ' l lw' l l l i ~ i i t ~ i t l ~ f l l l l r ' h * r

, t \ \ c l l l l ~ l \ lwt\\&-..ll \ l . l g ~ - \ .tltti l ~ ~ l ~ \ ' ~ \ ~ i i 0 I \~ .llltl i1J\ ~ t ~ * l ' l

Page 253: SYSTEM DEFINITION STUDY PART IN

Stntct and Yzr.hsnis~ns Main P;sputsion Auxiliary bpulsion Avionics E!ectW rawer Thermal Contrcri Wdght Growth (10%)

w Fuel Bias Unusable ,Qli LHl - - U n w b k m.1 Rc=rve APS

Burnout Main Impulse Prop

APS Startbum

'STAGE 2 TWNSFE~/

Figure 1.4.3-3 ~ c a l OTV Orbit Transfer Opmtions

249

Page 254: SYSTEM DEFINITION STUDY PART IN

rrtswm e VEWT REQU#IEO nmubam m. & nwL OECTAV W&tM OFt M A - € $Wet XSFC AIJT-LIARY) RE MARK

1

YISSICWV

1. STANDOCF 0 3 A FWOVIMS 54f L SEPARATION W S T N C E 6E TWEEAi FACILITY a w r w r c k i

2- 1 2 A .V IS ATTITUDE CONTROL *

3. Q6AST b l?ts M O N FtRST STACE SEPARATES AFTER TWIS 'V

4 tX)&T 4.2 3 A ELLIPTIC REV

i W4JECt -1 l!a Y IWCLUOfS 6OUiSEC ~ L A T E D FtNtTE - eww LOSS

h CDAST 5.4 3 A TrtllYS*f R TO CEO

7. ?HAS€ lw -1 8- M RECRESE#TAflVE F O R l!ja ppUsttUC

& P H s E P 3 A

~m -1 56 U I I Y C I W S 15 W C OVOR ILtEAL TO ALLOW F O R (TERYINAL PHASE CORRECTIONS UdtTlAftOW1

ta W#DErvorrs 2 rO A m rrssurtf0 r~ =am WTH~N UM OF TA~SGET

31. D O ~ X 8 86 A

t z BAIT a e WEU 00~l;fo

r3. ~ f u w m s ~ .1 3 A

# DLORBIT -1 W Y

1s. COAST s.4 10 A W F E R TO LEO

% INJECT -1 23% U

t7. me€ 12 3 A OHmT PERIGEE AT STAGING BASE ALTITUM

ra ra .t 5a M

80. RENIXZVOCIS 2 rn A

m oucu 1 10 A

21. RESERVE 130 U 2% OF STAGE WAIN PRQF'ULSIWU V WDGE 1

FIRST STAGE RECOVERV

1. COAST 4 2 30 A ' V TO CORRECT DlFFERENTt4L rYOD9L REI;RESSIW BETWEEN C O G T ORBIT 9#0 STAGING EASE

2. WAS€ INJECT .1 1645 M ELLIPTIC ORBIT - PERlGf E AT ST AGING &W% ALf.

4. T?l 1 2 3 A ALTITUDE CONrnOL

1. ?MAS€ .t 60 U

a R E N O E Z V ~ ~ ~ 2 rn A

a ooc* t 10 A

7. RE SERVE - 85 M 2% O f STAGE MAIN FflW\)LSION V RUDC,t T

Page 255: SYSTEM DEFINITION STUDY PART IN

t

0 10 20 30 10 50 60 70 80 I 1 I I s I I I I I I I I I 1

STAGE 1 ILOWERI

-SPAR ATE ' - - - - - - STAGE 2PAYLOAD 1

r----- L-----

STAGE 2 iUPPLR)

85

Page 256: SYSTEM DEFINITION STUDY PART IN

With the tt~ifrz.ttd ttrnt.tWtmd ftntcs tor c x k \raw of .m C l I V. ;r 1s p~\s;Ple to i'\tsblt\h the t c ~ t ~ l

stage tlr'et \Ire 3% dtcrun i t r f-tytlw 1 . 1 -2-5. fhc ftnt tacr ban JR a .wxr~l rJ u l t k the firre tlf \'

firght. At the i'nu i * t dppro\tinatC?? I ,' ltal \ rllz u*zi>nrt or ucper st;tgc ( 1 ' I I wparstzs imm the fin! {bwerl stage ( L t t . Rte :iwt stage ccxnplrte\ rts operattons anti 3 ~vsitabtt. tn trnlr ter the IB;rJ

03%' night. rile tirst rtppcr stage t i n r ~ h ~ s tts tr?.,\wn and t\ at.itIrhlc I b g rnt1thr.t tltdtt dt thi. C I ~ J o i

s p p t u ~ t n ~ a t z i ~ Si tttiiir\ w,.P'i-b alloh\ 4t t c t t*. u\id tm the tltght Gheditlr.d fttr th: f i l t l \ il,r\ Utth

opr~tt,rtt\ cut',,luc'tr'ct :a thr\ mantrer and the rrqutpetttt.tttr fbr . s ~ e 0 1 V t!:gttt per J.I> tcrr fitc

~ i ~ s ~ < l ~ t i \ ~ cl+ 1 p ~ r W . W ~ t i c ~ r i ~ ~ \ p ~ t t J \ f i ~ I.AUII<? \,*h~ile t~rc'tattc~t~rt J ttttai t ~ f f & c l I O U ~ T J R ~ ttntr

upper -tag'-% JX wqutrCJ tn the fii.i-t 13 ctrdzr t o cixlJuct it+ t o dr? c\l:.*rrttittlr 01~r . t t i d In tht\

nkanntr. ds ntdfty ds 81% it~dt.ptrt,fzr~ti~ cilk*i~tttrs <.rn ;*iq tn tltgfrt ~t -\itc tcnw if*lr:np the

zen\rntittc*ti ~ 1 1 ' r ~ ~ h ut.~lItlc.

WBS I .S.3.a C~KY

Page 257: SYSTEM DEFINITION STUDY PART IN

bST\r;fS A tN SLY AR ATE FLIGHT

Fire 1.4.3-5 Flight Opera tions-Chemical Orhi t Transfer

Page 258: SYSTEM DEFINITION STUDY PART IN

h s e d on the atwve ground rules a total of h24 %taps ( i t ~ p e r ;tnd lower1 are requiwd resttlting i~ an

avenge s t a g cost of approuin~;ttely 331 rniltiort. Cost per tli&t for a contpletc two s t w OTV waa

estitttstcd as S2.26 million with the fdlo\v~ng hre~hdown.

o 0pertttion.rl Units S I .24M o Proplhnt S0.40M

o Spares 50.62R4

WBS 1.4.3.7 Crew Rotation/Rmpply Transportation System

The crew ro t~ t ion rcsiippl~ OTI' f t ~ r J plrotnrrrlt~tc a: tltennal engint* ~;cttztIttr. cc~nstnictcit i n citilr'r

LFO or (;t:O mdkzs 1 1 ~ of a comfiton stage LO_'; LH. OTV. The s)ster:i dewnpt~oii ot' thi\ OT\ 13

esxntiall} the a;lnie JZ for the C;EO constnic'tion OTV. attttnugh the stre of the systcrz~ tint\\ \.it-!

wit11 its applicdtion.

rite i ~ n t p l t ' ~ ~ i r i * ~ rot.ttti>n rt8st~p~~1) tr~ilsl'r~rt.ttion s>\tr'~n reqtttrcd for 3 p h o t ~ \ ~ l t . # i i \~tc'Il~ti ' I\

presented in FlgttW I 4.3-6 in tile i.ibr' of Lt .0 ccltiatrocttctn. ttle crew rc?tattoil rc'\ili>pl? itlnzCpt

tnvolrt's riltation dl1 of th i pt.nt>nncl 1'5) at the C;i 0 t ~ c c \ ~ r y QO 43)s dnd p;in~rfizrg .;rippire\ for

90 dsvs r2< J suit. i i . ~ OT\' ha\ a bfartkttrz~ tndss of 495 OW Lp.

Sttot~ld tht. \.~ti.fIttc hi. ic~n~tr t tc trd lit (;I-0. tile siitlc 0 Fkr 3s ttsed 10 delt\er tlie s ~ t ~ l l t t c conipcr-

nrtnt3 1s cniplc~) ctf As .t rr'\iift. .I irr'a r o t a t ~ ~ i l rr'\iii~pl\ t11~11t I\ t10\v11 (wit' .I i i i (~ i i t t l iil\ilI\tng

I hO pennnnei .tit41 \upylre\ for 480 pci'pli. .inti .:O J 154 .-\zcorJ;n~l). the OTI' li.i\ .I st.irtburrt rita\s

of SclOOW hg

WBS 1.4.4 SPS - Ins ta l id Orbit Transfer Systems

WBS Dictionary

SPS insr;rilc~i orbit tr;instlr systi'irra itli11:cI:~ .iii h.trtitv:rrr-. s ~ i t w c l r ~ . 311~1 i~~iist1niat~1i.s ittstrrlld on

SPS ttir~cl~tlcs 10 ~'qUij\ tfl;'ii~ for orbit trattsfr'r f~.- ir L b O to (;1:0. 'I'tltsre ttrc c'igl~t s ~ t s of this cclliip-

ntcrrr in tlic iurrcnt ~ \ r c i i . r ~ d cv!ii'cpt 2% thc SPS is tr.ritsicrrc~i ln tbight rticdulcs.

Page 259: SYSTEM DEFINITION STUDY PART IN

CREWEARGO tO OEO 2 STAGE L O P 2 O N LEO COWST TV

WS=~SSOOOKQ QEOCONSTOTV

w$-rsa amKg

CREW TO LEO CARGO TO LEO

TANKER

LEO GCO CREW TO LEO CARGO. PROF 8 O m s SHUTTLE GRWfTH 2 STAGt BALLISTIC 7WFLT

Figure 1.4.3-6 Crew R o t a t i ~ c s u p p i y Tmnsportation

Page 260: SYSTEM DEFINITION STUDY PART IN

Ucss.riptiun Ttir contiplrstiotl arrrtngtircnt ; I ~ J ~l~. i r . r~t r t t \ t t r \ oi tlir- \) sti'tii t~li.tiii'tit\ it\i.ti 111 titc t rd l t \ f~r 01

each Litt'llltt' l t l ~ d ~ ~ ~ &f\' \110~.ll 111 t IgllFt' 1 4 4-1. 1 I s i ~r ' l l c ' r~ l c'~l.lf&iIi'rr\trc\ ~ t l t i t ~ d t t .t 5 cl\cr-

slrrtip of thtb \dtc!lttt* to ~ ~ t ? t i ~ e t ~ \ . t I ~ i'@t ttit r.~tit.tftt~ll cfi*pr~\!dtrctl twiiitrttlg diirtlig p,t\\.igc tlir\~ilgti

tilt* Van .Alleri lwlt .tnd thi. 1n.thll1t~ to .tilllz.il t~ i i t all tli t!lC d.trll.ig ditcr R. IL .~ I ! I~ < s ~ O 1t11\ cnr-

ntttig 1% rchtlt.<teri I I ~ tile \,rti4Ittc de\cnt>tt$u\L It \Iltlirlti . ~ I \ L > be cr~it~h.t\lrc~I .it I I I I \ pitlnt. twl\ thi.

anal s 1lri.dt.d t o pro\ 14.. the n.qi:ircd ptt\icr Ltr tran\icr ;in. dcplo!, c'd 1.tic ret11.1111dcr 01 JII- .~ \ .ire

stowi'd \\ tthrtl t .idi.ttrt~tl prt\t\! \+ot't tdtrien ('{>\I t ) p t t r ~ ~ i t t ~ ~ trip t t t r l ~ , \ .iiicB . r I i t~ , \ .lrxb rt*\pcc11\~*l\

1 XO c i a n dt\d -,Oc)C) \ i ' i ~ t t c t \

Page 261: SYSTEM DEFINITION STUDY PART IN

THRUSTER MODULE (4 PLACES)

NO ANTENNA

PANEL SIZE: 24x38m NO. THRUSTERS: 560

winr ANTENNA

GENERAL CHARACTERISTICS

6% OVE RSlZlNG (RADIATION) TRIP T IME = 180 DAYS ff=lOODsEC

MOOULE CHARACTERISTICS

NO.IVIODULES MODULE MASS (106~0) POWER R E Q P (10~Kwf ARRAY % 01s DRY (10%~) ARGON ( 1 0 6 ~ ~ ) L O ~ A H ~ 1 1 0 6 ~ ~ ) ELEC THRUST 1103~) CtiEM THRUST (1dN)

NO ANTENNA

6 8.7 a3 13 1.1 20 1 .o 4.5

12.0

WITH ANTENNA

2 a 7 0.81 36 29 &6 2.8

17.2 6.0

Figure 1.4.41 Self Power Configuration Photovoltaic SateUite

Page 262: SYSTEM DEFINITION STUDY PART IN

Subsystem descriptions may be f'ornd in Volume 5 o f the Part I1 final report.

Mass

Table 1.4.4-1 presents a rtiass suninrary for the orhit transfer systems.

Cwt

Table 1.4.4-2 presents (t cost summary for the orhrt transfer system. l'hls summary A babed on the

costing details presented in Volume 6 of the Part 11 Final Rtport .

H'BS 1 A.5 Launch Facilities

The launch facilities and equipment requirc..icnts for the SPS c;irgo .rnd personnel \chicle. ure

identified in tne following paragraptis.

2-Stage Winged Cargo Vehicle h u n c h Facilities

An esfi~n(ttr' of the lauricli fac'tlity rctlurrrtiic'nts to \upport thC one ~~t: ' l l r te 1 car SPS 11i~ta11at,o1i

rate (400 tlights,!ear) has been devcloprd. Thrw ( 2 ) i.iunch pads are rcqiiircct t o .;upport the

4 0 0 tltght per )ear launch rdte Potentidl Ioc'at~ctns 01 tlicsc 1di111ch pdds at Kr'ni1cii1 Space Center

are shown on Figure 1.3.5-1. Tile Itreas shcwn arc' north nt' the currt-nt Pad -39X anti .:9B Ioc.atron\.

T h ~ s Itred was proposed u r~pna l l> !rc the Saturn Xi3ollo proprani for addlt~orial lat~ncli pads.

A preliminary e s t i m ~ r e of the launch site facility and etliiipnlent c ~ s t for ttic SPS I:runch veliic .

is shown in Tat>lc 1.4.5-!. The ni:rjor f;~iilit\. itenis re i t f~~~l t r t ' ~e l i aiid :I "R031" i<l5t c'stinl3tc

provitied for each elcnient. The cost o f facilities is cstirnateci t o he S3055M and ttic launch site

unique ground support cquipmcrrt {C;Sl:) ih an atlditiorial S.%'23l for :I grand total o i S.;3S,'51.

The hoobtc'r and orbitcr processing fa~ . i i i t i~s ari. ~ppro\irnatcl! 2 3 01' the total fricilit> ~ .os t . 'The

launch s i l t (;SE is thc adtiitional ~ ~ q u i p ~ i i c t i t r c q ~ i r ~ l i at tlic \ire ~ n l l docs riot inclutlc st rig^, uniililc

GSE.

Personnel Vehicle Launch Facility

The ilr.rsonne1 vclliclc concept is a Sliuttle iieri\:iti\c vehicle. :lnJ ;is a r~.sult a large portion of the

Shuttlc facilities cquipnlent can I3e uscd. Ific riit)tlit'icatio~i~ atlditional ri.cluirc~l ;trc tii<~sc ;issoci-

ated with the t~allistic rccover;rhle liquiil bcwstr'r. Kctri~*\;rl of tlic tirsst st:tgc liquid bnoitcr i5

accon~p!istirli I>). rr,covering the s t ; ~ g ~ ~ orli~n:trd LI spt'ii;tli/cil h l l i l ~ for tr;itrsit to port. a t l i ~ ~ h i n g pro-

tective devices. and then towing tlie stage t o tile VCrtic;tI h % w ~ n b l y Hui l~ l i t i~ (\'..\H) for 13roc~sci1lg.

In tlic t?rst dock arcri of the V.4B. a J00-ttjrl stiif 1<g dcrrich \vill be install.\d t o lift tlic st~igc frt>ni

tlic water arid install i t o n tlic transporter. 7'11~. .;r-c;t \clc*i~r.tl t i ~ r pcrf'clr~iiitig r~l ; l in t t~ i lar i~ .~ anif

checkout of the liquid booster st,rgc is in ;I \':\U 111gl1 113>. \\.ark storage s:an~ls \vill be rcquire~l to

process tlic I~ortstt'rs and tlic'w st.itl~is ivill I>c ItIiiit~d S C ~ t11i1t t h ~ ~,\istillg 2 5 0 ttw cr:Inc c:r~i I)c LISCLI.

Page 263: SYSTEM DEFINITION STUDY PART IN

Tabk 1.4.4-1 Otbit Trrnsfcr System Summary

ITEM 8 UNIT MASS

NUMBER (NO ANT)

NUMBER W I ANT)

TOTAL (NO ANT)

TOTAL (WIANT'

ALL-UP TOTAL

OTS SYSTEM

(6 ) MODULES

THRUSTER PANEL

PANEL STRUC 11540 LB)

THRUSTERS (110 LB)

PROCESSORS (18,230 LB)

INTERRUPTER (50 LB)

INTERRUFTER (2 LB)

CABLING (1500 LEI

PROP. SYS. (1500 LB)

THRUST FRAME (6,160 LB)"

GIMBAL ASSY (6,160 LB)

COMPUTER (100 LB)

COMMUN IC. 1100 LB)

Page 264: SYSTEM DEFINITION STUDY PART IN

1.4.47 ARGOW TANKS 4 4 113.W (40(40000 U)I" (515)

1-4.e.8 LO, TMlKS 4 4 45,414 fl6.OtO LBk" (20.6)

1.4.4.S LWy TANKS 4 4 Z+@4 (10,006 LB)' (1287)

1-4.111 C#M 12 12 8.515 THRUSTERS (3.86)

*VALI# IS BASE5 ON 4 EQUAL W L E S

*VALUE: IS BASED OU 4 SOGAL MUDWLES

Page 265: SYSTEM DEFINITION STUDY PART IN

Tabk 1.4.4-2 Sdf-Power Orbit T d m Sptcm Mature lnduttry Cart & h a t e ( I SPSIYR)

NUMBERS OF WiTS F€R SQS

THRUSTER PAUEL 1 1 3 ~ 0 0 0 1

PANEL STRUC (1540 LB)

THRUSTERS (1 10 LBS)

PROCESSORS (18.230 L a )

INTERRUPTER ie LBS)

CABLING ~1500 I.BS)

PROP SVS ~1500 LBSI

Page 266: SYSTEM DEFINITION STUDY PART IN

MATURE IWD(ISTRY Q 1 SPSmR

(B O n )

THRUST FRAWE 46lm LBS)

ST ANDOF F STR i lO*Oal LBS)

TANK lWUL

PaOP SYS (lO.#Wt LBS)

Page 267: SYSTEM DEFINITION STUDY PART IN
Page 268: SYSTEM DEFINITION STUDY PART IN

ST&-. & INTERFACE EQUU'MEWT

LMJZYCHslTEGSf

TOTAL (FACILlfY b G S ) =

Page 269: SYSTEM DEFINITION STUDY PART IN

TPls C*-~ltt= and cquiprncnt rqutred to suppert t k petsrwncl t.chtc.k launch tyersttons are J z ~ r -

titied in Table 1.4.5-2 along wt!h t k a6sc-iatcd "ROM" &%?st csttmalt. Pke total c'tkit 16 SU7,@M for

both the Zsctl~ttes and equipment

ms t 3 k h f f I hrs elemcat twludes 111 propellant productton and del~\er?; g attit1 elentents t'\iept l h t w elertvntz

rtescntwd under WBS 1.4.5. Lrunih Fa;ilittes

WBS Dictionan

1 trt, rien~ctrt t.i tncluded in the h HS t o dli*vt h r an? tr.tnspc%rt.att~w opt-ratrutr\ rt\& \uppart 11\*t

pro\tdt'a under tndi\~du.d \ch~klc> or under U'BS 1.0 2 . Sp-iir i'rdt'fti ('oittn*l I l l * zienizt~t h . t \ rtll!

k z n tktelintd

Tabk I .&El Launch Fwilitics and Equipncnt For The krsolrntl Launch Vchir-k

AREAS OR ITEMS REWIRE0

PORT FACiLITiES AND EOUIPMENT

RECOVERY SHIP

MOBILE LAUWX4ER PLATFORM

VERTICAL ASSEMBLV BLDG.

LAUNCH PAD

OTHER SUPPORT FACILITIES & EOUIPIVIENT

COST ESTIMATE -SM FACILtTIES EOUIWENT

TOTALS 7 5.1 22.5

Page 270: SYSTEM DEFINITION STUDY PART IN

A size sensitivity design model was constructed using the 1SAiAH methdolcgy. Ihc first run of

the model optimized power tnnsnitter and t-ieteena sizes at the nominal power level of approx-

imately 5,000 megawatts per link. Results are s\c>wn in Fimre A1 - I . The new results. aithough

executed in somewhat more detail than earlier frselts. continned the earlier estimates that the opti-

mum rezetnna size is 314 of the transmitted beam dlamcter and that the optimum rrsnsmitter size

is in the vicinity of 1.4 kilometes. Homer. tfilnsmitter sizes l a ~ r than M kilometer violate the

peak beam intensity limit of 23 mil!owatts per centimeter sqtjared. Therefore thr m'st system uses

a 1 kilometer transmitter and a rectenna diameter 3/4 of the kzm dianeter.

Figure Al-2 shows a joint optimization of transmitter diameier and p e r levei holding the nx- tenna sue constant at the optimum value. As the system power level is rcduczd it b pc~sibic to

? employ somewhat larger transmitting antennas wthout vioiating the 23 mwfcm- limit. Transnir:er

diameters larger than 1.4 kilometers do not pay off; the minimum system cost in dollars per kilo-

watt fol!ows along the 23 mwfcmZ limit to about 2500 nltgawatrs and then f o l l o ~ ~ up the 1.3 kilo meter diameter transmitter cume. Note that comparativeiy little cost penalty is incurred p i n g

down as low as 3000 megawatts of grid power. Below 3,090 mepwattc :he system ccxt in dollars

per k3owatt begins to turn up rapidly.

The model was also used to investigate sensitivity of SPS costs to solar celi cfEciency md blanket

costs. Rrsults are shown in Figure A1 -3. The cost of power includes capital c w t attlortiza:ion with

a 157 annual capital charge. and a 927 plant factor. Mass ;in$ cast valiles iniiu14: 26'; grow ti;

allowances respectively.

The size sensitivity model so~sistrd of 37 designer selected variables and 45 cnniputed variables.

A complete design point was senemted for cachsensitivity point anatyzcd.

Table Al-1 (72 pp. total) is a listing of design point parameters for each p i s t investigated in the

size sensitivity runs.

Page 271: SYSTEM DEFINITION STUDY PART IN

I R S T E N N A NORMISIZE0 VfR3 1- TRANgrrlTTrRS W l U S -0.75

* E L E C T R # : P O m R = ~ ~ EtECTRtC ? W E R - bt#s #R tftUYSY1lTES PER TRANQklirrER

3.000 -

mm - s f - K

2.- - VALUES I PARENTHESES ARE PEaa LaAU WE)IISITY

td (U 4M a7 0.8 QI 1.0 1.0 13 1.4 1.8 1.8

eOPTWIZED RECTENNA SUE l 1 SPYYEAR

0 2,- 4,- 6,coO ~.000

DC POI;;€ R ACROSS RQTASY JOINT, IhlEGAbVAlYSJ * , I I

tpjr) 2.000 3.CS 4,000 6.000 XlkVERED GRlO Pih'JE3 PER LtNK. IMEGAWATTS)

Page 272: SYSTEM DEFINITION STUDY PART IN

EFFECT Of SOUR CELL EFFICIENCY AN0 BLANKET OllST ffl COST OF OELIVERLn Porn83 *

SOLAR CELL EFFtCt WCY

REF. CT. OESIGN

Figure A1-3 Busbar Cost of Power Relatively insensitive to Sobr Blanket Cost and Efficiency

Page 273: SYSTEM DEFINITION STUDY PART IN

1 t E m T tNWt €Pf#fE#fV t I#t *€it E C f X E I E W

- f U f f C GOmErtSlOtr fFFY 1 Utk&Sf f F LtTOltS s m I-se-e

- i R€f f# fR6V COlEI flfl f ItEWISE E F ~ t C I E n C t & A#tEWlc* P W F P D I S f U EFFY

YCt Bt-ltF E F F I C ? E e Y 10 t W A t BEAa E F F I f I E S C 1

. I & mt erur EFOICIESCV t Z X t d T f l t E i T EFFrCtENGV L3 t E C T E W R F - M fFFfCfEI6C 1% MEt PC LIWC EFFY 3J BC-TU-BE E f F l C 1 L W V %4 DC-TU-6PfU E f c f C t E R C Y 11 QYEPAtL P i t Y S C t A i &FCI 1s &&€A EFFEEtfYL EFCV L, BLANILT &RE& iT) U I T E r n A D l & 21 rEwrera slocrosa wpm Zt ?&PER RLOBXRED FOl S t HI 2 ) T l h N S M t f f E R PiJLR I A P f e ZQ RECEtYEe A P E l F E A I l A f l P 25 XMTI AVPtPEAU R A f I U Zb & E M SPREAD FACTOt 27 f t A S l A t E U I F P W B 28 6EAU DIARETER 2% EZAR AaEA JO AYER*CE aE*n P O Y ~ ms S t PEAK BEAH IWTfrJSIl 32 FQLlE(t tti R A I N BEAN 33 SATELLITE IEW61W 3* HUR8ER OF 8 I Y S 3 5 XHTR PUR Q t S t R LOSS 3b AD8 BAY USEFUL AREA 3 7 BAY SIZE f l SPS .RE& J* BEAN SOLAR INSOLAT108 40 SOCAP CELL'OUTPUT 4 1 ROTARV IO1t.T CURREMT "A* i Z RUTlRV JO INT ClRRENT "8" +3 7 O f i i PROCESSED POWER €4 TOTAL KLVSTPOH INPUT 45 TOTAL KLYSTRON OUTPUT 6 6 MUHBER O f KLVSTRONS t

41 RAX KiVSTROM P A C K I N G DEN 68 HJbX RF POWER QENSITV 49 HUHRER OF SUBARRAYS 5 0 RECTENWA AREA

VALUE * & OOeE+M

S=S?*€ -b l 1 *bOlE-.el I. t l 0 E - B 1 V. fS9E-01 *.&fiE-S& 1 .Z&QE-Bl S. 3Q9E-e l *.9&CE-B& 8. SQZf -B l %. &SO€-01 1.95SE-01 t . 5 i t E - 0 1 8 . F 5 5 E - e I 8 . 3 I I E - 0 1 b . e t ? E - o I S , t t *E-Bt t .+ * t~ -ez 6 .S&QE-liZ Z.SPTE+OF (12 c &,I~~E*~SACRES 1 & . W ~ E + O Q eft c *.Z~*E-~E ax 1 I . t l a E c b l D 8

-1.1014-01 U I l.BBOE+O1 OB z . o & l E - a l 3.909E-01 l.4SOE+OO f . l&2E*O f K b * Y * T T l . s l t l ~ + o i an c ~ . l a v ~ + e ~ NI 1 1.36+€+08 I42 I S.37BE+OI ACRES l . i ?OE+QB W C N Z 5.6 7?E+QQ W / C N t t . 59&€+03 SECAYATT f,&SOE+OE EATS &.kZOE*Ot BAYS f. i 4 4 E . - 0 3 1 .096E+05 I 2 C I .O12E+Ot ACRES 1 &.6OOE+O2 XEfERS 2 . 6 8 l E + 0 1 KMZ ~ . ~ Z B E + O L 6U 4.135E+00 6U ~ . ~ ; Z E + O C A n p s 1.98JE+OQ Ant's 6 . 4 0 8 € + 0 2 I lEGAWlfT 4 .256€+03 HtGAUATf 3 .618E+03 MEGAWATT i . O t S k + 0 4 6 .719E+00 PER SUB ~ ? . ~ o ~ E + o o rwinz ?.Zb lE+O3 PER ANT 7 .6726*07 MZ f 1.6%6E+84 ACRES 1

Page 274: SYSTEM DEFINITION STUDY PART IN

SL PE&U AM1 tMCIHA1 P Y t i

5 Z Dt WTPUT POYEU a $1 6U10 COYER I

/ I L A M AREA ? € I R E t t I

S f 'V* 3F INERTXA 5 4 THRUST PER CORNER i

I? )i(iciSER OF THRUSTERS a

5 s CONTROL POWER s

59 ANNUAL PROPECLANT I

6 0 STRUCTURE fiAS5 B

4 1 CONTROL svs HASS a

62 SOLAR BLIWIET BASS I

6 3 PWER OXSTR 8ASS I

64 NECH i ELLC R/J WSS L

6 5 AWT S.TRUC IASS s

6 4 AWf UAYE6UIDE HASS I

6 7 AHT K ~ V S T P O H nrss I

61 ABT CONTROL CUTS nrss I

6 9 ANT PUI OISTR nrss I

t e ANT PWR P R O ~ ~ T C BASS 7 1 AN1 WISS I

7 2 STPUCTUUE COST I

7 3 COWTR0t. SPS COST I

75 SOLAR BLANKET COST 0

7 s P O I I E ~ DISTR CCST a 76 HECH$€tEC R t J COST s ?? AAtT STUUC COST a

7 8 A k T UAVEGU1OE COSY I

T I AWT KLYSTROY COST a

80 ANT CONTROL CITS COST I

8 1 ANT PGa QISTP COST t

8 2 ANT PUR PROCITC COST m

6 s &NT COSt t

8% NO OF FREIGHT FLIGHTS 8

6s CREW SERVICE NO OF FLVS 86 OTS COST t

8 7 TOiAC TQANSP COST = 88 RECTENNA COST IL

8 9 CONSTRUCTION COST a

PO IHr fREST DlRfNG CONSTR +

9 1 LATITUDE AOEA FACTOR a

9 z T O ~ C L BASS = 9 3 TOTdL COST t

9% C0ST~UUE I

95 COST/KUH t

I .O ISE*W awm2 1.302E+OO 6&i#LZWU z . ~ z ~ E + ~ o ~ l t r a w 1 .IJsE*e& a 2 Z . W ~ E * A S KG-nz 2 I 8 l E + O t WEUTOWS z . i a t E + a l PER IWST 2.736E +01 N fb lUATT 8.936E+Ol TONS I.QOIIE+OJ Tans 4.671€+81 TOMS 1.8'0E+04 TOdS 1.505€+82 T W S 7.562E+OL TONS S.BOUE+O? TONS 1.Sl4E+03 TONS 3.C32E+O3 TONS 2.71fEtO2 TONS 3.79SE+O2 TONS l.Z59E+O3 TOhS l.OtZE+OB TONS 7.639E-02 BtLLXOn 2 . l t 2E-02 BSLLIQW 6.7?*E-01 B I L L I O N 3 . 9 l f E - 0 3 B I L L I O N 1.58tE-02 B I L L I O N 3.Cb5E-01 BILLXON 2.3886-01 B l L L I G N f .589E-01 B I L L I O N 5.990E-02 B I L L I O N 1.099E-02 BXLLION 8.688E-02 B I L L I O H 9.548E-01 B I L L I O N 9.958E+OI 5.496E+00 2.674E-01 B I L L I O N 2.6C4E+00 B l L L l O H 4.551€+00 6ILLIOW 3.419E-01 B I L L I O N 6.87bE-01 B t L L I O N 1.419€*00 2 ,8 fGE+O'+ TONS 1 .101€*01 B ILL ION .i.356€+03 $ s . D ~ ~ E + o ~ n t c t s

4 * 781E*I I ACRES

Page 275: SYSTEM DEFINITION STUDY PART IN

I H T E W A PXABFTLP VALUE I .Z0OE +@0 SOlUT fON RESULTS

1 i t C t i T INPUT LCFtCIf l l+Y 2 WET CELL EFFtCIENCV 3 & a i m COHVERS~OW EFFY i BLAW~EI F a t t e e s s eus k-so-a

:- * 4 NET EMERSY CMIW EFFY t a t E * u t s E E F F x t x E n t t 8 AUTfHHA POUEt DXSTR EFFY * MET DC-RF EFFICIENCY

10 DEAL BEAH EFFXCXERCY ll NET BEAR EF f IC iEWCV 12 INTEUCEPT EfFXCIENCV I S RECTEtlNA IF -DC EFFXCIEWC 14 NET R f L i N I EFFY t t GC-10-DC EFF1CtENCV 1 6 DC-TO-GI ID EFFtCIENCY i r OwEeaLL PHYSXCAL ECFV 18 AREA EFFECTIVE EFFV 1 9 BLANKET b%EA 2 e ANtENNA D f A t i R Z Q U 1 P E O StOELOBE SUPPR 2 2 TAPER REQUIRED FOR SL FU 2 3 TRANSf;ITTEP POUER TAPER 24 RECEIVER AVtFPEAX R A T 1 0 25 X N T l AVGIPEAK RATXO 11 BE%& SPREAD F4CTbR 2 7 RADIATED RF POUER Z I BEAR D I I t l E f E R 2 9 BEAH AREA 3 0 AVERAGE BEAN POUER DENS s f $Era BELH XNTENSITQ 3 Z POYfR I N XAXN BEAN 3 3 SATELLITE LENGTN 34 MURBER OF BAYS 3 5 XHTR PYR DISTR LUSS $6 ADJ BAY USEFUL AREA 3 7 BCY S I Z E 35 SPS AREA 3 9 REAN SOLAR XNSOLATION 4 0 SOLAR C E l L OUTPUT 4 1 ROTARY JO INT CURRENT *Aw 5 2 ROTARY JOINT CURRENT 'Bu 43 TOTAL PROCESSED POWER 44 TOTAL KLTSTRON INPUT 4 5 T O T A L KLYSTROh OUTPUT 46 HURBER OF ILYSTRONS 4 7 WAX KLYSTRON PACKING DEN 4 8 B A X R F PUWER DENSXTY 49 N U M l Z f R OF SUDARRAYS 5 0 ffECTENNA AREA

I 1.L94€+63 ACRES 1 c 7.657E-U& M I 1

&.57*E-@l i . 4 B l E - 8 1 t . S6OE-(li 9 - 399E-81 5.856E-0 1 1.ZiOE-O1 9. 3QIE-0 i 9.961E-111 8 .340E-01 9.bSOE-01 8 .9SSE-Oi 9 . f l Z E - O t 8.LICOE-01 8 .34BL-01 6.16OE-01 0 .315E-01 7. S33E-m: 7 .046E-02 2 .507E+07 112 1.20dE+00 UW I * 9 l t € t O l on 2 . 5 1 2 E t 0 0 DB t .O00E+01 DO 2 .061E-01 S.909E-01 1.450E*OO l . ?82E+O3 NEGAWATT l.OS8E+O1 K N < 4 .824€+00 NX 9 . 4 7 2 ~ + 0 7 nt I Z . ~ ~ O E + O Q ACRES 1 ~ . ~ S ~ E + O O nw /cNz ~ . IT~E+OO n u t c n 2 s. S ~ S E + O ~ n r G A n h T t ?.650E+OO BAYS 6.120E+01 BAYS 3.85SE-03 4 .091E+05 RZ t l .O IZE*OZ ACRES 1 $.6OOE*OZ XETERS 2 .681E+01 KtlZ 3 . 6 2 9 E t O l GW 4 . 3 3 5 € + 0 0 GW 3 . 3 7 7 € * 0 4 AHPS ~ . ~ ~ ; F I O C A n P s 6.40EEtO2 REGAWATT 4 .256E*03 HEGAUATT 3 . 6 1 7 E + O J MEGAWATT 5.024E+O4 6 .053E+00 PER SUB ~ . O ~ O E + O O uwnz l , 066E+OC PLR ANT 5 . 3 2 & € + 0 7 HZ 1 .317€+04 ACRES )

Page 276: SYSTEM DEFINITION STUDY PART IN

II PEAU ANT mriari wrr rn SL DC OUTPtl t ?OUElt m

33 6110 M U E R m

SI LANB A t E A PER RECT • 5s -Y- n08 OF ~WERTIA I)

54 THEUST PER CORNER I

ST HUNREII O f FHWCXffRS L

$8 CONTROL FDUER I

5% ANNUAL PROP€?l iWF m 6 0 S T l t U C ~ Z 4 E NASS 11 ~ ~ S ~ R O L svs niss I

62 SOLAR BLANKET nras rn

6 s P B U ~ R O ~ S T R nhss 64 H€C# & f L E C R I J HASS 1

LS AN^ VRUE &ASS rn ~ N T U A V E G U ~ R E MASS a

& T AH^ ELYSTION nrss rn &U ANT COHTROL C&TS BASS 1

6 % ANY P ~ R O ~ S Y R n ~ s s I

7 0 ANT PHR CROCtYC BASS I

7 1 ANT HkSS w 72 STRUCtURC COST m i f ~ B ~ T R O L svs COST 1

?P SOLAR BLANLET COST 1

7 5 POUER P l 5 T R CDST m

7 6 HECHSELEC R i J COST I

7 7 ANT STRUC COST ? a ANT YBYEGUIDE COST I

? 9 &KT KiV5TffON COST I

8 0 ANT COHTffOL C C T S COST rn

$1 ANT PUR DISTR COST m

UE ANT PIIR P IOCITC COST L

8 3 AH1 COST I

84 NJ OF FREIGHT FL ISHTS 8 5 C I E U SERVICE NO OF F i t s a 86 QT5 COST 1

87 TOTAL TRANSP COST I

I 8 PECTENNI COST = 8 9 CONST*UCTION COST a

9O I H T k P f f l DURING CONSTR = 9 1 LATITUDE & P E A FACTOR t

92 TOT4L RffS a

9 3 TOlAL C O S T 9% C O S T f f L t - 9 5 CQSTr'kUH 1

UYIIIZ C Y 8 L t N t 6N TOTAL n2 ItB-BZ NE UT ONE PSI I N S T NCGIUATT TONS TONS TQNS T ONS TONS TONS TONS TONS t ON5 TONS T ClNS TONS TONS B f L L I O N B l i t t O N BICL1ON B t L L x o n B I L L I O N B t L l t O N B l t L f O M B I L L I O N f t I L L l O N B I L L I O N B I C L I O N B 1 L L l O N

B I L L l O N B I i L i O N B I L L I O N B I l L l O N B I L L I O N

TONS B l L L l D N * n l L c s

ORrCINAt PAGE B OF PooR ~ t l U P r

I. B?OE+Q4 i B # 8 S . ~ Q W + O ~ tm r I .OZ~E+OS i sn t t . ~ ~ o E + o ? i ~ n 1 I . J ~ ~ E * O S i ~ n 8 I . ~ C ~ L + O S mn 1 I. S~ZEIPI tan 1 ~ . s ? e ~ + o z ' 0 n 1 ?.bIeE*B6 L0R & 5 . 9 l l E + 0 5 LBR 8 I.O~OE+O~ i sn 1 Z.TIBE+O& LBn 1 2.7J lE+OT LBH )

Page 277: SYSTEM DEFINITION STUDY PART IN

ANTENMA 81AnETER VALUE 1 .400€+00

S O l U T f O l l RESULTS

1 L t f i H T XNPUT EFFXCIENEY 8 MET CELL PFFLCIPNCV i B A S I C CQNVERSXOW E?FV

BLANKET FACTORS s BUS t-SQ-R 4 ME? ENERGY COHV EFFY t &PEAWISE EFF lC l?NCY 8 ACITFNWA POUEP D lSTU EFFV 9 WET DC-PC EFFZCIEMCY

1 Q IDEAL aEAM EFFICIENCY 11 WET BEAH EFFICIENCY I t X#TERCEPT E F F l C I E N S 2 13 RECTENNA IF -DC EFFICIEMG 1 4 MET RF L I N K YFFY 15 DC-TO-DC EFFfCIEt#CY 11 DC-TO-GRID E F F t C I f N C Y 17 OVERALL PHVSECAL EFFY 111 AREA EFPECTXVE EFFV 1+ BLANKET AREA ZO ANTENNA ox* 2 1 REQUIRED SIDELOBE SUPPU 22 TAPER REPUXRED FOR SL SU Z f TRAHSfl iTTER POUER TAPER t Q RECEIVER AV6/PEAL RATIO 2 5 XHTR AVGIPEAI RATIO t 6 BEAH SPREAD FACTOR 2 7 RAOIATE 0 RF POWER 28 BEAR DlAflETER 2 9 BEAR AREA SO AVERAGE BEAR POWER DENS 3 1 PEAK BEAH INTENSITY 3 2 POkER I N H A I N BEAM 3 3 SATELLITE LENGTH 3 4 NUHBER OF BAYS sa x n r a PUR DISTR LOSS 3 6 ADJ BAY USEFUL AREA 3 7 BAY S I Z E 38 SPS AREA 3 9 MEAM SOLAR INSOLATION 4 0 SOLAR CELL OUTPUT 4 1 ROTARY JOINT CURRENT "A* G2 ROTARY JOINT CURRENT "8" 43 TOT4L PROCESSED "OWER 4 4 TOTAL KLYSTRON .NPUT 4 5 TOTAL KLYSTRON OUTPUT 4 6 NUttBER OF WLVSTRONS 4 7 B&X KLYSTRON PAbKIhG EEN 4 8 M A X RF POUER DENSITY 4 9 NUKBER OF SUEARRAYS 5 0 RECTENHA AR iA

8 .579E - 0 1 ~ * ~ O t L - O l l .36OF-01 9 .399E- 0 1 9.856E-01 1.260E-01 9 .309E-01 9 .9729-01 8 .349E-01 9 .650E-01 8.955E-01 9 .S IZE-01 8.871E-01 8 .34kE-01 6 .183E-01 5.996E-01 7.554E-02 7.06ZE-02 2 .507E*07 HZ f 1.194E+e3 ACRES 3 .i .COBE+OO an ( a . 7 o o ~ - a l 81 1 2 .047€+01 01 C.665E+OO DB f S O E + O l DB 2 .061E-01 3 .909E-01 1 . 4 5 0 € + 0 0 1 .783E*03 WEGAYATT 9.413E+00 Kn ( 5.649E+00 HI f 6 . 9 5 9 € + 0 7 W2 ( 1.720E + 0 4 ACpES )

t .Z95E+00 RY0CRZ ~.~ISE+OI rwlcnz 1 . 5 9 7 € + 0 3 HESAW' 1 1

?.650E*00 BAY; 6 .120E*01 0 t S 2 . 7 6 1 6 - 0 3 4 .096E+05 MZ ( l .OlZE+OZ ACRES > 5 . 6 0 0 € * 0 2 METERS 2 .681E*01 Kt42 3 . 6 t S E ~ O l GW 4.335E+OU GY 3. ~ ? ~ E + o c AnPs 1 .981EtOC AHPS 6.408E+O2 HEGAYATT 4 . 2 6 0 € * 0 3 HEGAYATT 3 .621E+03 hEGAWATT 5 . 0 2 9 € + 0 4 4 . 4 5 2 € + 0 0 PER SUB 2 . 9 6 4 € + 0 0 KU/flZ 1 . 4 2 3 € + 0 4 PER ANT 3 .914E+07 M 2 t 9 . 6 7 2 € + 0 3 ACRES 1

Page 278: SYSTEM DEFINITION STUDY PART IN

S t PEAK AYF Tl l fRf t *L 1

32 6C O t l f t W T tOUfR I

f s S l i m WUf8 8

5+ LAB@ AREA t f t RECT f 5 'tw WXw Of I U f t T i A 56 TWLUST PER CQtYER = St BUlBf P Of T U t l S T E R S I

5a COUTRUI PWER I

51 r w u r t BIOPELLAUT t

& a S f t U C f U t E HhSf I

11 t s 2 % t l O t SYS R A f f I

62 SOLhR B L A k r E T MASS t

& s PJ~ES e i s re 8 4 % ~ I

&C ~ t n t E L C C R ~ J nkss a

&s m~ X ~ R ~ C % a s s i

I& rnr Y ~ W ~ E W I O E m a s s . ST i & T E tVSTPBW UASS I

SS I W I C tMfEOC CETS MASS 6 9 &Wf BUh 8 1 S l & H A S 5 t

TQ +H1 P::? F I U C I T C R a S S t

I1 I%? Ha55 II

tZ S f Ei iCi t lPf COST 1

3 1 c n k r e a L ~ V S COST II

7 i S O L I U B L I U K f f COST t

t i r a ~ t * O ~ S T P COST = 7 1 H f C H S f l L t R f J COST = 3 3 A # i 5 l f U t 6 5 5 1 t

76 **I Y t Y E t U l O L C O S r - -1 anr r i r s r ~ u a cosr I

a8 r r r r C ~ ? ~ J Z E D L C I ~ S CMT = 81 an1 pda n i s t a cosr • 82 ANT PEP FUOfSTC COST 8

a3 * ~ r COST a

86 YO OF f P ; l t H f F t l t W T S t

5' C f t W ~ I C Y I C E X O O F F L l S Se at5 f051 d l 7 0 1 A 1 7PAWSe COST 1

8s ICCI~*~Y:~ LPST = dt CFh5lCUt l I O h cast 9 0 I w t a F r l eualnt CON ST^ = 9 1 L ~ ~ I T U O E &PEA f * c i f ~ w

9 2 1 6 T 1 L 3L%S - 91 f ~ t i r e33r a

9c Ct3Et;uUf . 15 COST i * t i I

s.*eai-~~ t u m t i . f 2 l E * @ @ CYIL l I I . Z.SLZE+BB ~1 TOTAL * .872E*B7 11t Z.842E+13 KC-112 t . l 8 & € * 0 l XEYTOift t . l 8 t E * B l PER 1WST 2 . t f S E * 8 1 R t C A Y A T f a . * f & f t e e T o n s I . C a w * O S TO:+S 6.8?:F*Of TONS ~ . B ? O E * B C re- I * %O%E *ID2 f O X S I.E:5L*BZ TDHS 9.8009i31 TONS ~ . G S ~ E * O ~ tens S . ~ ~ S E * O S tons Z . l t & E * O T I O N S &.tSfJC*OZ l O N S 1 + 2 3 * f * O 3 t O H S : .5B3L *BC I U S S Z.O3*f -O' B i i i tm Z - I ~ Z E - O Z e i i i I t m 8 . 3 7 c t - 0 1 B I L L I O M 3.9@'+€-83 E t i i l t M I t . I S 2 E - 0 2 B S L L i O W 3 . i * i € - O t B t t L l O N 5 . 8 i 3 E -01 BILL ION 1 . 5 * B E - 0 1 8 1 t l S Q N S .V95C-02 B f i L f O N 6.6icE-Ot B l L L l O W a . 6 s s f - 0 2 e l t i t e n 1- :60E*Q4 I t Z L L l O X l.t!:E*Oz 6.924! 3.2SJE-RI B t L L f R N ?.Q:3€*00 B I L L i O W Z > d l f * B O b l L C I D n C , lS :E -Ot B I L L I O N 4 . 1 4 S E - Q 1 B I L L I O N l . * t * t * 0 0 3 .c&cr +Qc TaHS 9 . 8 I J f * Q O b I L L l O W f . l 5 = i E * o 3 C 7 . 1 3 3 f *01 B I L L S

Page 279: SYSTEM DEFINITION STUDY PART IN

1 L I e n T I W r t l t EfCSCtEYC* 2 WT CE L EFFfCIEWtV 3 IA51C c O n V E R t I O w E F F I

~ L A N K E T f A C 1 0 1 3 S BUS 1-36-1 1 WET ENfU6t C W V E F F I 7 ARfhYkfrE E F F l C l E N C * a I X ~ E N X ~ muEe RISTB 9 ME 1 X - a i EFFICIEWCV

I 8 IBEIC &€An fFf lClEWCY li # f T BEbB ECClCIEXCI 12 I N T E P C E P ? EFCIC1EWCY 1 3 efC'EWH1 e F - W FFFICIEWC: 14 nri as t g N a E F f r 15 EE- IO-RC E f f I C I f H i Y 1s b e - f a - G R I D EFFICIEMCV 11 i3WEEI:L PHYSICAk CFFI 1 I &RE& E f f E t i l V F E f F I I, 8 L r r t u C r r e g & ?% AXTENHI 011 21 * f O l l l % f t i SIDELOBE SUPPI 22 I A T L P eE9JIIED PBR SL Ht 3 3 I E A N S n E T T i f POUEU TAPER rc P r c f t e r n ~ Y G T F ~ ~ E RATIO i'f XBtE A V G ' B f l l R d f f O 11 B L A B SfRC i D F A t TQU 27 t & D t A t E D as PQUEU za B r i n oraterrfa zv e t r n r P t i St3 AYtRAGt SE*R POUEU DENS s t rEat SEA% INIEHSITY 32 P J I G ~ ~ ~ IN n r t w BEAR JS S I t L t & i t € t?NG?W 36 # U h R t l O f BAYS $5 K U Z P PHR V I S S R toss Jb ADJ 5:Y USCtUL ARE& 17 R1Y Sit€ 19 SPS A P F i 39 nr r e 5et 4~ ~ N S ~ A : I O W +O S b t i R Ctit OUIPUI ~t u o r r a v m t ~ t CURRENT -A- 42 P@tl(l '! J f t lH i C U P R t N f 'b* 6 3 T O T A L Padcrsst 3 POYEU cc T U I A ~ K ~ Y S Y R ~ C xnaur 5 5 l Q T a l UtYSlaON W r P U t 66 kURRE3 Of r l V S T P U U S 4 3 nax rtrsrcnN e r c r r N c rcn 68 nrx ar rsouEa rtmsr t v 5 9 NUURS S Cf 5UBZFBZIS 50 RfErCNKz r c r r

6 @ . l f Z E + b 3 ACRES 1 t ,.96ZtE-@t m i I

8.S 3%-$1 : . & e I € - u l 1. S&f#E-Ut $. 3*9€-81 t.&%bE -81 1 .Z6iSE-Ql f . 3 4 V E - 0 1 9.944f -OL 8. M l E - e l 9.6iOE-Ol $.?SSE-at 9.512f - O i CI..I I E - 8 1 6 . 3 i S E - 8 1 & . 2 Q Z E - O 1 b.BZlf -PI 7 sssfi-02 7. @+OC -82 Z.5C3£*07 I. lB@S 1 0 1 CW - - l e : t + o l DI b.CeSE+@tl 01 1.008E4al 01 2.0*1i-01 3.909E-61 1 .GSQf *Od 1. * 0 f t f E 6 A U l f T 8 .2Laf * O G KH t s . t l a C * 0 u u 1 f 5 . 3 2 3 5 * O ? UE i I . S 1 7 E * S 4 rCRES 8 2 . 9 * * ~ - S O nufen: 1 + q c g * o ~ 3urCuZ I . i * a t * a 3 U f G l Y A T T t . e . i a t * e ~ ervr 6 . l:4C *ill BAY5 3.41 'F-11% %.@*sf + @ S ¶C C L . a I Z € * Q L ACRES f C . Q B C L * ~ : *! :fPS 2 . ~ 3 l t . O ~ IH: 3 . e : ~ : b a r :.u s. S i'.i t r l G U 5 . f ;A5 ' 0 - &SPS I . - 5 % € * R + IRPS 1. CO;t *O.' R f GAUAT T i . Z 5 f f + D 3 UfGAUATT > , e l s t re? n E t r b r t t S.O.-&t .os 3.496t*OU P t l SUB 2 .:*.Sf * a 0 EI48R: I . $ % * € * 0 * Y f l ANT Z . * 9 ' € * 0 i R: t I.COSE4C3 ACSES )

Page 280: SYSTEM DEFINITION STUDY PART IN

S t P€&U Uit I I P . M t R1I I

s2 Bt BltTPUT COYfl s

3 ) S l l D -€I I

5% i h N B A l E h PER 8Bf t L

5s 'Y' R a e 8f t m f e t l * i f N P J S l PEE COPWE& L

I 7 WUA6EP OF f W U U S t E M L

58 CQHTUOL POUEI I

59 A&NU&L P P O P E L t l R T .I

40 stsucruur m a s s rn b l CONTROL SYS RLSS I

42 SOLSU BC*HKET ASS a

4 3 P O Y E I D I S t I BASS 1

b+ RECH S E L L C U t J WaSS I

45 mi ~ e u t sass t

6 4 ~ n r u a v r ~ u r o r wars i

6 7 ~ n r . r t s r ~ o e rtrss - 68 L N I CDHiSBL CrlS @ASS I

&$ ANT Pidl D t S f 8 MASS t

tB rN1 FUR PROCI IC 8ASS I

71 1 N I R a f S I

?2 STPUCfUIE CCST w

t s c a m r ~ r i SYS COST L

;C fa tn f B r i N l f f COST * ?5 P W t U D l S T l t Q S f i

76 REfMtEifC 111 EOSX = 7 2 bHT STEUC COST rn

:3 ANT u r v r ~ u l o r cos! • 7 9 r ~ t XLVSTPOII COST - BQ ANT ,O?J'PO~ C Z ~ S COST t

81 & N f P i 9 P I S f R COST I

8~ &HT PRI? r ~ ~ D C L T C COST m

8 3 .*%I COST 8

8% no OF F B ~ i ~ n i f t IGMTS I

8 5 C P t K StPvIcL NO OF F L T S = 3e 01% SLS~T m

& I l a1 ri I IANFP GOST I

83 Pff TEWHI COST s

SP ct?t;sTE~;C FZRN COST 1

r a 1sitairr o u e r n c towsx - 9 1 1 4 T I T U P E A P E & FACTOR I

1 2 1 O t I t R z S I = 53 T3lrL COST . 9% COSTtU&t t

95 C G f f r t s 4 ~ =

* M a 2 C w L r r n 6M TCTAL n2 U6-112 U C U f m s PER rmt R E 6 A Y l T T TDHS IONS TONS TOWS TOWS TOMS TOHf TOWS IONS t OMS TONS 1 ONS 1 OMS B I L L l b l i B 1 L t I M i B I L L I O # B I L L I O W % I \ L l O N % X L I t O N B I L L I O W % I L L tOW B I L L I O N B I L L I O N B I L L l D N 8 l L L I B N

TOWS B I L L I O N s H I L L S

Page 281: SYSTEM DEFINITION STUDY PART IN

t I t W f E m f E f i t C l L x C ' I a wt t r i i fFflCILWC* 3 BiStC: €8w*fttirn f f C I % B i l M E f T FhtZOIO J Btlf I - f Q - t 1 eft wrteie emw rriFr ? A t E I Y f S f E F t l E t E M t V @ h@ttRN& @'WEB D t f T t f i f Y % # i f BC-IIF i f f t c t f w r

1 0 gefrt BEM t r f t t t f s c r t i YET @ E r n EF@ECEC)~C'I t i t r r f t c w t EFP I C ~ E W C V I 3 EftTfWHL PF-BC E F i f t l f R C Ir x ~ t t r t ~ w s f f i r I S ec-fB-BC E C f t e l E M f e t s me- - - c t t e f r f t c t m z v IF n v c r r i k BHYL1F&t F F F V LI &BE& f i F E C T I W f f f C I 1) e i a x r r r & e r r tB S U t t k N I h l i 21 R t Q U t l E P StEZLeDf IU??t t Z T&FEit PfOUtPfb FBZ f i OU 2 % T s r e t R t f l f e TEBUFR TAPE@ 2% C f f f 1Pf % 4 V t J P t 4* SAT 1O 2 % k n r r i Y G r P t i E P l f la 24 if lea fPPL I n r * € T a u Z? t l P l 4 r C P l F POUEa :S errB e ? z m i c a 2 , Be 4rl *%i* 3tJ 4 P f P l i t BE&H POUfB DfUS f l F f A t BC&H f U t i b 3 f t l Y 32 P W f l IH N I I H B t & N s s r i r E k t t t t iENctn 3% MURBEP Or R I V S 1% ~ R T P eye e f s f a LOSS 31 ADJ 8 4 Y U S E i U i AUEL 37 l r l Y Z t t f 1a bps Aef .L 5 % R t A H S O & & R INSOI4I lCI) CQ S n i A t C f l i DafrUT I\ e O t & % Y JOtHT CUSPFF4t "4" i: m r a t r d X 3 l K l CV4eEMT 1 3 t a t a t rr~xtss te rout@ r6 I O i I r k ~ v Z t E t 1 N ;WPUl ss t o t i t r t v s l i z o x suirut 48 hri''Bf C OI K 1 557Pa)iS 6 : Brt 11S%IE .LI f 4 C k t X t ; DEN i a n 4 x l t rr'x;t P F f R s l l r *i* N U 8 R t l €35 s l i l & Q 4 A V f SQ S t t t ~ H H 4 &&!ti

Page 282: SYSTEM DEFINITION STUDY PART IN

sa cfmtilei P M U 5% A#bitfhL PROtEkLAUX &@ STPUCiU&€ R I S S 6 1 ti-TeOL S l f NASS SZ X M L P SLARREf RISX 63 PWFe D i S i t MASS e i nftn r tirc t 0 t k*ss 6% &IT cruet nbss b b A#: S4VE GUIDE NASS b t &#Z I l l S T R l t W NASS be AH1 C W T l O L t f T S lass 6% ANT PLR D I S T l SASS 7 0 AWT PYil C R O C I t C HAS5 t t AnT nhss tt STRUCTUeE COST 75 COHIUOL SYS c a s T 1~ sotns B t r x x E l cost 13 FOYER D ~ S T R cost 7 b l%EC#fErE f R/J COST 7 7 &#T STEOt COST 7Q A#f YAVESUIDE COST 79 AWT ULYc t lOX COST ao A W T c a n r e o i CKTS COST a t mr pua o r s r t cost 8 2 AnT FuQ P r X i T C COST €43 8 W l COST 8% XO 06 FaE16HT FLISWTS 8 5 CREW SERVICE NO OF FL13 86 1)tS COST 87 TOT4L tR*?4S? COST 8 8 RECTEtittA COST 89 C O ~ f l l U C l l O N COST 9 6 lNTERCST OURIHG COWSTI 9 t L A T I l ~ D E APEA FACTPI PZ TOTIC H i s s Pf TOTAL COSY 9 4 COSt/IUE 95 COSf/KLIW

s * l l s r - a t msAI1 1 SZIE +H 6 W L !US t.S?2€*00 6il TSZAL I . t ? i f + B ? a: Z * l i Z L + t i f f6-W Z . l 8 t f + O l WEYTQllf 2 . 1 8 i E * b f PER tNST Z.'lf&E*ltt AECUi*fT 8.93&E+Ib tlSliT 1.6QbE*QJ TOUS 4.871€+01 TOWS 1. )?OE*€iO TOSS 1.501€+02 IONS l . t 93E+QZ TONS I . bZOE*O3 TOWS 1. S ~ ~ E + W raws I.CQ9E+BS TOMS 2 . l l I € * O t TOlJS ?.J?OE*@2 TOWS l .ZS9€+03 TONS 2.135€+04 TOMS 7 . l f 9 E - o z B f L L X r n 2.13ZC-OZ %iLI.!OII 8.774E-81 h i l t IOM 3.9\6E-03 B I l l I O N L.315E-02 B l t t t O W C. t l3E-GI . , t o n 8.386E-b. ,LLIOH 1.5BsC-01 B I l L r O n 5.954E-02 B I L L l O n 7 . 9 5 9 ~ - 0 2 B t i i r a N 8.bb8E-02 b i C l I O N 1.445€*0@ 8 l L L f O N 1 .49OE+OZ 8.5 l&E+00 3.993E-01 B I L L I O N 3.550€+00 B I l L t O H I.~Z*E+O~I s r t i ron 5-IIOE-01 BILLIO~ b .38 lE -31 b I L L I O S ?.Cl9f+O(t h.25SE*Q4 TOWS

.0:2€*91 D I L L I O N 3.9?2€+03 S 7.382€*01 8 I L L S

Page 283: SYSTEM DEFINITION STUDY PART IN

WEma M & l e t E l t

~ U t t l l W . E W t t S

i tlem tw?sT I t o f t t ~ Y = Z WET CELL E f F t e t E m rn

s mslt c a m ~ t s t m ~ c r r = i ItWf f ? I E F t S I

!b m3 I -m-t L

~ H L I C V gem SWY = 3 W A Y f f f EFf th tWCt I

a M T E W PCSEt BlfTl tFFP - , mT f#C-RF f F F t C I E M W I

f B l D E I l IEAH EFFICIEI#* I

&I MET I E U EfFftlEXSCY I

tt IWTEICEC~ EFF~CIERCI 1

s3 t E c T E w r IF-= EFFXCIE= 8

t* NET IF LfXK EFFV I

t3 DC-TO-BC ECFICICWft t b W-T@-SRi i t EfFlCZERCV .I

17 WESILL PHYS~CAL EFFY - t& AREA EFFECTIVE EFFI I

it I I A B X E T AREA s t* IHVEIICII a r k • 2 1 PCQUIRED S:BEIOIE %FPU = 22 TAPER fEC8ZllEB FOR SL SU = 23 TRAhSnlT tE l POLiER T&PE@ = z i LECEIYFR A Y C ~ E A P Flrro 23 XUTU hV&/PEAK & & S t 0 t

2s I € & R SPRCAD f ICTUR I

Z? RADIATED ffF POSER 28 BEAR DIAtlEtEP 9

Z1 &LA# AREA s SO AYEPICE BE&* POYEE mrm = 31 PEAK BEAH INTENSITY 8

32 QGULI :h @&I# @€AN - 33 S&TE&CITE LENGTH = SG ~ t i ~ ~ r l 0 - BIVS 1

35 W f R PUU DtSTR LOSS = )b A ~ . I &%v u' 'ttL A t € & m

37 BAY S I Z E 3

38 SPS *BE& s 39 W E & % 5GLAR t H S O i r T l O U s

4 0 S . I L I.= ; L 1 OUTPUT t

41 I O T A P Y J ~ ! A T CURUEY? "A9 = 6 2 u O T A ? Y J J I N ? CURRENT *B9 ,J T O f & t PROCCqSZO POUER t

c~ ?Of&!. riYSTsOti fnPUr I

%S TOTAL KLVSTRON OUTPUT s 4 1 NtiBBFR l'. YLVSTROXS 2

47 nix rrrsrao~ racrrns oEn s' 5 A X RF POUEU DENSIT' 8

59 NURBER OF 5UaARRAVS 1

SO RECTtNHA LOE4 I

&. l?wE-@1 t . i a t L 4 1 t ,311E-61 t . J I I E - 6 i ..6%€-Ii t -24BE-e l S.34?€-$1 S. 968E-$1 3. SZ*E-Ol %.4SS€-01 &.955€ 4 1 9.5128-81 8.9ZbE-01 8.34&E-e 1 6.207E-01 4. ,tDE-Bt t . 383E-02 7.08')E-02 2.507€+07 I 2 I i ( .1*4E+~f liCSES B

.2.00QE+QU ICR I i - ~ a ~ ~ + d t n1 B 2.3SSE*01 0. t .C l f€+BO B I 1-OOUE+@l OB Z.QC1E-01 1.98)E-Of 1 .+IBE+OO !. 7?9E+Bf REEAUATT &.fSPStOO f R 1 S.81IE+IB MI f 3.*&0€+07 HZ ( 8.QZlL+BJACRES > %.67ZE+00 C)YICCIZ ; .282€+01 RU#CIZ 1 . 5 9 3 E t B f ? f E M Y A t T 7.650€*09 BAYS 6.1Z$E*61 DLVS 5. Z I Z f - 0 3 9.09 iE+O5 ut t 1*012E+82 ACRES I 6.60OEt02 RETE@S 2.6+lE+OI Utl2 3 678E*Dk QY 4 . 3 3 4 € + 0 0 6 Y f .3BL. 40% ARPS I .~SJL+OC rnes 6.4CSE+Q: REGAMAT? i.255E+O3 X t 6 ; W T f 3.1IEE+OJ M G l W l T ' t 5 . 0 ) 7 E * P 4 2.178€+00 PER SUB 1.44SF 100 YUtMi? Z.9OSE + O f PER ANT 1.9tBE+OT HZ ( 4.7S*E+03 AiRES 1

Page 284: SYSTEM DEFINITION STUDY PART IN

51 Pi ..a &T -h ( t t#* t ?m S t DC OIITPYT -€I I

SJ 6 R l e COUER I

5 4 LAYO 4REA PER RECT 1

35 *vW me ar r~rr rxr I

5 4 TNRUST PEU caenrr .. 51 W U H I E I O f THRUSTERS * 58 CQHrREIL P W E I S I INWUAL PROPELLANT s 5~ STPUCTUPE BASS 1

4 & COHTROL SYS HLSS I

6 2 S O L ~ R BLI~RET HASS 9

6 3 BOUER DISTR ASS 6 4 HECH 8 ELEC R/J 1ASS I

65 AMT SlRUC MASS a 4 6 AWT U4VEGUXbE MASS 1

4 7 d H 1 LLQSIRON R 4 5 S &8 ANT COHfROL CUTS BASS I

6 9 AMT PUR BSSTR ~ L S S • 70 aNT FUR PROCLTC RASS I

7 1 ANT B l S S f

72 SIRUCTUPE COST a 7 5 CONIROL SYS E M 7 a 7 6 S 0 1 & 8 BLANKET COST 8

7 5 PFUEP D I S l R COST I

7 6 HEC~ISZLEC R / J COST I

f ? ANT STaUC COSI zs rst ~ ; ; v ~ t y ~ g ~ COST d

7 9 A N \ ELYS?#ON COST 1

80 ANT CONritQL CUFS C 0 5 t t

LII AN1 h l l UtSTe SOST .I

82 &ST FYS PROCLTt COST 8 s dNT cast 8

64 ti0 PF i *EIGHT FLlCNfS r 1 5 CREk SEPVICE NO OF FLTS - 66 OTS f35T I

U? TOTAL T tAHSP f U S T s

8 b RfCT+&H& CQSt 4 9 COKSTCUCTIGf4 COST i

9 0 I M T f R t S T OUeING COwJTR V \ L A 1 ITUBE bUt& FACTGU s

92 r O t r r H15S a.

9 5 TOTAL COS1 w

T i COST tKLf m

? S COST .-L:iil 8

2 . & B i € - l l l tWI IZ I.S24E*OO W L Z W I t .S lZE* i iO 6Y TOTAL 4 . l S t E * B 7 nz L . i S 4 Z E + l 3 E6-112 Z . t 8 l E * D l NEYTOHS 2 . 1 B t E + O l PER I N S t 2 . 7 3 8 € + 0 1 MEGAYATt 8 . %ibE+BO TENS I . Q O l E * O f TONS Q . 8 ? l E * Q l TONS l . O f O E * 0 4 TONS l .SOIE+OZ TONS 1 . 4 1 i E * O Z TONS 2.00OE+03 TONS l . ? Z l E + 0 4 TONS 3.46?E+OS TONS 1 .709E * O i TONS 8 . 4 ? ? € * 0 2 TONS 1 . 2 f 9 E + 0 f TOMS Z . S i t E + U C t 0 t & S ? . O 3 9 E - Q Z B f L i I O n 2 . t 9 2 f - O t BILL!a)( 8 . 7 7 4 E - 0 1 0 1 1 L i O W S.Pl9E-O3 b f L t l b Y Z . 9 c 4 E - 0 2 B E L L I O N 2.415E-01 B l L t I C N f.E35E+13 BIllXG# %.$SBE-01 B I L L I O N 5 . 9 8 0 5 - 0 2 B f L L l t N V . l iS t - .B : 5 I C L I O * 8 .6PEE-02 BlCtfOX 1.6;6E+JP E I C L l O N l .&S?E*DT - . S b ) f * \ 1 3 C - C . * & t - P t 8 : L ? I O Y ).e5SE+OO B l L L I O K 1.:31€*30 B I L L I G M S . 6 2 i E - ? l B Z l l I O N 6 . r r a f - a t B ~ L L I O ~ , k,si,etno C . f l i < + J f T B & S L . 0 3 ; C * 5 f 811110W 4 . ; 6 & € * 4 3 C z . ? e l c * a z h t i t s

t *&*Sf*# ACRES I

i . * e S E * l l LB I

1 *%?OE*$4 L U I k 3.IO+E+Bb L M b l t 8 1 + E + O S LIB 1 I . SIOE+C~ ian 1 3.323€+05 LBN I 3. & ~ s E + ~ s t ~ n B b.*09E*Ob LSR 1 3.8OCE+O7 LBN I t .&&?E+Ob LBei 8 S - V 7 3 E * O 3 LBH 1 1 . 8 6 9 f + B 6 L 5 I i 1 2 . ??sf *e6 t BN 1 5.538fi+@? LSM 1

Page 285: SYSTEM DEFINITION STUDY PART IN

1 L t Q # l tY+ldf EF fX t I f l iC1 z MT C E L ~ f F F l c i E n c r 1 I A S l C COWVCRSIW EFfY 4 U & M E T F A C ~ ~ R S 5 avs I-so-a 6 SET L ~ f f 6 7 C W EFFV 7 hR€&ffE EFCfC;EWitt 8 AWlE€MU PCrCR D I i r l E f F t t ?&ET DC-RF f 'FICIEUC-Y

SO I M A L 3 E l e EsffCIEREI t a WLT smn E F F ~ C X E W C ~ 1 Z tBltESCEPf E F T I t T f Y G Y t 3 W I C T E W OF-W E f F l C I f # e 1* MST tf Lt *Y FFFY IS D t - f a - D E E S f I G f E # C V 1 i DC-TIP-6GXD EFFICXEMCY t? s w f l r k t W W ~ C A L K ~ F Y i 8 A t € * E F f C C f l V L L C C I 13 ULdktWEt &tit& ZQ ANTSNU4 & f A 21 r t f W I B E D si€E;o@S f U H R 22 7APEU tfQtllRE&! r3tr 5; W z s r a ~ n ~ \ i ; ~ ~ u ewEa TAPES 24 R E t E t Y E R A t t C I P E I t 8 L T j O 25 XSlR APGiPE&U B A T I o t i SPSEAO F ~ C T O R 27 tAb!%TCD U@ POUZE Z 8 BEAR Dl&RETES 29 EL&% 42f L. 3O . \ Y t B l l f BEAN POUER IEYf 3 1 PEA% BEIS Kbl'EYfffY 32 W E I I H HlIk PEUI 53 SLlELrtTE LEfJGfH 34 UURSEf W B A Y S 35 xnrl ~ w l t arsra tass 36 A B J B A Y uSFGUL A g E k 37 8 A V S I Z E 31 SPS A S € & 3) n f m s o t ~ t t ~ W S O L A T ~ O ~ OB SOCrR fEiC OYfPUT 41 P O ~ A P I :otnr curarnt -A- 4Z BCTAR1 JOl;if CUPlfbtT -8" 5 3 TOTAL PRDCESSfO POUER 54 t P T i L KCYSfUOS IMPUi 45 TOT*: KL'*TRU, UtlT?UT CB W' ::BE@ OF ULYSfROtIS 4 7 nrx rivsTeon eacrtkc orw SS UL1 RF C G S f U PEWSlTY 59 FURBEC OF S U Y A P C A V S so eECrE;4*% & P E A

8 S79E-OB 1.601 E-el f .)WE-81 l*S¶%&-OL +.7 l?E-Ol L . t . S t E - Q i f.350E-81 * .* tZ€-$I I l . Z * t f -Of I - L t i Q E - $ 1 8.)SSE-Ot 9 . 5 l t E - 0 1 a.867E-t)l u.3*(to-a1 6 . 1 4 3 E - B 1 5 . 9 5 9 t - 0 1 7.43bE - 0 2 6 . 9 & 1 € - 0 2 *.ES?E+O? 12 I 1.6OBE+~4 ACRES 1 -i .88GE*80 I# t 1 . 2 1 4 f - - ) I R I 1 t . ? S 5 E + $ l 08 3.207E+OO 85 k.ODbE+lal 01 2 e i f E - 0 1 5 . q00L-B1 1 -1S@€*08 Z.bfSE+Cf rltp&tl 1 . 3 i a € + a f KC C b . l I 9 E * h @ HI 1 1.3$C€*Q8 HZ t 3.37bE*O4 A t R f S 1 t .s r ts+oo nw/trr2 9 . 0 2 4 € * 0 0 M / C I I Z 2.3CtF+Q3 R E S & W V f 1.235E'Ol BAYS 9.8blErFi BATS 3 . b Z f E - O f 4.E96E+05 I2 1 I . @ l ? F + D Z ACRES 1 b.ICQE-BZ ( I E f f R S 2 . ;24E+01 KUZ S.t5li*OI 6 M 6 . C 9 B f b i 3 G 6U S.C;~S+W hnps 3 . 1 ~ 9 ~ 4 3 4 LnPs 1 . 8 2 5 * + 0 3 XEGnYATF 6.7?5E+C? H E 6 A Y k l T f .'59L+63 RfGh~!ATT ;,996EbOC 1 . 3 6 3 € + 0 f PER SUk ?.Z;B€*OJ KP/82 7 . t 6 l f * 0 : PEL A h 1 ? . 6 7 Z F * Y f R2 t 1 .L94i*b4 ACRES t

Page 286: SYSTEM DEFINITION STUDY PART IN

5 1 ?EAR 4NT TNERIAL rY1 s2 Be W T W T PtlYER I

33 6110 W E R I

S4 LAN8 AREA PER RECT 8

55 w'f- W M OF INERTXA I

Sb TWRUST PER CORNER s t n u n s ~ ~ or THRUSTERS 8

5 l CO#TROL PORE@ I

5 ) ANNUAL P*OPELLANT 8

18 STPUCTURf R&SS I

I 1 CUNTEOC SVS W55 62 SbCAR BLUIKET RASS I

6 5 POWER b l S IR MASS I

6 4 HECW & ELEC E/J RASE I

6 5 ANT S.TRUC BASS .: 66 ANT il&VEG.UtDE HAS5 I

61 ANT K L ~ S T P O W R ~ S S = 6 8 ART CONTROL C1TS I A S S i

6 9 ANT PUR D l f T l BkSS L

i O &NT PUR PROCZTC BASS 71 AHT mass = 72 STRUCTURE COST t

7 3 COISTROL SYS COST I

7% S5tAR BlANUET COST I

7 5 POUER DlSTP COST m

76 HECWLELEC f 8 J COST I

77 ANT STRUC COST I

?a ANT UhVEGU!DE COST 79 ANT KLYSIROW COST t

60 ANT COHTROL CUTS COST e d l ANT PUP DISTR COST I

8 2 ANT PUR PROCLTC COST I

8 3 ANT CCST I

8 4 NO OF FREfGHT FLIGHTS I

85 C*EU S E R V I C E NO OF FLTS = 16 OTS CBqF t

8 7 TOTIL TRIHSP COST = aa R E C T E ~ ~ ~ : A COST = 89 CONSTRUCTION COST = 9 0 INTCPEST DURING CONSTR = 9 1 l&TITUDC APE& FACTOR t

92 T O T A L BAS: •

9 3 TOTAL COST t

5;. COST8UlfE = 95 COST/KI?H t

1.753E+ee t W I 2 t * U I I E * $ @ WLLW 4.UIJE+BO 5U TOTAL 1.*3SE*B5 RZ 6.bZOE+lS 16-#2 3.421€+01 UEUTOWS 1.511€+01 PER INST 4.4I9E+Of REEARATT 1.463E+81 TONS 2.270E +03 TONS ?.863€+01 TONS I. ?ZAE+OC TONS &.908E+OZ TOHS U.fOPE*Ol TONS 5.000E*OI TONS 4.31CE+O3 TON3 3.553€+03 TONS 4.319€+02 TOMS 4.644€+02 TONS Z.O15E+03 TONS 1.32SEtOC TOWS 1.135E-01 B I L L I O N 3.538E-02 B t L L I O N 1.417E+OO B I L L I O N 1.016E-02 B I L L I O N 1.701E-02 B I L L I O N S.%SSE-OI B I L L I O N 2.533E-01 B I L L I O N z . s ~ ~ E - o ~ a I i i t o n 9.534E-02 B I L L I O N S.O!SE-02 E i L L I O N 1.390E-01 B I l l l O N 1.145E+00 B I L L I O N 1.472E+Ot 8.413E+00 3.950E-01 B I L L I O N 3.517E+00 B I L L I O N +.525E+00 B I L L I O N 5.04SE-01 B I L L I O N 8.C:OE-01 @ I L L I O N 1.419€*00 4.207EtOC 1OMS 1.342E*01 B I L L I O N 3 .309€+03 S 6.151€+01 R I L L S

Page 287: SYSTEM DEFINITION STUDY PART IN

t tfb8T IMtUi LFFlClEnC1 t W T +ELL EfFXCfLWICV 3 & & S f 6 C6WVERSlOW EFFY 4 eurnEr F A C ~ D B S s ms 8-SO-R 6 NET r?tEUGY CON$ E F F I Z AREAUISE € r f f C I f W V 8 i N r E t t n a P ~ ~ E P ~ i s t l t EFFY 9 NET O f - R F EFFtClENfY

te i O € A k R f A n E f F l C I E N C V I I w r IPAH EFFXCIENCY 1 2 tt+;ERcEPr EFFXCIENCY 1 3 f&ECTE?J#A R f -DC E i F I = I € W C t* WET RF CtHW EFFY I S BE-TO-IIC E F F f C f E X C Y 14 D C - I U - S R f D E f F I C l E N ' V 1 7 O V f R r L L PRYSltAL EFFY ;a &&EA E F F f C t t Y f EFFY 1) B L I H K L T &RE& 20 AWTEWNA 011 ?i U E Q U f t E D SIDELOBE SUPPI 32 T&PER REQUIRED F O l SL f U 23 T R A n S r 4 l i l E ~ POUER TAFEU 26 R E C t l V E R A V G / P E k I R A T I O 25 X n l R A V G I P E r U 4iT10 21 S*REAEI FICTOR 2; RAPl rTED R F PL4ER ZI BEAH DIAHETER 19 8 f I H I R E A 3 0 BVERIEE BEAR POUER PENS 3 I PEAg 8 E l H l N T E N S ? T Y 11 POUEP I N H A I N BEAN 3 3 f * T E L L l f E LENCTU 3 4 N(lt:BER "F B4YS 35 XNTR PUP D f s r a LOSS 36 L b J BSY USEFUL AREA 37 6 A Y S f Z S 38 SPS ARE& 39 UfAH S 0 1 4 R lNSOLATfOW 49 SDtLR 2 C t L U U t P U T 41 R O i A R Y J O I S T CURRENT "A* 42 ROTAZY J O I N t CURRENT -5. 43 TOTAL PROCESSED POUER 6 4 TOTAL YLVSTRRk I N P U T C S T O f l L ULVSTRON OUTPUT 46 H U f l @ E I OF K L Y S T R O N S 47 R&X K L V S l l O N P A C K I N G DEN 48 ?!AX R F POWER OENSITV 4 9 NUMDER O f S U B A R R A Y S 5 0 RLCTENNA AREA

&.S79L-Oi f . i @ b f - l i l L. % M E - 0 1 F . 3 9 9 f - B L $. ?$?E-01 I. 2*8E-(tf 9.353E-Bl P . 9 t BE-a1 8 . 2 9 8 6 - 0 1 9 . 6 5 0 E - 0 1 8 . 9 S S E - 0 1 9.51 Z E - Q i 8 . 9 0 4 E - a 1 I . J48E-81. $.$BEE-01 5.983E-01 7 -4686-0,' b . 9 8 9 E -02 * . 0 4 ? € + 0 ? €42 I l . ~ O Q E + O I A C U E S

. ~ . Z ~ @ E ~ O O Y n t ? . & 5 7 ~ - d 1 HI 1 t . 1 1 4 € + 4 ? 1 DI 5 . 7 2 4 E + 8 0 DB 1.ODOE+Ol DB 2 . 0 6 1 E - 0 1 3 . 9 0 9 E - 0 1 1 .CSOE*Ofl t .83BE+03 N f 6 A Y l T T l . O P B E * O l Y I l C l.bZ4Et00 HI 3 9 . 4 7 2 E + 0 ? H2 t Z.34OE+OC ACRES 1 2 . 5 8 1 E 1 0 0 HUfCH2 I . ~ C I E + D I nurcrtt 2 . 5 0 0 E t 0 3 R E G A U A T l 1 . 2 3 5 ~ t 0 1 B a r s 9.BS1E*Ot BAIS 8.950E-03 4 . 0 9 6 ~ * 0 5 n2 ( 1 . 0 1 2 € + 0 2 4 C I E S I 6 . 6 0 0 E + 0 2 HETERS 4 . 3 2 4 € + 0 1 YN2 S. i5S?E+Ol 6 W & . 9 9 3 € + 0 0 GU 5 . 4 3 L f 40% AUPS 3.190E+OC 4HPS 1 . 0 2 5 E * 0 3 RFGAUATT 6 . 7 7 C E 2 0 3 RFGLPATT 5 . 7 5 S F + O 5 8 E S A Y A T f 7.99iE*g4 9 . 6 3 h E + C O PER SUB 6 . 4 l C E + 3 0 KWflBZ 1 . 0 4 6 E * R 4 PER LWT 5 . J : J L + O ~ n: ( I . ~ I ~ E + o ~ ACRES )

Page 288: SYSTEM DEFINITION STUDY PART IN

S l ?€A& AWT YHE&HAL W R I

52 bC OUTPUT POUER I

55 6 R l D W U E R I

5 1 L A N 0 AREA PER RECT e

3s -v- non OF INERTXA I

54 THRUST PER CORNER I

57 M U ~ B E R OF T~RUSTERS t

38 CONTROL POWER I

$9 AHNUAL P P O B f L l A N T I

6 6 STRUCTURE H A S S = 6 1 COt lTROL S W B A S S e

i s SOLAR BLAWYET nkss 43 POHEff D I S T f f MAS5 sc ~ E C H a ELEC I;J n ~ s s I

65 ANT JIRUC N A S S I

66 ANT UAVEGUIOE NkSS I

6 1 AHT KLYSTRON n ~ s s . 6 8 AMT CONTROL CKTS nrss I

69 ANT PWR o ~ s r a nrss = 70 ANT PWR P R O C ~ T C BASS I

7 1 ANT PIASS t

7 2 STRUCTURE COST I

7 3 CONTROL S V S COST = 74 SOLAR BLANKET COST I

75 POWER D I S T R COST I

76 t 4 E C H t E L t C R/J COST I t ANT STRUC COST t

7 8 ANT W I V E G U I D E COST 7 9 ANT KLVSTRCY COST 8 0 ANT COt iTROL C K T S COST t

81 ANT PWR O I S T R COST a

82 ANT Ptr'R PROCbTC COST "

8 3 AfJ f COST a 84 NO OF F R E I G H T F L I G H T S t

8 5 CREW S E R V I C E NO OF F L T S = 86 OTS C 0 5 T t

8 7 TOTAL YRANSP COST t

88 RECTENNA COST I

8 9 CONSTRUCTION COST I

9 0 I N T E R E S T D U R I N G COWSTR 3 1 L A T I T U D E AEEA FACTOR 8

9 2 TOTAL H 4 S S 91 TOTAL COST * 94 COSTIKGE 95 COST/KUH =

uumz 6 N # L l M l 6 M T O T A L nz U6-HZ n E w a W s PER 1 H S T H E k A U A T T T OMS tot:?. TONS TONS TONS TONS T i r H S TONS TONS TONS TONS T QNS TONS B I L L f O N B I L L I O N B I L L I O W B I L L I O N $1 L L I O N B I L L I O N B I L L I O N B i L L t O N B I L L I O X B X L L I O M B I L L l O N B t L L l O N

B I L L I O N B I L L I O N B i L L l O N B t L L 1 3 N B I L L I O N

cRlGINAL PAGE B 01;' POOR QUAL;PrP;

L en 1 L B R > L 5n f L B H ) L B H )

L 8n k i ~ n ) LBH ; I B H L B H f ten 1 C B ~ 1 L BR 1

Page 289: SYSTEM DEFINITION STUDY PART IN

Taw A 1 -1 (Corntindl Rotary J&t h w c c 3418 Megamtfs

ANTENNA OIAlE TER V A L U E = 1 . 4 8 0 E * 0 8

S O L U T l O N R E S U L T S

L L I G H T l W t U T E F F i C l E N C Y z NET CELL E F f x c x m e Y 3 B A S I C C O N V E R S I O N E F F Y Q 0 L A N t E T FACTORS 3 B U S I - S O - R 6 N E T EHERGY CONY E F f Y 7 A R E A U I S E E F F I C t f W t Y 8 A N T E N L A POUER D I S T R E F F Y ) N E T DC-RF E F F I C I E N C Y

10 I D E A L B E A N E F F I C I E N C Y 11 NET BEAM E F F I C I E N E Y 12 I N T E R C E P T E F F I C I E N C Y 8 3 REGTENHA RF-oc E f r t c x E w 12 N E T R F i X N l f F F Y 15 DC-TO-BC E f F I C l E Y C Y 16 OC-TO-GRID E F F I E X E N C Y 12 OVERALL P I I V S I C A L E F F Y 18 AREA E f F E C f I Y E E F F Y 19 B L A K P E T AREA 20 ANTSOHA 0 t h 2 1 R E O B I R E D S I D E L O B E S U P P I 2 2 TAPER R E Q U t R E D FOR S L S U 23 T R I N S N I T T E R POUER TAPER Z S R E C E I V E R AVG8FEAK R A T 1 0 25 XRTR A V G t P E A K R A T I O 2 6 B E 4 H SPREAD FACTOR 2 7 L A D I A f f D R f POUER 2 8 B E A M P I A H E T E R 2 9 BEAH AREA 30 &VERAGE B E A R P D U C I D E N S 3 1 PEAK B E A H I N T E N S I T Y 32 POUER I N W A I N BEAR 3 3 S d f E L L l i E L f N G T H 3% HUMDER OF B A V S 3s xnru FUR DISTR LOSS 36 A D J BhY USEFUL AREA 37 B I Y S t i E 38 S P S AREA 39 HEAN SOLAR I N S O i A ' I C N 40 SOLAR C E L L OUTPUT 41 R O I A R V J C f N T CURRENT 'An 4 2 C 0 7 I R V J O I N T CURRENT "8' 43 TorAi P R O C E S S E D POUER 44 TOTAL KLYSTRON I N P U T C 5 1OTAL K L Y S T R q N OUTPUT 46 t:tl?:Dt U OF K L V f TROWS 4 7 t i$% U L V S ~ R O N P A C K I N G D E N 4 8 n x x R F P O K E R DENSITY 49 NCHDER O F SUBAQRAYS 50 R E C l E H N A AREA

f i . O O O E * O l ACRES 3 ( a . t o o ~ - 0 1 nr 3

HEGAYAT T U N ( 5 , 8 4 9 E + 0 0 N I 1 n r t ~ . ? Z O E + O Q ACRES I Hid/Ct42 nutcnz HEGAUATT B A Y S B A Y S

n 2 i ~ . O ~ Z E + O Z A C R E S 1 HE TERS rnr E Y GH A n P S AMPS M E G I N A T T NEGAI IATT 8EGAI IATT

PER SUP KHfUZ PER At41 n z ( 9 . 6 7 2 ~ + 0 3 ACRES )

Page 290: SYSTEM DEFINITION STUDY PART IN

5 1 PEAK ANT TRCRHAL PYR I

52 DC OUTPUT POYER I

5 3 6 R I D POUER .I

3 4 LAND &RE& P f R RECT w 55 'Y* UOH OF 1NERTlA i

56 THRUST PER CORNER .I

57 HUHBER OF THRUSTERS i.

sa COHTROL POWER i.

5 9 ANNUAL PROPELLANT 6 0 STRUefURE HASS .I

6 1 CONTROL SYS nrss I

6 1 SOLAR BLANKET nrss I

6 3 POUER DISTR RASS a

64 RECH I ELEC B/J HASS I

65 ANT STRUC RASS 66 ANT UAVEGUIDE HASS 6 7 AN1 KLVSTRON NASS ;.

6 8 ANT CONTROL CKTq 9552 I

6 9 :Hi ? M U DISTR ASS a

7 0 ANT PUR PROCITC HASS I

71 ANT ~ P S S = 7 2 STRUCTURE COST I

7 3 CONfROL SYS COST 74 SOLIR BLAMEFT COST t

7 5 POUER OISTR COST I

16 RECHSELEC R#J COST a

7 7 ANT STRUT COST a

7 8 A N T HAVEGUIDE COST = 7 9 AtJT f LVS lRON COST R

1 0 ANT COntRDL CUTS COST I

8 1 ANT PiJR D I S T 1 COST 8

62 ANT P;JR PROCLTC COST I

8 3 ANT COST I

8 4 NO OF FREIGHT FLIGHTS I

3 5 CREU SERVICE NO OF f L T S = 8 6 OTS COST I

8 7 TOTAL TRANSo COST I

8 3 RECTENNA COST 1

8 9 CONSlRUCTlON COST 9 0 INTEREST OURIYG C9NSIR 9 1 LATITUDE A R L A rACTOR 9 2 TOTAL BASS I

9 3 TOT4L C35T s

9 4 COST-'KUE I

9 5 COST/KUtl a

6 . 8 b l E - 0 1 KY0NZ Z . l l bE*OO UY0L fNU 4.1%SE+00 EY TOTAL 9.a?ZE+07 HZ 4 .620€+13 KG-HZ 3 .521E*Gl NEUTONS 3 .521€*01 PER I N S T 4 = 4 1 9 E + 0 1 HEGAUATT l , Q 4 f E + O l TONS 2 .270E+03 TONS 7 .863E*Ol TONS 1 . 7 2 8 E t 6 4 TONS 3 .901E*02 TONS 1 . 0 7 8 € + 0 2 TONS 9 .800E+02 TONS 8 .4556+03 TONS 5 .568C+03 TONS 6 . 3 2 7 E t 3 2 TONS 7 . 8 3 7 € + 0 2 T INS Z.O1SE+O3 iONS 1 . 8 2 ? E + 0 4 IONS 1 . 1 3 i E - 0 1 B I L L I O N 3.53SE-02 B l L L I U N 1 . 4 1 7 € + 0 0 B I L L I O N 1 .014E-02 B K l L l O N 2 .264E-02 B I L L I O N 3 . 7 9 i E - 0 1 B I L L I O N 5 .073E-01 B I L L ION 2 .533E-01 B I L L I O N 9.550E-0' B l L L I O N 8 . 4 6 4 E - 0 2 B!LLION 1.3YOE-01 B I L L I O N 1 . 4 6 0 € + 0 0 B I L L I O N 1.692EtO: 9.668E+OO 6 . 5 2 9 E - 0 1 B I L L I O N 3 . 9 1 6 t + 0 0 B I L L I O N 2 . 4 5 5 € * 0 0 B I L L I O N 5 . 8 G l i - 0 1 B I L L I O N 7 . 6 i 6 E - 0 1 B I L L I O N 1 . 4 1 9 E + 0 0 4 . 8 3 4 E + 0 4 TONS 1.2:9E*01 B I L L I O N 2 . 9 9 3 E t 0 3 6 S . S ~ ~ E + O ~ n I L c s

f 2.439€+04 ACRES

Page 291: SYSTEM DEFINITION STUDY PART IN

ANTEWA OIAHETER VALUE a 1.600E+00

s n L u T r o w RESULTS

1 LXCWT INPUT EFFXCXENCY 2 NET CELL EFFfCIEUCY S BAStC CONVERSION EFFV 4 BLANYLT F A C T O l S 5 BUS I-SQ-R 1 NET ENERGY CUNV EFFV f AREAUlSE EbFXCIEWCV 8 ANTENNP POUER DISTR EFFY S NET DC-RF EFFtr 'ENCY

1 0 IDEAL B u n E F C .ENCV I ? SET BEAR EFFIL..NCY 1 2 INTERCEPT E F F f C I E N C t 1 3 RECTENNA IF -DC EFF lC lE%C l i NET RF L I N K EFFY 1 5 DC-TO-DC EFFICIENCY 1 6 DC-TO-GRID EFFlCIENCY 1 7 O V E R Y L PHYSICEL EFFV t6 AREA EFFECTIVE EFFY 1 9 BLANKET AREA 2 0 ANThHNA D I A 2 1 RECUIRED SIDELOBE SUPPR 2 2 TAPER REQUIRED FOR SL SJ 2 3 TRAHSMlTTEl POUER TAPE2 i . RECEIVER AVG/PEAK RATIO 2 5 XNTR AVGfPEAK RATE0 2 6 BEAN SPREAD FACTOR 2 2 RADIATED RF POUER 2 8 BEAN OiAHETER 2 9 6EAR AREA 3 0 AVERAGE DEAR POWER DENS 3 1 PEAK B E I U INTENSITY 32 POWER IH U A l N BEAR 3 3 SATELLITE LENGTH 34 NU: tDER OF BAYS 35 nTR PHI? DlSTR LOSS 36 ADJ BAY USEFUL AR*A 37 BAY S I Z E 38 SPS AREA 39 n r h N S O L A R I':~OLATION 4 0 AR CELL OUTPUT 41 tO.gARY JOINT CURRENT *A" 4 2 kSTAR1 J O l h l CURRENT "0" 4 3 TOTAL PROCESSED POWER 5 4 TOTAL KLYSTRON INPUT 4 5 I I I TAL KLYSTRON PUT-''IT 4 6 NUNBER OF KLYSTRONS C f HAX KLYSTRON PACKING DEN 6 8 M A X RF POUER DENSITY 4 9 HUUDER OF SUBARRAYS 5 0 RECTENNA AREA

8 .579E-01 1 .&01E-01 l .36OE-01 9.3996-01 9.767E-01 1.24L)E-01 9 .359E-01 9.93SE-a1 8 . 3 l 8 E - 0 1 9 .650E-01 t ~ . 9 5 s ~ - e i 9.512E - 0 1 8 .926E-01 8 . 3 4 8 E - 0 1 b .199E-01 6 .O ISE-01 7 .505E-02 7 .024E-02 C .047€+07 8 2

.1.600E+00 KH 2 .365E+C l DB 9 .58ZE+00 DB i.OOOE+Ol D% 2.061E-01 3 .909E-01 1 .450E+00 2 .843E+03 REGAYATI ~ . ~ ~ s E + o o KR t s . ~ ~ ~ E + o o nr 1 5 .328€+07 ( 1 .317€+04 ACRES I 4 . 7 7 9 ~ + 0 0 nu/cnz 2 . 3 1 9 € + 0 1 flbi/CU2 2 . 5 4 6 € + 0 3 HEGAYATT 1 . 2 3 5 € * 3 1 BAYS 9 . 8 3 1 € + 0 1 BAYS 6 .464E-03 S . D 9 6 € + 0 5 f l? 6 . 6 0 0 E t 0 2 N E l E R i t,.3:4~+01 Ynz 5 . 6 5 1 € + 0 1 GW 6.99PF.00 u W 5 .418E+U4 A3PS 3 . 1 3 2 € + 0 4 ANPS I . 0 2 5 ~ + 0 3 ~ E G ~ W A T T 6 .791E tO3 WEGA.+ATT 5 .7727+03 BECAWATT 8 . 0 1 7 € + 0 4 5 .434E+00 P. R SUB 3 . 6 1 7 € + 0 0 K&/U2 1 . 8 5 9 E + 0 4 PER ANT 2.997E+O? !42

i 1.000E+04 ACRES )

( 9.942E-61 N I 1

t 1.012E+02 ACRES 1

( 7 .405€+03 ACRES 1

Page 292: SYSTEM DEFINITION STUDY PART IN

SI nu ur mllu rr a U K 0 % - T CBIAR i

S f =ID @'#El I

H L I I O U f A tft RECT 1

5s -P m OF smsttta 1

5 6 T ~ l t S T t f l C g t m R I

sz a u m o ~ ~ w r n m r r e s = = CaaTROL 1

s 9 Al tmAL P R B P E L L W I

60 STlltKTURE NASS I

4 1 Ct*THIL 5- -55 = 4 2 SOLAR BLIWKET -Sf I

4 3 ~ I S T R BASS I

1+ HECI 1 ELEC I03 CHff 1

1 5 A11 STROC RASE t

b* *rrT -oEMi€Bf luss t

6 7 AUT SLVSTtQII SASS 1

6s A ~ T CO~TROL CUTS A~SS = 49 ANT hi* OISTR MSS t

7 1 ANT PROEITC mSS I

7 1 ANT BASS I

7 2 STtUCTUIE COST I

7 3 COSTROL SYS COS? 1

74 S O L I I BtAXKET COST t

7 5 CWlER DISTR COST t

76 MCHLELEC R f J COST I

7 7 W T STRUC COST t

78 ANT N&VESUIDE COST I

7 9 A n t tLVSTROn COST I

II ANT CO#T*OL CUTS C-T t

81 ANT CUR DISTg COST 1

82 ANT Wit PtOf l iZC COST I

13 ANT cosr a

8 4 )10 OF FRE16HI FLIGMTS I

6 s CREU SERVICE NO OF FLTS = 8 6 OTS COST = 8 7 TOTAL TRANSP COST I

8 8 RECTEIIWI COST I

8 9 CWSlRUCTION COST = 9 0 1NTEPEST DURItS CONSTI = 9 1 LATITUDE AREA FACTOR I

9 2 TOTAL -ASS I

93 TO7lL C3ST I

9 4 COST/l(UE I

95 COST0tUW I

*.rbZE-el fUU Z.ll&E+D1 r).tl.f* w TerAi t.smE+mt IU 6 - i Z W * l f .C* 3 .SZlE*@t MYT€W5 S.SZZE+OI n u XIST i . i 1 9 E * I f rnClOlf1 1.4+3E+O1 TOHS Z.Z7OE+O3 TOWS 7 .b iSE+I I 1Bm 1.?28f+04 T(tba 3.81UE+O2 TOMS I . Z l Z E * l Z T o m l . Z ~ E * O J Tows I - I84E+OC TONS S.S72E+OS T r n +.329E+B2 T o u s l .a22E*83 TOXS Z.SISE+OJ 1- Z.I37E+04 T W S 1.133E-01 D I t t X B Y 3-538E-62 D l L L I W f.CltE+OO B l L L I W 1.014E-02 BILLIOW t.S+SE-I2 B I L L I D n 3.992s- I1 B I L L I W b.bZ1E-01 l l L L I O n 2-SJSE-Of B I L L I O n 9.5S.E-62 B I L L I D X 1.103E-01 B I L L I O N 1 - 3 9 I E - 0 1 B I L L l O X 1.&6OE+OO B l L L l O d I .a3eE+oz 1 .OCSE*Ol 4 - 9 l l E - 0 1 B I L L I O N C.l6ZE+OO B I L L I O N 1.950E+OQ B I L L I O N 6.276E-01 B I L L I W 7.736E-01 BILLlO@4 1.419E+00 S .L~OE+OZ Tans I .Z38E+Ol B I L L I O N 3.113E+C3 S 5.401E+01 H I L L S

Page 293: SYSTEM DEFINITION STUDY PART IN

E LIGUT I E C l i T E F F l t l E * E t 2 Wit C E I l EFFICfE%CY I WStC C U I f W i t S t S M LFFY 4 8 l W E l F I C T O I S 3 mS 1-58-1 i BE$ CBEB6V COYr EFFY ? &REAYfSE EFf t C I E * C I I a r E l m r m s e stste EFFV 1 B€T Dc-RC E F F I C t E I K Y

I @ i D E & t U E U ) E F f t C I E I B V I1 S E T BEAR E C F I C I E a Y I2 IWTERCEPT E F F f C I E U C Y 13 e t c x E # n r IF-= EFFICIEYC I* SET RF LtWU EFFY IS m-re-w EFFICZE-CY Sb B t - T O - d l 1 0 E F F I t l € # S V It OVERALL F M I S I C A L EFFV ta E F F E t t t r E EFFT 81 mrrecr IPE* 2s AMTZNHA D I A Z l %EOUtPCD SIOELOBE SJtFe 22 TAPER PEPUIEEB FOE SL W 23 ra&HS?iflTER POYER TAPER 2 1 u E c E i r f t A Y G ~ P L A K R*IIO 2s x n T a A V G ~ P E A C r i r r o 24 E E I n SPREAD FACTOR t? l h O I A T E D UC POUER 28 BEhH DlAHETER 2, BEAR I R E & 3O bVERdGF BEdR POYER DENS 11 P E i r BEZR INVEL~SITV 32 POWER 1N H A I N BEAH 3 3 SATELCITE LENGTH 36 WUBDEI OF BAYS JS X a l R PUP B I S f P LOSS 3 6 h O J BAY USEFUL AREA J I B A Y S I Z E 3a SPS APE* 33 REAN SOLAR IWSOLATIOU CB SOL A t CELL OUTPUT 41 ROTARY JOINT CURRENT "Aa 4 2 ROTARY JOiMT CUPREWT aIa 43 T o r h i e a o c E s s E o P o w r e 64 TOTAL K i v s T t t o n INPUT 4 5 TOTAL KLYSTROtI OUTPUT 46 HUMBER OF KIYSTPQNS 4 7 nhx KtvsraoH p*citrnc DEN 48 HAX RF POUfR DENqITV 41 MURDER OF SUSAEPAVS SO RECTENNA AUEA

8- ST*€-el 1 * 6 @ 1 € - 0 1 a . 3b*E-&t 9. S**E - # I * .74tE-Of 1 . ZI8E-01 9.359E-@I V.121E-BI a. S13E-Ol S*6S+€-rnI 8 .191E-Ol %.S6 lE-81 a.9l:E-Bl 8 . C l 7 E - b t 6 . 2 J Z f - e f 6 . e c S E - e l 7. S~LE-ez t . d& 3E-62 4.e4?E*17 HI C t .@@Oi+@4 MILS I &.800E+BB C k t I . l l V f + S b R J 8 t . Q l l , * O l 81 1 . 0 6 5 E + 0 1 B I 1 . 6 6 9 E * 0 1 01 2 .O.?JE - 0 1 3 .703E-01 I .C?CE+OO Z . I S t E * O J lSE6WATT ?.C45E*BO SR I k . b Z b E + @ @ f l I 3 6 . 3 5 3 € + @ 7 8 2 I I .bt6f*84 ACRES > 5.856E*OQ ffU/CBZ ~.Z.S~E+OI H u / c n z Z .S55E+03 HEGAYATT I.:JSE+Pl B I Y S 9 . 8 8 1 E + 0 1 BAYS 7 -05d.E-03 C.o96E+OS n2 C l . O l t E + 0 2 ACRES f 6 . 6 0 0 E * 0 2 RETEES 4 . 3 1 4 € * 0 1 fB2 S.$SIE+Ot 6 U 6 . 9 9 3 € + 0 0 GU 5 . 4 2 1 E * O I AMPS ~.ISGE+OC lnps 1.OZSE*O3 REGAWATT 6.7S:E*O3 WEGAUATT 5 . 7 6 9 € + 0 3 MEGAWATT a . o l x t o C 4 . 5 2 9 € + 0 0 PER SUB 3.015E+O!l KW/H2 2.353E+OC PER ANT 2 . 4 5 9 E + O t HZ I b.830E+O3 ACRES 1

Page 294: SYSTEM DEFINITION STUDY PART IN

S l P E U i t l T tlLflll*L CPI I

s t Dc W T m T f m e l = SS G@iB w LW r e f * PER RECT * 3s -t- ma Of IYERTX. 56 T j l l t i S T PEW GORIER m 37 LcrtnBEt OF TRRUSTERS m

W C m f a l i L rOUEU .. 5% A W I L PROCE LLAUT I

60 STRUCTURE niss I

a t C ~ T P O L SYS m a s s I

62 M l A R BLANKET H l S S = r s POSEEP BISTU m a s s f

1 4 f lECU t E t E C t # J H A 5 5 65 ANT S-TRtiC RA!.S i

&a ANT S A V t W f O i WASS I

6 7 ~ s l f u ~ r f TRo-r RASS il **f C O U f P F i CUTS l l S S I

~9 rnr ruu r r s r r nrss I

7 6 ANT PUI PBOCITC m a s s I

t t ANT R ~ S S I

7 2 SfSUCTUPE COST I

73 CONTROL svs COST I

7 4 SOLAR Bt+NKET COST I

?S POUER DSSTR COST I

T 6 BECHff L f t U / J COST I

7 7 ANT SIf?UC COST I

7 8 AWT UAVEGUIOE COST t

7 9 ANT UtYSTRON COST ao ANT COH~UOL c r r s COST I

81 rnr PUP DISTC COST I

81 AHT PUU PPOCSTC COST t

S f & H I COST 84 NO OF F R E f G N F F l i G U T S t

8% CUEY SERVICE NO O f f L T S = 66 G f S COSI = 8 7 I O I A L TRANSP COST t

US PECTENNA COST = 8 9 CONSTPUCTIQN COST I

9 0 I N T E I E S T OURING COWSTR 9 1 LAT1IUDE &PEA FACTOR t

9 2 TOT;L nrss a

9 3 7 0 1 1 1 COST = 9% COST/KU€ a

9 s COST/YMH t

S-4Stf-81 KWW Z . l S I E + H W k E M *.lSZE*80 W TOThL a. 1 7 s * e 7 H Z * .4Z6E + 1 3 C 6 - R t 3 . 5 Z l L * b l N E Y T ~ 3 . 5 2 l E * 6 1 C E t X - 1 % . 4 l % E + % l l f C h Y A T T I . * 4 l E * % l TOYS Z .Z?0€+83 IONS 7 . 8 6 f E *Ot I O N S l.?ZSE+O* TOWS 3,9OlL*BZ TONS 1.346E*02 T W S t .b2BE+03 TMPS 1.398E *eC TOMS 5 . 5 6 t t * O f TONS C . 3 t ? E * l Z TOSS I.SSIE+~~ rats Z.O1SE+OJ TOWS 2 .477E+O4 TONS t . 1 3 s ~ - e t BI~LSOY 3.53SE-02 BILLXOW 1 . 4 i 7 f * % O B t C t I e M l * O i c E - ~ L B t L L I a N 2 .6Z2E-01 B l L L t O U 4 .213E-01 B I L L I O N I . ~ J ~ E - Q ~ B f L L I O n Z.S3+€-01 6 t l L I O N 9.551E-DZ B f L L I O N 1 . Z S I E - 0 1 B t i L I O N 1.333E-OL 5 f L L I O N i . a : s C * a ~ B r L L I o n I . F S j E * O Z 1 . 1 5 2 C * 8 l 5 . 3 1 6 t - R l B I L L I O N C.+ZSE*BO B I L L I O N 1 . 6 1 9 € + 0 0 B I L t i O N 6 . 7 9 s ~ - o 1 B x i t t o n 7 .960E-01 B I L L I O N 1.419E + 0 0 5 . 6 6 1 C * 0 4 TONS l . Z 7 C E * O l B I L L I O N 3.08'.E+O3 S 5 . 7 3 1 € * 0 1 R I L L S

Page 295: SYSTEM DEFINITION STUDY PART IN

t LXISWT XW?St E F F f C X E m V 2 BEY CELL EFF lC IE I ICV S OASIC C W E R S l C l w EFFV 1 B L l m E t F A C t o t S 5 .ttf I-SQ-. 1 BET ENEUGY COnV EFFY 7 AREhIIISE E F F I C I E l q t l

ARTENMA POiiER B ISTR EFFY t H E 1 DC-RF EFFlCIEUCY

10 IDEAL BEAR f f F l C f f N c * 11 # E l REAS E F F f C t f S C V IZ I ~ I E ~ C E P T E F F ~ ~ I E M V 15 REC tccrtra IF-Bt E f F I C I P Y C 14 MET U F L ~ N U c r c r I S Dt-TO-BC E F f t C l E S t T I 4 D t -TO- tR1D ECf fC1EUCY 17 OVEPALL p u r s i c * L EFFY l a ACE* EFFECTIWE ECFr 19 & i i w r r r A P ~ & 20 AN l f kXA D f * 21 t E Q U I R f D SIPELOBE SUPPR 2 2 T r r E e PEQUEEEB FOP SL sit 2 3 T l A R S N l T t E l POUER f A F E I 2 6 REEEIWEI A l 6 K P E A I RAT IO 25 XNTR AYGlPEA I RATIO 2 4 DEAN SPRf &B FACTOR 2 7 t i D l A T f 8 PF POUER 28 BEAR D f A N E T E l 3 9 BE A* AREA 3 0 &WERAGE BEAR PONEE OEUS S1 PEAR BEAN IWTEWSIT l 3 2 POUEU IN UAIW BEAN 3 3 S b T f l L t f E LENGTH 3 6 NU::BEP OF BbVS 35 Xa IR P i ta D ISTR LOSS 3 4 A B J RAY USEFUL AREA 3 t ttAV S I Z E 3 8 SPS AREA 3 9 B E l N 5 8 t b R INSOLATIUU 4 O SOtAR CELL OUTPUT 61 POIARV JOINT CUUREMT -A' 6 2 R O T A R Y JO INT CURRFNT -8' 4 3 T O t A L PROCESSED POUER GQ r u f ~ K ~ V S T P O ~ INPUT 45 TOT&L KLVSTRON OUTPUT 6 4 NLI:!3ER O f KLVS t lDNS 6 7 #AX I i Y S T R 9 N PACKfNG DEN c i t UIX RF POYER e f n s t r v 13 H111~BfR OF SUBAPEAVS SO RECTENNA AREA

t 1.@I@E*@l ACRES B I .Z43E*&tO m 1 8

8.S7SE-eI 1 *.eIE-%l I. S.OE-OL 9. S*vE-e I 9.717E - 8 1 I . t G 8 E - B t 9.359E-B 1 9 .%24€ -01 B.3Q1E-01 9.736E-01 9.035E-01 9.59OE-08 8 . 9 i W - Q 1 @.&*LIE-OI b .S21E-@l 6.132f - B I 7 . b54E -BZ ? . l l f E - Q Z * . 84 iE+87 l l 3

-2 . %BaE +OO OR 2.SCCE*OI DO 1 .1S lE+O l DO 1 . t S I E * @ I OB 1.9aSE-01 3 .469E-81 1.58dE *0@ Z.8COE+Of 8E6AYAtF ~ .&S IE~OQ IN ( & . ~ S ~ E + O O ~ X b s . i e t ~ + o t nt ( S.IWE+~S ACRES B ~.,SSE+OO ~U/CIIZ s . c 9 a ~ * 0 1 t iwcnz 2.56&Z*OS NEGAY&TT I . t 3 5 E + O l BAYS 9 . 8 9 1 f * O t BAYS t . 5 9 9 E - 0 3 C.O?LE+JS n 2 t l . D l Z E + @ Z A C R E S 1 6.6aci*o: nETEus &.32CE+OI KtiZ 5 .851E+01 GU 6.99SE+00 GW 5.52CE+OC AUPS 3.135E+Ou ANPS l.O25E+Q3 WEGAUATT 6 . 7 8 3 € * 0 3 B L t A Y h f T 5 .76nE+03 BEGAUATT I.ODSE+OC 3 . 9 1 4 £ + 0 0 PEP SUB 2.6JSf+GO I U / U Z 2 . 9 0 5 6 + 0 4 PER ANT Z . O ~ C E + O ~ nz e ( S.L24E+03 ACRES 1

Page 296: SYSTEM DEFINITION STUDY PART IN

S l BEAU I Y T THE-L CYI I

st DC W T W T COYfe m 5 3 6 t l D W#€t • 5 4 LAND AREA PER REEF S5 *Yo OF tWERttA m 56 T N C ~ S T PEU C O U ~ E ~ ~ I

I? #tMBE t O f THUUSTERS I

su C B M ~ R O ~ POMEU m 59 AWUAL PROPEtLAWT I

4C STPYCTUPE HAS5 I

11 COkTPOL SYS HAS5 I

&2 SOLIR BLkHKET MASS I

1 3 POUER BISTR HASS .I

&4 NECH & ELEC R#J BASS = 65 ANT S,T%UC HASS I

64 AN^ YZYECUIDE RASS I

b? mt MLYSTROW H ~ S S I

b Q ANT EBtVROL CKTS HASf I

6 1 ANT PWR B I S T ~ HASS I

7 0 & I T PUR PtOCSTC 11ASS I.

7 1 ANT BASS = I t S TRUCf&lPf 2851 = 73 EaWTBOL SVS COST = 7 5 S O L M B i 4NKET COST = 75 POUfi? DlsTR COST I

7 6 HECHIELEC R I J COST 7 7 ANT STRUC iOST I

7 5 ~ N T U*VEGIJ€~E COST I

7 9 ANT lLYSTUOW COST I

8 8 AWT CONTROL CUTS COST I

8 1 ANT Pall D*STP COST I

az ANT putt peoc: rc cost I

8 3 AN; COST I

8 4 NO OF FREIGHT FLIGHTS 85 CREU SERVICE NO CF F t t S 8 6 OTS COSt 1

8 7 TCTAL TRANSP COST I

8 8 RECTEWNA COST t

8 % CONSTRUCT ION COSl I

1 0 INTERtST bURING COWSTR = 91 LATITUDE AREA FACTOR L

92 T O T A L R ~ S S I

1 3 TCTAL COST - 1 4 COST/IUE 95 COST#YUH a

*.*esE-ml E M Z Z-l6B€+OO W l I W C. l t lE+QO W TOTAL S.ZSBE+OF n2 ~ . ~ ~ B S + I S KG-nz 3 . 5 t l E + l l NfYTO#S 3.521E*01 PER INST 4 .419€+e l HE6AMATT 1.441E+01 TOMS 2.ZfOE+BS TONS 7.863E + @ I TOMS 1.7XIE+O4 TOMS 1.103€*02 TOMS 1.48OE+Ot TONS 2.000E+03 TONS 1.726€*84 TONS s. S L ~ E + O S tens 4 . SZ~EIOZ TONS 1.365€*03 TONS 2.015€*03 TONS 2.863€+04 TONS 1.13Sf-01 BILLIOW 3.538E-02 BILLIOW 1.41?E+00 B I L L I O N 1.QlSE-O2 B I L L I O N ~ . ~ O ~ E - B Z B I i i l o n 4.C6OE-01 BlLL lOW l.OfSE*OO B I L L I O N 2.S32E-Ol B I i L I O N 9.5CbE-02 B I L L I O N 1.474E-01 B I L l I O H 1.39OE-01 B t l L l O W 2 , i16E*00 B I L L I O N 2 .15 tE+01 1.2SOE*Ol I . t ? 4 € - 0 1 B I L i t o n 4.?18E+00 BILLIOW 1.445€+00 B I L l l O N 7.37.E-01 BXLLION 8 . SO:€-01 B I L L I G N l.C19E*OO 6.149E*OC TOWS 1 .329€+01 B I L L I O N 3.171EfOJ t 5.894€+01 H I L L S

ORK'INfi PAGE fs OF Rwa QUAWTY

Page 297: SYSTEM DEFINITION STUDY PART IN

ANTENS.& I I A a E T i l l VALUE = I . I Q B E * I 8

SOCUTtDn t l W t l S

1 L l f n T l # P Y t E F t l e t t S C W t mt CELL E t ; s e s s m r 5 @&SIC CO)IVEltSI(III E I F V 6 I t A M X E T FACTaeS S BUS t -5Q-R 4 YET €#L16Y fOWV E f F V 7 rltf t t l t ~ ~ EFCIC~EMO

&HILOHA P O Y E I D f S T t LFFV IdEf B t - l f E f F f f l E I L E V

1 I t B E r L BEAN E F F i C l f Y f Y 11 YET 1LfAa EFFICKEYCY ? 2 I U % E t C € P T E F F I t I E n t Y 1 3 tECTENWA fF -BC f F C S C t E W 14 HEZ R f tlNU fFFV I S DC-TO-DC f FCICXEXCY t l W - T O - C I 1 D EFf tCIE ICCV it O ~ E P A L L P H Y S ~ C A C L F f r 18 rura EFFECTSWE CFFV 19 BLAHKET APE& 1 0 r N r f n # r 2 1 REQUtRtO S i O E l O B E SUP?& 2 2 ZABEP REOUIPED FOR SL U) 2 3 TRANSnl tTER POUER TAPER 24 RCCEIVE1 AYGIPEAK R h t I a 25 X 1 T a AVGrPEAK 9 A T S 0 Z& a c m SFPEAD FACTOR Z t U & b f & t E D Rf POULR 28 SEAR OIARETER 2 1 R E A H hit€* JB A ~ E ~ A G E s t r n POUER orns 3 1 PEAR BEAR tHrENSXT7 3~ POUEU l a RAIN BEAR 3 1 5 A T L t t t l E LENGTH 3 4 NUHBER OF @*VS ss xnra P ~ R ~ 1 s t ~ LOSS 36 ADJ e:r USEFUL &PEA L? BAY S I Z E \ S S P S A R E A 39 W E A N SSLIR I N S Q L A T I O ~ 40 S O L A R CELL OUTPUT i l ROt&RY JOINT CUPREWT * A w CZ ROl&RY J O l H T CURRENT "I" 43 TOTAL PIOCCSSEQ POUEU 4 4 TOTAL KLYSTRCM INPUT QS TOT41 kLVS7ROH OUTPUT 46 NUHaER OF ULVSTRONS 47 nrx r L v s i a o u P r c r t H c DEN 48 B*X RF POWER DENSITY 69 NURBER OF SUBARRAVS 5 0 RECVENNI AREA

I . f l l f - O X 1 .&.I€-Ot 1. &&BE -@l 9. J W E - O l * . l ' i Z f -BL t .ZltE-el 9. J i Q E -O 1 ?.&SZE-€#S I.LS3E-Bk S.158E-%t a . t 5 5 € - 0 1 9. s i 2tE-ex &.&6&€-821 8 .361E- t l l 4. l ea f - o t S S % 2 5 F - 6 1 7.327E-02 i . l € l E - k t 2 S . b l t E * Q T HZ 4 t.38IE+61 ACRES J

.1 .8006 * 6 8 UR t & . t l * € - d t RI 1 i ! .BIZE*Ol DU 5 - 3 ? I E + O Q 06 I.UOOE*O1 D& 2 . 8 6 1 E - 0 1 3 . 9 0 9 E - 8 1 1 .45 t lE+00 3 . 8 I B E * 6 3 NEGAYATT l . 3 l l E + d l I N 1 b. l l $ E * B % N I 1 I . f 1 f E * O I MZ 6 3.37eE 46Q ACRES 1 Z.546E+60 N U I C I Z 1 . 2 3 5 € * 0 1 NYICNZ 3 .C33E*03 RECAWATT I . 71 6 E + U l BAYS 1.33tE*DZ BAYS l.626f-02 i.O96E+OS R? t 1.012E+@2 ACRES > 6 . 6 0 0 F * 0 2 W f T E l S S . ~ ~ J E + O I rnr 6 . 1 1 b E * O l GU 9 . ? 1 2 E + 0 0 GY 7. SUJG+OC hNPS 6 . C I OE *BC %UPS 1 . C I O E + 0 3 HEGANATT 9 . 2 6 ~ ~ * 0 3 nrcrukrt 7 . i 2 7 5 6 + 0 5 NEGhUATT 1 . 0 9 4 E + 0 5 t.b9SE*Ql PER SUB 1.26JE+Ql K Y t N 2 ? . 2 6 1 € + 0 2 PER ANT 7 . 6 7 2 t * B f 8 2 f 1 . 8 9 b L 4 B 4 ACRES )

Page 298: SYSTEM DEFINITION STUDY PART IN

s t N L r hut rmmrr #rr m f P &C QIIYWT W E 1 1

I% 68l@ )WE@ 8

S& &AMB he€& ?€B &€€T 8

3s 'V" nlfn Of IWBttA I

S i fWBUSF COPSEI tl WtmFi€& DP t M t U l l f t S rn

IS C P H T ~ ~ L PWER a s t *N#UIC PlQP€L&lnT v be rrautruee nrtt • && Ci2HIIBI S Y f RISO m

IZ s a r ~ i ~ i r ~ r ~ r MSS 1

6% r o u ~ a ~ ~ r r i nhst - b* RECN & €1Et Cgd &ASS I

IS m t atrug nrtr I

IS Akf UkVEtUtPE I&%% I

* t a ~ t f ~ t s t t m erst I

68 ANT C Q E T P ~ C E ~ F I n r ~ ; e) i n t per p i s t @ ~ r t s TB LHt ?UP PteEt fE BASS rt I W T ?4&fZ FZ steuetust raw t

FX eantrt~i srs CBSt •

II S%iAI b t i N a f t C d t T 3

Zi BOUCt B I S f e tP3t t r MPCWICCEC If$ C B S t a

T t AHF Oft@: ZBST 11

ANT UAVOGUIDE cast Z? ANf &i'f%re@N CCEkt 8

1 8 ANf CBhTPQC C t T S CaST il 4 N t P&lI @$Sf€ COSt ar ANT eua raesirc cast 85 JINI C i l Z i I

B* Q ) rrrtsnt FLIGWTO I

8% CREW jtRYtCC NO QF TlfS r B* ars eitst I

er t a ~ r t ~ a ~ w ~ r cast a

B B @tCfCNh& fOf t * as ~ J N s ~ P v C T ~ O N CUSF -1

*a tnrrsesr orraiwi; eirnsttt 91 tATltUDC 4UEI F A t f D R *: IOTA\ nass * If t B l & t COST 1

I S EI?PtiliiiE r i r o s ~ r t u n

a.*eat+aa tww &*a?a€+ae es&kgm S.S18L+OI W TOTAL I.tBlt*aa Ira ~ . * t t ~ t g ~ re-&a I. aas~cet W a u t w t I . B B ~ P * O L PER rmt & . l f a E * B t ?iESlbtLtT 2.QQ2t*B1 TiMS S.t*?f*@S tDNO 1,0*tf*Bt TENS 2 , St86tOI t@Nf 2 ,b.BL+O* t3M5 ~.IP:E~OL fexa %.t3236*82 fGH5 i,ll*t*O3 tow4 Z.LBt%*Of fBNf S.*@&f*B2 TONS S a P f & i * % a tBHf O.?lbfrF3 tONS 1 . i t a h + P Q leks 1 *s?%E=a\ B t i L 8 W r . * i i f - e : I ~ L C ~ Q H ~.*S.~ZIO* BtCttaN t.*sns-@l attcxen l,Sl%f-82 BfitlON 5,saat-ot afaitad :.saeg-at ~ t ~ c f e ~ S.ra6f-et €ktlLIO# ~ . s a ~ t - ~ t BttilaN I . i t ? f - l 2 CtiitQW l . * t t i E = G I LttiIAR I , f s i i t e ~ IOW I .rtFt*o: I.libE+ll 6 . 2 S t E - Q l BLi11ON 4 , 2 3 3 C l b P CttitQN * , S ~ : E + B P aiiitaw C.tlPt-bl B t C L t € & N $.t5tE-Bl BtillOk 1 .&1*C*Bb ~ , r * : c + n * t w s l.S*\P+Ok BlCClQW , ~ . a t r ~ * s ~ c S . f i 3 *K*9 t BtClS

Page 299: SYSTEM DEFINITION STUDY PART IN

i L f S n t l N n t T &FFrtX€Wr a mt crri Errzctrncr 1 l l S l t COWVERSIW FFIY I 8 L A l t t l FACTORS S BUS I-SQ-R 6 NET I W f f t G I CONY EFCY t I@€AWlSE E F F t t l f N C Y 8 AWTfNUA POUCR D t S T t E f F V 1 MET ac-RF E F F ~ C ~ E N E Y

1O I O E I t 8 L A n EF f tC lEWCY t s NET BE*& rwgctrwcr 1 2 t # t € @ € f PT f F C t C l E M I 1) RECTENNA RF-BC IFF lC lELCE I 4 WET RF CINE CFFY IS DC-TO-= PffttlENCP 1 6 OE-T0-GP10 CFC1CtENCI I? B V E R h I l PHYSICAL E F f Y

AREA EFFECTIVE EFFY 1) B L A W S I ~ 2 0 &#fE'4NA O t l 31 t C a w i t x e SIDELOBE SUPP~ ~i tap€& B E w I e E t t FOU s i su Z S t R * N S ? t l ? t f t POUEL TAPE& 24 sEeEtvfe AVG#PEAK m r t o ZS XHTU 4VGf iPE l f RATIO 26 BEAM SPREIO f A t t O P 2 7 R 1 D t A T f D P f POUER 18 BE*% B t r n f T E u 2 ) 8iE.n r e f * JO AVERAGE BEAR POUER DENS 3 1 PEAC BEAN t # f E N S l T V IL QOUCR IN n k t H BEAN 53 SLYELLITE L t W e t n 54 NUNDEU OF BAYS 5 s xnTa ~ u e e r r l a L a s s 31 ADJ BAY USEFUL AREA 37 &&Y SIZE I B SPS t.RtA 31 REAN S O l A t l N S D L A f I Q N 4 8 SQLktt C f C t OUTPUT I 1 UOT4RY 4OtNf CURRENT *be *E ROT1RY JOINT CUB~RENT *LC 4 s T O T ~ L PeacFsSEo POWER 44 TOTAL ULYSIPON INPUT *s t a r u r i v s r r a N ourpur $ 6 NUHDES OF UlVSTRDNS 4 7 n l r r t v ~ i a o ~ PACKING DEN 4s B A X IF reufu DENSITY 4 9 Nunote OF ~ U B ~ P R A V S 50 RECIEHNA AREA

I , f T 9 t - @ t t * i b l L - $ 1 1 3&0€-&& 9 S*9€-81 t .a??€-01 1 .Z l l tE -01 $ , l & % f - 0 1 * . a s s € - 8 1 8 .251E-01 t .&SO€ - 8 1 8 .%SS€-B l t . f l 2 f - 0 1 e . $ I e h - O l 8 . f i a t - e l 6. t Q t C - a 1 3-?62E-e& 1.3Z3E-a2 4 . *O*E-O2 l . & l ~ E * 0 7 nz

.k .Z@%E+OO &A 2.2TOE+Ok 0 6 t . l C & f + Q Q BE l . Q Q B f * % l I38 t . D 6 1 E - 8 1 3.9OYZ-Ql 1 .*%PE+Q% 3 . 8 I P E * % 5 NECAYATT ~ . o ~ s E + o ~ K n t I.~ZZE+OO nx 3 ~ . * ~ z E + o z nz ( Z.SCOE +@a ACRES B 3,L&rE+OO BYICNZ 1 . 2 7 9 E * U l MU#CNZ S . P ? S E + O ~ n e s r u ~ ~ r I . Y l i E * O l BAYS t . t l l i * Q 2 BAYS l . Q l ? E - 0 2 4 , 0 9 6 € + 0 5 R 2 ( l . O l t E * Q Z ACRES 1 & . & & O f + @ 2 RCTERS 5 . ? 9 5 € + 0 1 kHz 8 , i l 6 F + % 1 GU 9.312f+Q0 6U I.SOaE*GG ARBS c , * ~ ~ c + o + rnes l . Q l O E + O J SEGAUATT 9, t65f * 0 S HEGAUATT ? . 5 t S E + O S REGAYAf f I. O o t € + 0 5 1 . 3 1 9 € + 0 1 PER SUB & . 7 i l E * 0 0 fUfB2 l . @ 4 6 E + Q 6 PER ANT 5.3:8€+03 M t ( 1 .317E+01 ACRES 1

Page 300: SYSTEM DEFINITION STUDY PART IN

t~ PEAR MIT tntr*.~ twr - It @C W S W T WYEB I

I 3 GRID P W L R .r S4 LAND AREA ?E& tECT I

5 1 *VL MM O f I N E R t t A ii tnnust PER coeir~r I

5 Z NUfiBER OF THRUSTERS a sa CONTROC PWR I

0 9 A W A L P R W I l l I W T I

40 STRUCTURE n ~ s s I

I1 CWIT'ROL SYS &SS 12 so111 BLINUET MASS I

b 3 P W f U Dl5TR NASS a

61 RECH a ELEC u r ~ mss I

13 AHT $rPUC MASS I

11 ANT UAWEWXDE RASS I

4 7 ~ n t ~ L V S T R O N HISS I

&ti ANT CONTROL CIVS mliss I

4 9 ANT PUR DISTR R I S S 1

?a ANT rut rroerrc nrss = t i AHT MASS I

72 S~QUCTURE COST 1

73 tOHtROL SYS COST I

7% S P L ~ BLIUUET C O S ~ 8

7 5 POUEP FXSTR COST I

76 HECH1ELEC R/J COST I

7 7 &NT STRUC COST I

t 8 &Nf UAVEGUIDE COST 1

79 ANT KLYSTRON COST w 8 0 ANT CONTROL CkTS COST 1

8 1 ANT PMR DISTR COST 8

62 ANT PUR PROCITC COST I

a 3 A ~ T COST I

5% NO OF FREIGHT FLIGHTS I

5 5 CREW SERVICE NO OF FLTS = 86 OTS C ~ S T I

8 7 TOTAL TRANSP COST I

8 8 RECTENNA COST I

8 9 CONSTRUCT I OR COST i

9 0 INTEREST DURXNG CONSTR 9 1 LATITUDE AREA FACTOR 8

9 2 TOTAL NASS 1

9 3 TOTAL COST 9Z COST/ltiiE I

9 5 COST/ltYH I

~ . t t a ~ + m e euma 2 * W E * e l W l f l l t S . l b 3 E + I I 6U TOTAL 1.34&€+06 HZ b.411€+13 Ue-MZ 4.&&bE*Ol U E U T ~ I .686€+01 PER X#ST 4.133E+Ql H€fE&HATT Z.OOZE*Ol TOWS 3.149€*03 T W S i . e t t ~ + o z TWS 2.33aErOl TOMI t.Q97E+O2 tOUS 9.98ZE+Df TONS 7.ZOOE+02 TONS b.ZlZE+OS TOWS 7,6OZE+QS TOMS S.9O?E+DZ tONS b.3*5E+02 TONS t+7 fOE+QS TOMS : .~ISE+O~ t o m 1.5756-01 B I L L I O U 4.311f i -e t PXLLXOW 1.96&E+00 Y I i L t D n 1.949E-02 B I L L I O n Z.096E-02 B I L L I O N 3.428E-01 B I l L X O k 3,727E-01 B f LLXON 3.459E-01 B I L L I O N 1.3OCE-OI B I L L I O N 6.906E-02 B I L L I O N 1.911E-01 B l L L I O h 1.472E+00 B lCL lON t . 0 5 1 € + 0 2 l . l i S E + O l 5.517E-01 B t L L l O l C.SSCE+OQ BILLfOW 3.306E+00 B I L L I O N 7.OSOE-Of B I L L I O N 9.35SE-01 B I L L f O N 1.419E*OO 5.87SE+OC TONS I.Q97E+01 B f L L t O N 2.672E+03 S 4.967€+01 H I L L S

~EGINAL PAGE I8 QU-

Page 301: SYSTEM DEFINITION STUDY PART IN

rwrrnnr PEABE trr VALUE i . a a e ~ * ~ ~ SOlUf tOW l L W L t O

1 ~ I C W T :nwt ~ r ~ t c t e ( l c v Z W T ELCl E f C X C t f W C Y t ~ ~ t t t r Q W u E t t t M EFFV I StAYl f : E A C t O t f f BUS 1 -S8-R 4 WET lNCllY t P n V f F C I T A R f * U I f E E l f t C l f W C V I AMIENHI POYER O t f T t ECFY t MET BE-CC E f F l C t f N E Y

I I t e t r l ~ wan Cfftetrrrer t f WET a f m E f f l t t E N e Y IZ l N f f R C f P T E F F f t l E m Y 8 3 RTFfCNNA IF-PC EFFtCtfW 1 4 U f T PF t i M E f F f Y ra ec-to-oc E F F ~ C ! E H C V 16 85-tD-&fttD f f F i C l f W C V I? o v E t r k i wrslt&i Efrr &a r e f a E F F ~ C ~ ~ W E E e f r 1% B L I U t E f &PEA 20 ANTEW~I err ZI t E 1 U t $ f B JlOfiQBE SUCCR r a rwra r r s u i a r b ser sr su P f t @ A N f S t I T I P % W E & T&?ER PI P E C E ~ Y E U A W C / P ~ ~ L I A T ~ O 2% X B T t a u t - P f 4 g tht10

B F ~ W SPPEIB r r e r a a z t t ~ ~ t ~ t t ~ PF P a w u I I B E i N D t A N E T E l 2% bran A R E * fU AYtRAGE S t * % PDdfL D I N S 3 1 P E ~ K BEAN ~ N I E H S ~ X Y 3: rc?i:ce I N n41t4 ~ t ~ n 11 S ~ t f i i t l t i C N C I # 34 NUMBER OF 8 & Y % sf mre ere P t s r l iass 36 APJ 8 9 t USEFUL AREA f t B A V S l t f

SPS r e f a 3% R Z a N 5 6 1 4 1 :N$OCAI ION 10 58C14 CELL ;LITCUT bl t 9 t i C Y JbfP4t EUt tc tHT *An 1: ttotrev JJENT C U R R E N T *B* 6 % T O T A L PttcetssfP POHER 44 T O T & l k i P S T t t 0 k lNPUT 4 % I D T I C LCYSIC3N Ot!lPUT I & WUbBEU OF ~ L ~ s t E P N S 4~ nrx r t v s r e c w PAcrlNe BEN ba H % X @F P O U t t B I N S I T Y 4 9 NUWBFR BC S U B I Q P I Y S SO RECTENNI L e t 4

a . s m - m 1 a 6 Q l f - O i 1, f iBC- I11 t * J t 3 r - e l * , L t F L - P l 1.PStE-81 ) .3r%f-01 %.8:tf -el 8, r'bSP-ltl *.&SJC-Q1 8 . ) 5 5 I - 1 1 ? . S l + ' f - Q i 8 , r : r t -o t 8.3*9€ - O t 6 . 1 S t E - Q l S.lfL€-el t. f*@€-Q, ' i ,?,fBP-B2 s . r i t e + o t nz l . r Q 0 t + 9 B En 2.fEi5E+PI DI *,S::Er09 OI l . d i ! F f * h l 01 Z.Bste-Pi 3.Pb-E-01 l . o s d t * e Q $ , & d S C + O l RfG&YATT ? , - i ? t eaa r~ c s .8i*f * O O n1 B b,oa*€+d' n: t l . ? lO€*Q* A C t f f 5 5,83a~*a0 PnIcn : :.s:eE*01 NW:Ett: J . s ' * t * F \ RES4U4fT 1 . : l ~ t * S i B A Y 5 1 . 2 ' l i a b : R a t s l.:-:t 8 : s.C*eE*03 #: f 1 . C l Z f * Q 2 ACCES 1 I . ~ t * 3 € * @ 2 H t l C e S 5 , 3 * J t * O l kn: a . i r e t + a t EU * .?12E*00 CU f . % - 5 t * 3 - ARFS * . s B ; E * t l * 4RPZ l.i!Pt*Pf n t C A Y l T T * . :a l e*e& nitrunrr ? , 3 % * € + 0 3 tifSAUA:T 1 . 8 9 6 f 3.6**t*OC3 F t P SUB I , s \ e t * e @ 4WfPl : 1 . - : z c + a c a i l ANT 3 . * l - + € * & ? F t42 f V . & 7 2 € * 0 f 4 C l f S b

Page 302: SYSTEM DEFINITION STUDY PART IN

SI PEA& A ~ T T W E R R A ~ ~ r n 5 2 DC OUTCUT POYER L

S f 6110 POUER L

5 4 LAUD AREA PER RECT 1

5 5 I Y " RON OF INERT IA I

5 6 THRUST PER CORNER L

5 7 HUHBER OF THRUSTERS I

5 8 CONTROL POUER L

59 ANNUAL PROPELLANT I

6 0 STRUCTURE NASS 6 1 COt#TROL SYS PASS I

6 2 SOLAR BLANKET MASS w 6 3 POUER DISTR ASS - 6 4 HECH b ELEC RJJ RASS I

6 5 ANT RTRUC HASS I

1 6 ANT WAVEGUIDE ASS I

6 7 ANT KLYSTRON MASS s

6 8 ANT CONfROL CUTS MASS s 6 9 ANT PUR DISTR RASS c

7 0 ANT PWR P IOCITC HASS I

7 1 ANT n ~ s s t

72 STRUCTURE COST I

7 3 CONTROL SVS COST I

7 4 SOLAR BLANKET COST s

7 5 POtJER OISTR COST w t 6 HECHIELEC R f J COST I

7 7 ANT STRUC COST 0

7 8 ANT UAVEGUIOE COST 7 9 ANT KLYSTRON COST = 8 0 ANT CONTROL CKTS COST I

8 1 ANT PUR DISTR COST I

8 2 ANT PUR PROCITC COST a

8 3 ANT COST I

8 4 NO OF FREIGHT FL lGHTS I

6 5 CREW SERVICE NO OF FLTS 8 6 OTS COST s

8 7 TOTAL TRANSP COST I

8 8 RECTEHNA COST I

8 9 CONSTRUCTION eosr .: 9 0 INTEREST DURING CONSTR - 9 1 LATITUDE AREA FAClOR = 92 TIITAL ttASS z

93 TOTAL COST I

9 6 COSf/KUE 8

9 5 COST/kCIH I

KY/I)Z 6 N t L I NU 6 N TOTAL R 2 KG-82 NEUTONS PER I N S 1 NEGAUATT TONS TONS T o n s TON5 TONS T ONS TONS TONS TONS TONS TONS TONS TONS B I L L I O N BILLXOW B I L L I O N B ILL IOW B I L L I O N B I L L I O N B I L L I O N B I L L I O N B I L L I O N B I L L I O N B I L L I O N B I L L I O N

B I L L I O N B I L L I O N B I L L I O N B I L L I O N B 1 L L I O N

TONS B I L L I O N $

n I L L s

OBIGXSAL PAGE IS OF YCWR Q U ~

f 2.639f+OI ACRES

t 1.091E*Ol t B

t 4.413E+OQ LBM ( 6.v43E+€t6 LBN ( 2 .406€*05 LBt l f 5.28aE+07 LBM t 1.650E+O6 LBN t 2.496E+05 LBH f Z . l 6 l E + O 6 LBH ( 1 .864E+Ot LBH ( l . 679E+O7 LBn ( 1.304E*O6 1 0 8 t 2 .025€+06 LBM ( b . l 0 7 E + 0 6 1 8 % ( 4 . 7 0 3 ~ + 0 7 L B n

Page 303: SYSTEM DEFINITION STUDY PART IN

t i t W t SWFUf E F C I C f C N C I P NEV C C L ~ f C f t e t m c v s arstc eonwresten rrsr

I t & W % f T FACFOIS 3 €!US 1-SP-a 6 NE t tNZECY 6 8 Y V E f f Y t APE4&&fEP C f f I C t f N C Y

4NrfNMa BONER P I S T & C f f Y 9 ~ E I a<-rb r r r t c r E N c v

\e lnrrt REAR c r i tctrncw I I k E 1 B f &ll f f f IClfNCY t 2 i k f f P r t H I tFrICtt&CV 1 3 R C < I # * + & I 3 e - 3 i fTCxcf fNc

N f f PC llNL i @ * b i s PC :o S'Z I I C ? % f t # P Y I I Pi-10 B E 0 C F S l C i l N C Y i P Q Y f t d L I P H t S I C L C I f C V t J & R E % t t t t i l l b f i ? L V

t # P ~ A * ~ F ~ I a e k a :P ~ N I C ~ N ~ e t a 2 1 k E $ L z f C f P 5 t P S t O l f SVPPR 2 2 t r f t s ~ ~ Q U I P C O F B ~ s i su Z f i P I % S Y l f t l R BCUEI t 4 P t C Pa t f f f t V f B k G s P t h f 14110 2 5 knre &LZ P k h L P a t i o 26 bf4H SPPt 4D F A f TOE :7 R 4 F t k t t D $E BaUEC 28 P t r r i \ l ~ t ! i t t r ; Z * lE4?4 1 4 1 a 10 4rrSrEr BLAH W U E I DENS f \ BtAk bt5'4 INt&N>tIY 5 2 P O L r P t H NAIF4 D t l H a i t x ~ t t i ~ t t i t w . l n 3 3 Nri '?DtX I ) & B4\% $ 5 k y l e f*ur F I ~ ~ R loss 3b H i t i l \ t C U L $ l & & S P P4\ 5 1 - t 38 s w 4 t t 4 5 3 ?!: ?hi >GL & @ lH3OL 47 10H qil \<:, iU i t i t & i : ? F U 1 * 1 R J I a C I S + ? I N 1 CU84fHT "Am 4: r0rareu J;:IP;I S U S E t N t 'tlm i 3 Tr174: 'Gi ' iCSSf F P d U F P a+ t i ? l r i LtraieON I N P U T 4 5 t t ~ r ~ ~ r i k s t n m o u r ~ u ~ Cb NUSPEC ~ i * k I 1 3 1 S t l N S % ? R & X XlTS!RON F&<htYG 06% $8 3 a x e i t - i ~ t e D L N S I ~ V 6% hlgeFf S OF SUB&k'rilrtS SQ RCCtCNNr A Y E 4

8 , S t % € 4 1 l , i O l B - s t 1. M Q C - B I %. 3*1€-0 \ r . i t t r - a 1 t . ZJ2P-BI 9 . ~ b r ~ - B t 9 .IAIk-QL d.:r'sE a 1 t. t a - t - n t . @Qbf -81 * . a % ' € - E t Ll.*SuC e t LI.*$Si-Ol b.:'.si-Pt c?. i ls ' t 01 2 . S O J f - a : ?.@:a& -a: s $ 1 ' t t e : nz c I.B&~E+o* r e t ~ t 1 1 . C D Q L * E B EN f 9.?42€-@1 B l b 2 . * 9 : t * 0 1 B I l.lO:L+01 88 1.13:€*01 BB 2 . P t T f - b t f \ ? & f J t - c t l . r S ' L + 3 1 1 1 . 8 3 C t r E l t tECAYATF a.*. . .%t a 0 0 rn r s . : e s ~ + e e n s I r.e;*:t +P' R: t l . S 8 * 2 * 0 * A t C f S 1 6 .:+kt + i 3 0 nu#cRt 3 . 0 * * 1 r ~ : nu-cn: 3.5i2st r 0 3 H i d A W h T T I . ' i s L * d t b i Y f t % ' i t r i ' : P r t S 1 . l '>L >: 4 t t * e t . .I\ *-\ f t.Ql:t*O: A C R E S 1 P 6s':: 4:: Hi T f us -. **..: *,!: 3 t t a t * , ! I r.U 9 ' l ' t * L a b X * . . l*t .', k H f S % . s e c t * 2 - ~ P S 1 C l P f - 3 k l G 4 U 4 T T * . : ' : C + o \ Pt t i&JLTf :.F*JC*O, n t c a w a y r 1 . a * -: 4 0 s

8.?.**L * O J PtR SUB 5 . rfJ: k U -RJ I S " * f * O * PEP & N T % . k \ \ k * C : H: t 1.7$1€*03 ree fs 1

Page 304: SYSTEM DEFINITION STUDY PART IN

~ f 4 u hut tntra*i FUR 1 . O Z S ~ * O O UYIRZ DC OUIPUT f 0 ~ f t L . ) 3 9 f * O O 6 Y ~ i i N U 6RlD ?OM€* % . 7 0 2 € * 0 0 6N T O T I L iauo ittr PCU RECT Y , ~ * T C * O I k t 'Y" B b N OF 1 N t U ' l A = b . 6 1 1 € * 1 3 KG-HZ THRUST P E E C O P N l R * . 8 & C E + 0 1 NEUTONS N U R B E e O f I H R U f l f U S a . l 6 6 E * O l P E l I N S T O O N l t O L PONE U C . L 3 l € + O \ NEGAUATT ANHUAL P P O P F L L A U I - 2. f id :€*Ol TCNS S T ~ ~ C T U C E NASS 3 . L s 9 C t 0 3 TONS eDNTRDL SYS R4$% i .d* !E*DZ TONS SOLAP BLIN~ET MASS 2 . i P a f t O 6 I O N S PQWER B ~ S T R BASS * ? . 1 2 & E + 0 2 TONS ~ E E H i E L E C lil RASS l . l b ~ € * O : TONS ANT STCUC M I S S l , 2 S D L * O I T D Y S ANT U ~ V E G U I O E MASS = l . l a a ~ * o ~ TONS A H f K C Y f T P O N H b S S = T.b:CE*O3 T F N S & E l E O k f f J L C K I S MASS S . P = s C + a Z 10hS ANT PYR BI~IR n r t s * ~ . : ~ o E + o J TCNS ANT Pi4e P P O C l l C . NmSS 1 . ? ? O E + P f TONS 4 N 1 M A 5 5 * : .65:E+0* TONS S T P U f I U f t f 0 5 T 1 , 5 7 5 f - P f P l l l X O N C O k l l d i S Y S C 3 S T = Q . V 1 1 £ - @ 2 B I L L X C N S O l & @ P t * k 4 E T COST l . * t - a C + O D B I L l l O N P Q G E ~ P I ~ T S e o s i i . r - - ~ C; BILLSON ~ E C ! I S E L E C R - J eosr : . L S J E - 0 2 BILLSON ANT 5 1 e V T COST - 3 . B J : t - C l 8 : i L i O N 4 H t U & V ~ L . U I @ C COS: - Q.c 'bE 0 1 B I l l l O N AYT f i u s : R ~ W C P f T ~ . c ~ J E - o ~ ~ l i i l ~ k Itdl E Z N t P 3 1 C L T S COST = 1 JPJt 0 1 B I L L ~ C N AN1 P h P F I S T @ COST * l . ? J ' t :: R I L L I C ~ N AX7 PgR PROCSTC COST I.*l1t-01 B I L L I C Y ANT T t l S T 1 . 3 n l t + J 3 R I k l ; k ~ N &O OF t f t I Z # T f 1 l G H t S : .Z : l t *P : C E [ U S E C V t C E k O O f D l T S * 1 .3 :6E+O l O f % C f l%T - 6.::$t 3 1 B I L L I O N t D f 4 i TS4NSP COST * ) . f O * k * J O B ? t l l i ' N P t C \ f Y N 4 COST :.llll*C3 B I i L l O N C O h Z t C \ t C t l i r N COST 3 : . Q s 3 C - D 1 R I C L I O % t H f E I C S f B l t l l N J 20' 'STR * 0 . ? 3 ' E - 6 1 B L i r l O N L A : I T U D C AREA F & C T b * 1 e :JC*JO 1 0 1 4 1 H 4 S S L . Q J ~ E * U * TONS T O l r i C O S T - . . ~ Q P E * c ~ B I L L I O N COSTflkblE : . & l f E * D 5 $

C O S T ~ ~ U H 4 E I S ~ E ~ O ~ MILLS

ACRES 8

1 en > i rn 1 L l n 1 i l?rJ 1 1 I N 1 L B N 1 t e n 1 L tin t

L sn I 1 B N 1 1 BII t BS 1 L R I I 1

Page 305: SYSTEM DEFINITION STUDY PART IN

1 I I m F tlwur iFF Ie tE1R . 2 -1 f E L l EFFICfE@ECT 3 U f l C CB*.ERSIOI f F F T 4 & i l t Y t E T F M f O t S 3 Ctft 1-iQ-R 4 -1 f S E K 1 fgW EFFV ? LaE IYZSE EFFICIEUCW 8 mU(7ERIM tOitft BISTR EFFV

IS1 =- IF EF f i C I E i C * I@ Z M & L .iM f C f I C I i T T I 1 at B f M EFFICIEI ICY 1 2 1BIfEfTCPT ECFZCIEUEY I f R E C S C I U 25-lc: E F F I C I ~ 14 H€f tF C I S % EFFT 1s Ot-t0-I# E f f I f i E m c Y I & I T - f B U f . t t F f t C I E Y E I 1 7 -Eta&& ~ Y S I C ~ L EFFW 1. &If* C F F L C T f M EFFT I* l L9JaET &.El

I N T f m A R I A 2 i R E W I t E R S I IEL -E ftl?Pt t 2 TSPER R E W t t t E B FOR SL fs 2 3 t*A#%ZlITTER t [ a t t R T A W R 2 4 RECEIYLP *Yk#PEA% t A T l O 25 X k t t AWb iPEA l RaT10 Z b SEAR SPPEAQ FICTOR 27 PkDiATED PF PWER 18 sun QIANETER zt o f m r e f a 3 0 AVERAGE BEAR PGUfR SEWS 31 ~ ~ r t emn I ~ T E ~ S I T ~ ;, -WEB tn mzr mrrrr 3 3 S ~ T E L L K ~ E iE%CT# 3 4 W R B I P OF EAYS 3 5 XRtR PUR RKStR LOsS li &QJ SAT USEFUL ABEA 37 5rv SIZE 3 n SPS S e f r 33 REAR SOi&R tMSOLATlOn 40 S O i r P CELL WTPUT 61 UOT&tV JO IH f CURREWT -Aa 4 2 1071RY J O I S r CURRENT -6' 13 roriL PIOCESSED POUER 4 4 TOtAL KLrSTROn INPUT 4 5 f O f & L KLYSTRON W r P U T 4 6 MUHBEP OF UiYSTRGRS I 7 M X K i V S t P C # PACKfW6 DEW I d RAX PF POUER DENSITV 4 9 raunam OF SUBAUPAVS SO RECTEI)WI AREA

me-61 11 E -*I ,eE-@I lsE-aI '?€-&I I t € - O I A E - 6 1 r + ~ - 0 1 I ~ E - O E rlE-OD ,OE-.t JE -el 1W-rnl !is€-. 1 it€-lt 12E -01 PbE-BZ J E - e t

I?€+@? Ilt l(tE+Oe m ~ S E + t ) l w l aE+O l OI ,o r*s t €#a ICE-81 rbE-t31 '6E+00 13E*03 HECUI*TT ' iE *BB f I t *.?49€ +S@ If S b4E+ f t t R2 t l . l C S E + t l ACRES B IZE+BE m/#12 l*E+O\ - !3E*ef I l f G A Y l f T 4E+t31 BAYS r t E * 0 2 BAYS rbE-02 l&E*OS I 2 f I . 6 1 t E + 6 Z A C R E S I tbE+02 REVERS ME*^: K I S ~ . & L + B I CY ZE+@B W

LOE+O4 AMPS IJE+@C AMPS OL+83 NE6AYATT

r9Ee03 RESsr(Ar1 )4E*OS RfGAUATT l8E*05 13E*00 PER S U I IZE+rIi l KUIRZ 13€*04 PEU ANT I ~ E + Q ~ nz t 4.610~+6f ACRES 1

Page 306: SYSTEM DEFINITION STUDY PART IN

mfl

-dr

rm

mm

mn

rlu

r

~~

~r

&r

w~

jl

~w

mw

~

wr

*w

#*

Sv

~w

ff~

~b

*fl

-L%'....mggg:fgf

~~

~~

~~

g~

~;

~f

~z

~r

z~

~~

~~

-~

~~

~~

~~

~

rp

mm

~~

l-

~

am

pa

Z

mle

Ma

m

a

*4 **wr ~

nm

~C

mL

:g

mv

+n

rz

t~

um

mv

rX

mm

rp

m

mm

*IS

inm

m

m

SC

U

~I

r*--

D

CIJ

lca-

- 0

-'

0m

*

an

W

WW

E

~E

~:P

LF

!;~

::C

~~

~:~

PZ

Z,D

~*I~

~

,,,,,m

, -pP

Qn

n.

PX

I1*

rg

Cd

flZ

@1

11

M

YI

Ol)

sQ

mw

W*

PO

**

Z

Zt

p-

.n~

rc

r

mg

m~

.. g

$-g-

m,,

m$'

& "P

'"

m-"

%

wr

rr

nn

r

nm

4

a

m.*

X2

#p

jCT

M.E

m

'='''

-Z

m*

m

gP

:m

mn

w

rr

n

lw

*a

4s

Me

mm

w

%*

r

dr

ill^

-

w*

w

"r

jg h

gg

$

5 2

-fT

w

a

6: ";

;~3 .-

&*

Dm

2

*r

mw

J

" i3

w

p

a-n

2

r

u *.

2 4 I

2"

U

Page 307: SYSTEM DEFINITION STUDY PART IN

I I a T 1 Y W T tFF fCfE) lC I t aEI CELL EFOICIEMcr S M I t C tO#VERStQW EFFV

8 k A M f 1 FACTs4S J WS I-S(t-t & L B T €?ERST CQmc EFFV T i l tLAYfSL E F F S C I E E W 8 1YTL)t?C* ltST1t EFFV $ U€T BC-UF E F f I C t E l i r Y

i* I B E A L LEUI EFFfCIEYCW II WET I E U I iFF ICfEYCV 12 IBTCRCEPT L F F t t f E l i t V I f I E t T E W IF-W EFFICiLl@C t4 llft RF Ltm E F F I I f Bt-TO-BC EFFICLEI ICI kb DC-ICt-SetO EFISCJEWCI 1'3 BIPEIALL r ( IYJ iChk EFFY I8 h a € & ECFLCTtVE EFFV 1* @ & W E T ARE& 28 hWlEUB1 B f A z i IEOCC~RED S X ~ E C ~ E s u m 22 ThFER RECUtffED FOR SL SU 23 rR IRSHITTEP PWER TAP€@ ZI RECEIVER RV6fFEAR RAT20 I S XHrU AVWPEAK R&TS0 2 1 BEAH SPREAD FACTOR 21 PAPfATED Rf FOl(ER 28 &tL1?4 DlAWETER t r w & n AREA SB l P E I A G E BEAA POSER PEWS 3 1 PEAK 8FAR INTEt4SITY SZ POUER I N R A I N B E I C I 33 S&* fLL ITE L f f G l n SQ MUHBE R OF BAYS 3 5 XHTU Pgff D fSTR LOSS 36 ADJ B4Y USEFUL AREA 3% B I V S1ZE 3 a SPS ~ R E A 31 nmn S D ~ A R IUSPL~TLO* 4s SOLAR CELL OUT?UT 41 ROTARY JOINT curarxt -A- i 2 ROTARY JO INT CURRENT *Be 4s l O f A L POOCESS€3 PBWEI 4 4 TOTAL KLYSTRON INPUT cs TOTAL U L V S T R ~ N o u r P u T 41 n u n e E r OF r t v s r ~ o ~ s C t BAX KCVStROW PACKINS DEW 46 NhX I F POWER DEWSfTV 4 9 WUHBER OF SUBIRRAVS 50 UECTENNA AREA

8.5FBE-cll 1 -4e!€-el i 3se€-8& % * J IVE-BL *.&l?E-Ol t .ZS?f-a! r. w e ~ - o l * .C) l tE-el 8 . 28 lE -01 , -71SE-81 *.U&fE-t)l *. 6 6 9 E - e I &.9?Sf-B1 &.beSE-eL I. ) M E - O I * - 202€ -€# l t .& f l t E -82 f . IBZE-82 S.6 f7E+0? CII t 1 - f W + # h C l E S B Z.UURE*OO 111 t 1.243f+UO Nk 1 z . i i 9 E + e 1 BI l . t S 9 E * O t BI 8.259E*81 08 1.946E-01 s . z s ~ E - ~ ~ 1.54?E*00 f . l 9 l E + 0 3 I E S U I I T T 1.832E+OO KR ( +.349€*80 R I 1 3.883E+07 HZ ( 9.5*SE+fJS ACRE5 8 *.Q91L*OO PntlCAZ 6 .b71€+01 -8CffZ J.S34E+O3 HE6AUATT 1.711E*Of B A I S i . 3 7 l E * O Z BAVS 1 .O%E-02 +.01bE+05 WZ t 1.012E+8Z hCRES 8 1.6%OE*OZ WEtERS 3.99SE*Of t) lZ 8.116L+O1 6 U 9 .712E+80 6 Y 7 . *8JE*04 AHPS 4 . 3 9 5 € * 0 4 AHPS 1.+10€+03 HE6AYITT %.ZObE+O3 ttE6AU1TT 7 .901E+03 nE6hYATT 1 .O97€ +OS 5.tZOE+00 PER SUB 3.8OBE*OO KUfHZ 2.ZOSEtO4 PER ANT Z . l 8 4 E * 0 7 HZ ( 5.397E+Of ACRES J

Page 308: SYSTEM DEFINITION STUDY PART IN

5 1 W W 481 FUeellt CYI I# a6 WfW* W€t il C R t e PPUfR i; l a m 4194 r t ~ e ~ e r i s *rn *as ac t u r r t i *

t n ~ ~ s t e f t t~ente s f W U ~ O L C OF t w r u + r ~ e s - l a t P R ~ t E t k PBUZP * I t l W k U I C PPQPEtlaWI m

s t t u t i t w nass C; t tmtem s55 masf i r SOLAR m m m ~ ~ nast • 6s PPUCU P l S t U l a s s @a nec- I f i e f ~ $ 4 BASS as mt ~ t t u e nrrr .1

iL ARt * 4 Y f C' t f@6 U * f i i t rnc r t r r t t a u erss a 11 r r ~ cm~ifeet e f t s MIS • a* &Wf t U 1 P l E f C I&PS t b *Rf Pd4 P t P S I f E &*IS t i 4 w 1 n4+s t: StlUrluPI t O O t f a C3%tt3t s*3 COST * ;r rairr k % i % ~ & e f T a i t I

r i par ie P ~ ~ T U S U S ~ :b n t r f f f r ~ t < C - 1 C 0 8 1 t

? ' 4#I % f P b * r ZbSf I

fa &#I e * \ t G U t P C CdPl T l 4 M t ZI\%ICJN CdSl * bP & M I S t l l l t O l C C f + SOST - a t 4rt PUG ~ t b t ~ COST . 6 2 4245 PNP F t d S S f C E O I f t

a i m f ~trrf 1

BI WB ao ~ r ~ r c n t ~itswri I

Q % S P t U % C P I l C S #@Pt f i f i bl* B l l . Tllht b y lC4NbP EaST Y

83 CfCfCNHA C 3 S t 1

89 idH2.f EUt t lo& CeST %O ~ ~ t i i t ~ s t euetuc cawstr % k tat l f c 0 f 4 S E A f 4 C i 3 l t r y r 0 1 4 i . ef t U l 4 i Tost I

tr f t t s r L I I ~ •

t s rest - tun .

t . i3s t -a& I Y t B 2 1.QOlfrOl BtiiLlbH 3.&216*P) EY l@?AL s . i a t P * O t l@ b . + l t C + \ B IE-nr I .B@lC*lL WEYIOLIIi

b8ci*bl ?el #*ST r t 3 f i + B i NCG&bi l f f s+oatC*el tans B. t i w t e a tars I . l % t f *)2 IONS L.L*SC+O~ r s w s ? . s ? l F * O l \ B Y I 1.51-f *i32 lUEIC t.aW3f*bS I Q Y S &. ~ 2 4 ~ r a 4 tars 2 . 4 2 f C + B S tB* S . % ; i i + W IONS l ,at l I + O B fOHS L , t f B t r S S ftWO S.:~LE+QI VQNO I.S*~E-BI rtt: ten *.*tit P 2 Bti118W 1 . * s e t *i!e $11 11m l S i Z L 8: 8liLl@W s . : z t BlriteW %.5cl%t s\ BliLleW I.8%>1*0@ PIlLlOW B . s Z 3 f - @ I I 1 t i : d M t .Sear a t B t t c t t W l.*@:ti-@t @ I & & low 1 . 4 t t f Q L Blkifcn 2 . 3 r . f r O P S l k i t ? & 2 . * + s i * a 2 I.%I*f *Dl 2 . \ : 1 ~ a t Bgl i tan s , ~ s ~ ~ t u ~ PtitiaN k.SQrf*B% I1LCiBW t. t e i z - u l SilttDW * . & & D L - 0 1 SIliIBW I.SlQC*BU

. * Z I L + O r IONS L , S S l E * b \ BIkL1BW , ' , f t g E * u 2 * S . i ! * ? f * U L MtiLI

* . i & S F * O I k M I a . * @ ~ e e m i m I t .rBr€+Bs r la 1 S.LIIE+P? rbn B & . * e T € * m &&U 1 Z. SL2C*QI L1R L *.eew*.-e ikn L B.eB@€*q? lB8 1 \ . L % l E * @ T i b l B I . f ee l +a& iea I I.m!sE*li i l l a *.LOFe*@b tBe B ? .BrBL*B? LOR 1

Page 309: SYSTEM DEFINITION STUDY PART IN

1 ~ tm1 tuew E F F ~ C I C ~ Y 2 WET E f L i E f C l t t f M V f BAilE E B W f 8 f lW f F f Y * & i & N l f t fAC1Bgf % BUS 8-fQ-l i W E T C = ~ % G F t a m gsev ? aREAbttSi; E F f l r ' t i W Y I a ~ z ~ m 4 P W E ~ atst& g r i v C Wff P t - B P C F F l t I O N C I II tairL CFftCtfucr I I n ~ t B:M EsetrtKwev 1: ~ w r ~ e e c r t ~ e t tetfwer II metft+ea tf-FX L C F C C ~ L Y F 1% nrr rs &Far E F S ~ t'S W-tB-PC LfPCt t i fMV t i W-tO-Beth P l i l e t f t K 1 t t ettfsatt #rvSl€br EIF@'Y ta *If& f f f f S t t * l fffr t * aianrrr i t fa te 4 M I f W l Q t r t t C f O U t t t P S t e f t B I E SUPPI Z L taegli e s e i i t s ~ m f e n sr rrr C& tiawrnz t t r + .mi+ t&?%& 2% e t e t t u f a sfsfirf*r rrrm 2% xnre i v c - e ~ r r crr ta :* ~ i a ~ s e p t a 0 Fkctee 27 ~ i s t a t t 9 *F POYEL 21 If&?¶ Jt&RflLI 2% matl reg4 IB A Y E ~ ~ C ~ Par fa @Ens 3~ esar Btan tNi iwsxrv 52 COufR I* maIW w*n 3 % s*tftirre t ~ w i t u il NUWBf P Df &4Vb as rRre ere e r s f e toss Ir W J ea t u%iFut h u t % & t @ & V S t Z f f& lPS r e f * 5 , BE 4% 5a1&& INSDt Alga% *B SOi4P f f i L OUPCUT * I R B T ~ B V JBIN~ e u t R E n r - A * Q: t i ~ i a e t J O ~ N T c t m e c n f -a- IZ t 0 1 4 t P i t e i t s S t a PeuC8 @i T B t 4 i I L r b t P O t 4 tWPUt 5 5 l ~ t a t r i v S I P O H O U I B U T a & N U k R i B 0; r t t % l R U % i i t nat r t t s i a n r PrcrlNG DEN

t txx e r e o r k r r tNs t rv v ? N:sRBke J i \ ~ g @ 4 k U i V i 50 CEST€N' i& A R t A

Page 310: SYSTEM DEFINITION STUDY PART IN
Page 311: SYSTEM DEFINITION STUDY PART IN

& LtslCt t W t € # F S t t l l t f t t tat r s t i t ~ ~ t t f ~ l l ~ r f 8 A f l C EBBYPRflD# E F C I I I L A W I C I FICfURS 5 BUS i-so-* L NET E~EPLI teuv r w v t i B E & N t f C E F F X t l t B t t 1 A N T i N N I PQUCt OLftl EFFV 1 &€I D S - I F E f f i C t E W f V

t l 1QEhL bf EFFIEICI ICV t l @ E l E E & l f F F 1 C f t B C Y 1 2 X W t f .Cf PT f f f !Ct€WfY A & a f c t f nn * IF-DC E F P I C ~ ~ R C I* nrt t s CIHK E P ~ Y 1 ) BC-TO-RC E f F l f l f S f V li BC-TO-GRfB EFf 1ElEWCY I T aure i i i pnvsrcrt r F t * 1lb APE& E C f f t l X V f E f f t 1 9 ICAWrET A t i A t e 1 ~ t f n n 4 OI* 21 tfQUllf8 StUEtBIE fU??e 22 T A P E S PEOUttIEQ FOR $1 SU 23 T l A k S R t t f E R CBUER TAPER Z* RE€€ t V f R L V b 8 P E I P Y I T I O 25 XITQ AWG~PEAI k r r l o ~i BE&# f P e f r @ f r c m u 2Z R l b i 4 T E D PC BBUEt t j BE&# E I & H t l L t 25 srrw r a s h 3 8 A Y E R ~ G E B E ~ N PQUEU @Ens 3 8 PEA% BE A k IHTEWf t l V 32 rewe IN RLXM BEAH 3 % S L T f k L l t f LEHGTn 1 4 wrmtt a i e a v r f J f l t l t PUC D I S f l LOSO 34 ~ D J a*v U S E F U ~ mrr S t BhV S t l E JQ SPS AR(& H H T ~ H SOLAR tnsatrr ton 4 0 S O L I E G f t t UeTPUT il ROt&PY J Q I N I CUIREMT 'An 6 2 RUt4RY JOIN1 C U I R f N f "8' 4 5 T a T A l fkOc€SSC£3 P€kU€U

t a T & L R L v s t R o n I W B U ~ Cf TOTaL f lYST f?O# OUTPUT ~1 utrwfe OF t i v s f l i a ~ ~ 4 t arx rrvsreon rrctlne nEn i 8 Il&t W F PDUEC DENSITY i t NURPE C OF S U B A l U A f 6 SQ R f E l E N N I AREA

1. S t t f -li 1 .*U1€-01 %.S&fak-U& 9. SVB€--##l t. l l f L - e t A .ZZf€-si 9. S4?€-UA t . 5 8 6 E - 0 1 a. Z I P € - o t V.&5.OC-Qi 8 .303P-81 9 $ 5 1 2 € - 9 1 a. t t a ~ - e ~ I . X f L I E - O I & * l l s € - e B f ,?3*€-0s ? . ~ ~ % E - B z &.ad*€ -QP ? . Z l Q f * D ? R1 t t R E 1 1 .280E400 UA t ?.b!i7€*61 R1 ? Z . f 5 3 f + e t Be g . r z r E * e e &I 1 . B b O f * Q i D I t . 0 b l E - 8 1 3. tP)C-Q1 1 ..559& +€in i.SlBE*03 n f C A Y & t t 1.OPQE*Ol UU t 6 . 8 t & € + C M t l l 8 ? . a t z i r o ? n2 t P . S ~ O C * O * ~ c t f s 1 i . C+ af *OB nurest Z.:SJC+B~ nurcsi 2.39 :C * P 1 RE F IUATT Z , Z O J C * O I 8 h V S 1. i b 2 f * P a B A V S 1. *&t i -0 : S.091E*Q5 RZ f 1 . 6 f Z E * B Z & t R E S 8 &,6OQC*Q2 NETCRS ?. 7QSI .Ol Kn2 1 .O%\ f+ l ?2 CU i.:c$€+Pl 644 B ,106f *QS &RPS S,&t2€*O* A8PS 1 . :9cE *0.? R f E I U * T t ~ . l ? x * Q a srewrrt 1 . 9 ? U € * a 3 REGAUATT 1 . 3 6 5 € * 0 3 l.&iSE*bl P f C fU@ l . l l t f + O l XY 8 2 1 . 9 1 6 f * 0 * B t R ANT $.3:SE*Of R: i 1 . 3 l t f * 0 4 A E I E S 1

Page 312: SYSTEM DEFINITION STUDY PART IN

st +tn rur rwrrmrr rrr I

sz w Otltltlf wnsr IS sale COY€* J I La#@ F€@ R l C f 5% O v a m O f f i l t I f ? & s I 4 T W t U Z t ? C I C M N f R s t hZF8fft OF I M l U S f t I S e II cantrs* w r r SP AwUUAC P Z Q P f k L I Y T il S T U U t f U U f h2St a 4 1 CObl tRUl 8'fS 1 * t S a 42 SQLAR DL&#&€ T &r*S a 4s roura etsrr NASS rn ii R f C N 1 E l P C llJ @MIS I S I W T &TRttC 1)1%5 I

ii LHT Y~OLSUIUI erst a

a t AH? r ~ r s t u o n nrrr &a AN% CONTROL C f i 3 MASS * 6 9 ANT PUR D l f T U &ASS a

?Q AWI PUI C I O C I f G MASS t g knt rrrss P 1 S t t U t t U P E C B I t F3 CPNTIOL f Y 5 COST I.

t+ saka~ I C ~ N E E ~ COST ?S POUER B t S t e COST - t a nrcnwcrc R ~ J cast i

?? ANT ETRUC COST a

t a ANT U A Y f t U t O E C O S l * 79 i W t KLYSTUOW COST I

18 IN? CONTeOt C17S CB3T m at *nr eur ntst r cost 82 ANT P111 PROCI tG COST m 8% rnf test 84 NO O f FUE16MT F l l W t S • as CIEY S E R V ~ C E na or F r t t 81 OTS COST e t t a f l i f R L k f t COST I

QQ RfCtfNNI t Q S t I 9 CBNf f RUGT I O N CCSt • 9 0 I H T S R E f t DURING COWSTR 91 L 4 t l T U B E APE& FACTOR 93 TOTAL ~ 4 5 3 a

9 5 T O t A l cost %a C O s t ~ r w E IS C O t T ~ t l W + t

iC+)O 1;YtNl U * l l wt IIQI I€*&@ iW tet i t t t + l . I2 lf +t 3 U P - H i LE+Bl NEIItBWI )€*OX C L I 1YST I € + 0 t R € e A M A t f ' € * % I tows dE*BS TOMS '€+a2 r o w ' C + B I TONS if *BS ?ONE lE*Oa TOtiS I € + O I T W O ' t * O t 1 0 k S IEIO~ raus ' € * l a TZtNS 'f *OZ fONS PE +as TOMS ' C r Q 1 VQWS i f - O t DXLCIOW I € - a t B I C C I O N )E~OI w C 1 t e n I€ - 0 2 B t C L I O N I L - O ~ a r i i t w I € - 0 1 D I l L X 0 N ' E - B I B t L t f O * I E - 0 1 B I L L f O N E - e l s r r l t m I € - 0 2 B ILLXDW I € - 0 1 B 1 1 1 1 0 N IE*OO B t l l I O N '€*Or ' If * O t , € - @ I B f L L ton kh*OO B l i l I O M L E + ~ O a l i l t o n I F - O l 9 1 1 C 1 9 N tE*QQ B f i l I O W IE+QO € * O i TONS

I E * O t B I t C t O N IE*O5 * E + O l BILLS

a l G f J A L PAGE El W PQOR Q U ~

Page 313: SYSTEM DEFINITION STUDY PART IN

& * SF?€-Ot 1 *lf)i.E-lt I l&lE*lt ?. &*9f-01 9.SILSf -81 I * Z Z l € - ( i f **f&Pk-bt *.&BlE-61 8.21 tB-Ol 9.IPPC-Q1 ).00t6-&1 9. %SO%-@& B *s&€-Ot &,%:%e-81 I . l*cC-et &,B0t€-Ot r,Jcd;-f ,' i * B * * t - B 2 T . z ~ B c + ~ : nr t t , ~ e s ~ * + i rtret r t,*eettea ee t S.~OPE-BI HI i Z.CibF+ti B1 1. BBBf + @ I hC 1,B3SC+Dk PE Z.IJL*(i-BIi 3 , ic*E-@t t .+al€+Ba *.*1:€ +O l RPO1YITT $ , ~ ~ : z + o o KH t s . s ~ E * ~ nt 8 ? . 2 i i € + b ? PZ ( l . ? ) l f *a4 4CRPI 1 i.Qfff+PQ I Y 1 S I Z 2.001EtB1 B W C P 2 ~ . ~ : f t ~ C B A U A T T : . Z Q f t * B i W V P 1 , T r : r +a: BAYS 1 . 1 \ 1 € t)2 e .P*cf *@S R2 f t+OftE+BE A C R E S I I.&BBC+Si nc;fts 3 . P e - C t B 1 wr l,B+ff+B: fU t . : sJ f* t t l 68i 9 . 6 U Z : I S B S 5 . e * @ f *@s A%PS l.:?iE*B3 NEGAULtf ? . I : j f + D * Btb4Y4TT 9 . 9 t f k t e 2 t l f G A Y A T T 1. Sb5f 485 1 . 3 1 f t * U \ B L 4 SUB b.:-;ttDEl CN;N: I . 42 l f * O i PER *HF P , B b 6 f * O f t l.O1@E*Ob ACRES 1

Page 314: SYSTEM DEFINITION STUDY PART IN

S l C f l t AWT T M f t B A l h R S Z I IC Q U V W T +611fR $5 u e t ~ WEB w t 4 a ~ AREA FEC IECT • t* nee tmrrtk rn S l TWRUST FLt COINER a SF w ~ n e ~ t QF TNRUS~EIS 1

f& E W f l O L ? W E @ 1

S t A W U A C P I O F E L L I t 4 T I

& a s t t t ~ e t ~ r e #ass 11 €MlT f fOL f Y f U A S S I

a8 sacrr r~rwrrr n ~ t c 43 PWER I)~SFR RAPS I

% I BEEN I €I€€ l l 4 8USS i s Aldt STCUC &ASS i

a& ANT ~ ~ V E S U X D E MASS I

a t rat E ~ Y S T R O H nrss a l S ART C O N I R O I C a t $ &ASS I

$1 & N I PttR D l S F R 8451 m 10 & N t PUP PRQClTC M S t I

11 AWT WAS5 ?Z STRUE~URE COST t 3 CONTROL SYS COST 1

?I SOLA& BLAMEET COST a ?5 PQNER BtS:R COST i

?& lfCH&ELfC t # J CSST Z? ANT S I B U C COST 1

?Q ANT U A V f 6 U f B E COST T ¶ ANT t l ~ S T R O H COST a0 I W T C O H l R O t C 1 T S COSt 81 & M I PUB O1STR COST e

8 2 ANT P U I Pf fOCIPC COST 8 5 ANT COST = €$4 NO OF F I E S f M t F L I 6 N T S I

8% CREU SEBYICE NO OF E L r s 01 OIS CBST I

8 t TOTAL l R A N s P casr 8

&S RECTE t lNA COST 49 CONSfRUCTlON COST I

9 0 I M T f R f S T D O R l H 6 C f N S T R ¶ t L A t l T U D E APE* FACTOR oz T O T A L nass a

9 3 T ~ T A L CBST 8

14 C O S t ~ f f l 4 E a

$5 COST#tNH I

t * ? ? l f + B B uuma S , l t S f + 0 0 W I L I U U ?*l&tt*O& CY T O T I 1 I . O t Q E + D I RZ U . 2 t 8 f + f t K 6 - W l 4 .27C l l+Ot NEWt6WS a . z t r ~ + a i PEI fnsr t . ~ a ~ ~ + a t n e a w A t s Z.S?TE+Ol tDWO 4 . Q i f E + 0 3 TONS i . I O L E + Q 2 TONS S . O & l € * Q i TCNP t . L 3 3 € * B f t O I i S I . I & a t + O Z T D H f ).dOb€*BZ T M S & . * I S E + I 3 TQHS * . I Z l f + 0 3 TONS ? * Q l 0 € + 0 t T O H I l .a*SC*OS TONS 3.%2&E+G3 t O N S 2 . 4 M f *01 TOMS 2 . B Z 3 E - 0 1 D I L L I O N ~ . J I O E - O ~ s t i r ton 2 * 5 L i E + 0 0 B I L L I O N 3.ZOfE-OZ l f l l f O M 2 . *V rE-OZ B l L L l O N 3 . 7 % l € - 0 1 8 1 l L I O N S . 8 1 3 f - 0 1 8 1 L L i O N * , S 6 0 € - 0 1 B l l L I O N 1 . 6 S f E - Q i ~ r t l i o n i . l Z ? € - 0 1 B f L L f O W 2 . 4 3 3 E - 0 1 l l L t l O N 1 . & C i f + O 0 i I L L I M I z.rrat+oz 1.5%1€*81 f . l S 4 E - 0 1 l 1 l L l B N I . S 9 Z E + O 0 8 lLL l f lN 2.&9SE*OQ B t L L t B N ¶ . 1 & 3 € - 0 1 B I L L I O N 1 . 0 7 4 € + 0 0 l t L L I O # 1 . * 1 9 E + 0 0 7.&55it0f TONS i . ? i T E * O 1 B I L L I O N 2 . 3 9 & L * O J & 4 . C S J & * 0 : H l l C S

Page 315: SYSTEM DEFINITION STUDY PART IN

t ttcnt twwt rirtttrrscr t ?&t CELL E T F l E I L U 6 0 t I & f l e fQlVPftZIOW f C f * 6 &i&nrLt FIC~OIIS I 8\ff t-sa-R & NEf EN%RGY €e#Y €FFV t &Uf&#tBE B F I I C t t W 6 V & &kfEUNA PbiER RtStR PFFY % R f f B E - f f E F F t C l E H G V

t e tntrt rum s r e t c x g n c v t i NET wan t t C l e t e n C r 12 I N ? ZRCEPf f C P l C l f N t r f S BECTCHNi I f - B C E F F l C t E W C t% hft I F L t N L E C F V 1% BE-TO-BC F t f t t l t N f Y t i Be- tQ-6RfB E F F t C l E I l E Y Lt B Y f l A i L PWISlELL f f F V IS A t t f a t i ~ f e t t v ~ CFFY I9 @ I i H I C I I R E 4 i& & # f f H H h B t k t l UECUfEEQ f t L 3 t l d l f SUPFR PO t r r f R I E Q U ~ S Z B FBI s i su 2 3 tRkHO%IT'CP POUER f 4 ? € t 2s rcrt t v r r AVGIPEA~ R A T ~ O 2% X n f R A V S FCAk f i a t 1 0 2s B t A S F F Z k A @ FACTOR :P 1 4 ~ 1 a t t a er eau f t t 2 B R E A S B f l f f t t f S 29 @ F i t 4 kCTA $8 LVtRhGf BEAR BQUER BEN5 S f E € & t BE&# INTENSt tV $2 POWZI IN RAIN B r r n S& SAtfttlft LENGTH f* N u n e t a of e r v s 15 gntu eun o l s t r ioss as rna erv usrfuc iarr $1 B1V 6t2E 3a srs 59 I t fAN SOC4P lNf t l t iTXOIO 4B 564A4 C E l l OUTBUl 4 1 f t Q t & r V JOINT CURRENf *&%

4 t ROllPV JOlHT GUfRfNf -8" 4 3 1 0 1 & 1 f Y c ~ C C f S E ! 3 POU€U 4% l B l A 1 ULVSTPON tNl'Uf $ 5 TOTAL K t YStPbN OUTPUT Bb NUkBfR Of NlYSTPONS k t kik flVSllOl P A S T I N G DEN 55 # A X RF P W t R P t N S l T V 4 1 htrttlf it Of Sif8A9RlVS SO RIETCNN* ARE4

a*s?%E-al I * i @ l E - O l 1, JBBE-Ct 9.3I%E-B1 * .PQS€-b i f .tZSE-Ol %.&*7€-@1 9.Q2kf -OI B*223E-Ol I.?SiE-D1 9,OSBC-81 %.&lff-dt Q.tbaE-Ot Q.ScQE-PI b.ZJ5f - a t b.031F-Rl ?.i irf i -82 &.9**€-02 I,:IBL+JF na t ~ . ~ Q S L + B I AEUCS t ~ . ~ O O E + O B rn i v s 9 a a s - a l m t I 2,5EIE*Q1 bb t.:a9E+di Be 1.1&9E+Bl DI t 9 - 5 f - 0 1 3 . sq-t-81 1.520K +09 %.0\Jt+03 REfAWAff e . k ~ : t r ~ o rn c ~ , s ~ * E * B o n i ~ . B ~ : E + o I nz t I.W~E+Q* ACRES 1 Y . > ; * F * ~ O nufcnt I . P \ t F + O I RUiCR2 4 4 5 0 C 4 O S RC64WITf t.?O?l *dl E&YS I . 7h:t - 0 2 84VS I . r-f C - a 2 i.B*ct+PS R2 I l.Ok2EtO2 4 0 t f f 1 1.6dOC+Q: k h t t R S t . i ' B S F + O ! LB2 t,Buif+02 6U I.:SJE+Q1 GU 9 . 5 * 1 € * 0 9 iMPS 5 . 6 3 ~ ~ I O I r n p s 1 . :a*t + n l HE G r Y L t T I . I ~ S E + O C HLC&W4rT 9.8dSL+OS R h G l U i f T l . t a : E + O l i.aalr+oi ~ c u sue 7. \ * % C + a 0 kW*R: I.Bsot+04 P t f l 4 N t a : ~ : r + a ? n: t 8.i3f~*os A C R E S 1

Page 316: SYSTEM DEFINITION STUDY PART IN

s t PLAR mt TNER~AL WR t . m i t + o o awns SZ DC W T W T ? W C R I,?S?E 600 6 Y 0 l i N l 5 3 6R1D POYER ?.Z92E+OO 6U TOTAL 5 4 LAND AREA PER RECT 8 . 3 0 2 ~ + 0 t nz 55 V* MOM OF X N E ~ T X A 8.238€+13 U6-12 56 THRUST PER CORNER b.Z78E+Ol NEUtfiMS 5 7 NUHBER Of THRUSTEIS b.276€+01 PER INST 5 8 CONTROL POUER m ?.88OE+01 MEGAWATT 5 9 ANNUAL PROPELLANT = 2.572€+01 TONS 6 0 STRUCTURE MASS 4.045E+03 TONS 6 1 CONTROL SYS NASS 1 .COZE+OZ TONS 6 2 SOLAR BLANIET HAS5 = S.O32€+04 TONS b 3 POliER DXSTR NASS = I.Z31E+O3 TONS 6 4 NECH L E L E t R0J HASS = 1.322€+02 TONS 6a ANT STRUC HASS 1.28OE*O3 TONS 66 ANT NAVEGUIDE RASE = l . lOQL+04TONS 1 7 ANT ULYSlRON I A S S * 9.639€*03 TONS 6 8 ANT CONTROL CUTS MASS = ?.489E+OZ TONS b 9 ANT PUR DISTR HAS5 = 1.Z86E*O3 TONS 70 ANT PUR PROClTC BASS = $.526€+03TONS 7 1 ANT MASS = Z. 752€+54 tONS 72 STRUCTURE COST ,= 2.023E-01 B l L L I O N 7 3 CONTROL SYS COST '- a. 3 1 0 ~ - 0 2 B:LL:on 74 SOLAR e t r N r E t COST 2 . 5 2 6 ~ + 0 0 BILLION 7 5 POWER DISTR COST = 3.200E-02 B I L L I O N 76 HECHIELEC R l J COST 2.77SE-02 B I L L I O N 77 ANT STRUC COST 3.99ZE-01 B I L L I O N 7 8 ANT WAVEGUIDE COST 6.626E-01 B I L L I O N 7 7 ANT KLYSTRON COST 8 4.38SE-01 B I L L I O N 8 0 ANT CONTROt CUTS COST = l . 653E-01 B l L L I O N 8 1 ANT PUR DISTR COST 1.389E-01 B I L L I O N 82 ANT FUR PROC&TC COST Z.433E-Dl B I L L I O N 8 3 ANT COST 2.048€+00 B I L L I O N 8 4 NO OF FREIGHT FL16HTS 2.818E+OZ 8 5 CREU SERVICE NO OF FLTS m 1.610E*01 8 6 OTS COST 7.559E-01 BXLLlON 8 7 TOTAL TRANSP COST = 5.817E+00 OILL lON 8 8 RECTENNA COST = 2 .266€+00 B I L L I O N 8 9 CONSTRUCTION COST 9.660E-01 011 LION 9 0 1NfEREST DURING CONSTR 1.065E+OO BXLLION 9 1 LATftUDE AREA FACTOR 1.4A9E+OO 92 T O T A L MASS ~ . O S O E * O C TONS 9 3 TOTAL COST 1.737E+01 B I L L I O N 94 COST/KWE 8 2.382E+03 * 9 5 COST/KUW 4.427E+Ol N I L L S

ACRES I

L 1

ton 1 LBB # L B n 1 L e n 1 1 0 8 1 , 1 0 n 1 LBM 1 L e n 8 1 BM B LBR 1 L B ~ 1 i 01 1 1 an 1

Page 317: SYSTEM DEFINITION STUDY PART IN

Tab%A t -1 (Cantindl R s b y Joint Po- = 5980 Iclqpumlts

1 L t W t tHPUT EFfiCIENCV 2 NET CELL EfFICtEWCV 3 ~ 1 5 ' cewurrslorl E F F V 4 aL. IET F A C 2 6 R S S BUS 1-5Q-R 4 M E T ENEPfY CONY E F F Y 7 A L f & Q I S € E F F I C I L N C V 8 A N T L N N d POklER D 1 5 T R EFFV 9 NEf O i - R f E i f I f i E N C Y

t o l o r a t o ~ a n E F F ~ C I E N C V 11 N E T B C A U E F F I C I E N C Y 12 1 N t f U C F P T EFFICIENCY 11 R E C l t F ; k A R Y - U C t r F I C 1 E N C 14 NET R F LINE E f F Y If DC-TO-DC E F F I C I E N C Y 16 BC-TO-GRID E F f l C l E N C Y 17 O V E R A L L PHYSICAL f F F Y 18 A R E A E F F E E T I V E Ef f ' f 19 B L A H E E T * R E & 2B A N T E N N A @$A P I R E Q U I R E D S I D E L O B E SUPPU 22 T A P € @ B E O U I @ € D FOP 5 C SU 23 TRINSXtflfR BDUER T A F E R 24 f f E C E I V f R A V Z J P f l T P I T 1 0 25 t R T 8 A V G 2 P E A E R 4 f l O 2 1 R E A R 5P*t&D F I C T D R Z Z R A E i A T E O R C P O U f R 2 8 6 E l B D l A h E f E R Z 9 D E A R A R E A 10 A V E S L G L O t 4 R COWER DENS f l P E A L P E A R : ? i t E N S I T Y 5 2 PO4Eff I N R A I N O E A H 3 5 SITELLIIE LENGTH 36 NJHDER GF OAkq 35 knlC PWP P l S T g LOSS 36 rnJ srv usrfui AREA 37 BAY Sllf 35 SPS &RE * J 9 R C a N S O t k P I N f t i A T I O N 40 S O L A U C E t i O U I P U T 61 RDT*RV f D t N T C U R R E Y T "AL 42 R O T A R Y JOINT CURRENT '8" 4 3 T O T a i P R O C E S S E D B O W f B C 4 1 3 : & t l C Y S f U O N I N P U T 45 torsi r l v s r a o H aurpur * 6 NUMBER OF flYSlRONS 4 1 n k x R L Y S ~ R O N P A C L I N G DEN & a nax U F pouts o r ts i r v 69 N U M P E S OF S U 5 4 R C A Y S 50 R E C l E N H n A E C A

8 . S?$€-@k 1 . b O 1 E - 0 1 1. $ b O E - B l 9. 3c)OE-Ol 9.565E-Bi 1.22SE-Ol 0.36EE-01 9.C5iE-01 b . 2 C B E - 0 1 9 . 7 S I E - O l 9 . t t % % E - 0 1 P.b?rL-Q1 a.9t4E-OI a , a i s ~ - 0 1 6.3T6E-01 6. f%S€-01 2.575E-Ot 3 . 0 9 a f - a 2 ?*21lf+O? 112

+ I .BOQE*bO ICE 2 .5982*01 DI l.ZoT€+Ul 08 1 .167E101 DB 1 . 9 - 2 t - 0 1 3.236E-Ol 1 4 5 5 1 E + f O 4 . 0 3 3 F + 0 % R E C A W A T T ?.8:9E*00 Kt4 t C . 8 & 5 € + 0 0 N I 1 6.s1*r+a; nz ( I . I ~ O E + O ~ ACRES 1 9 . ; P . ? F * > U kUtCU2 G.;b&t*Ol fft4fGHI 5 . 4 8 1 t * @ J U C G A H A T T 2 J f f * 2 1 B A Y S ; . T b : k + C : 3 A Y S I . 4 9 2 € - 0 ? * . O ~ ~ E + J S ~2 ( i.OIZE+RZ ACRES ) a .&Of€+:' H E T t R S 7 . : O S E + O I m z l . Q C Z E + O 2 GU 1.:4Sf*al GU 3,56:E+P4 AUPS s.616~+04 hues 1 . :9*E +03 UE G A U A T T 1 . 1 3 5 E + 0 4 H E G A U A T T i . O D ' E * 0 4 R E G A U A T T I . f * l € + U r , ~ . 9 9 5 r * P @ PER S U B 5 . 99Si *3G n w f R 2 2 . 3 " J f *0* P E R AH' 2 . i O d i 1 0 7 HZ

Page 318: SYSTEM DEFINITION STUDY PART IN

S t ?EAR AWt TMLRIUL PLIR SZ DC WTPUT tOYER m S5 BRIO POUCR .i

S* LAND AREA ?Eft RfCY I

SS "Y' RDIt OF t N t R f f A 3 b THLUST PFS COINER 5Y HURBC1 Ff TttRUSTE&S I

5 8 CONTROL POUER L

Z t ANHUki PROP€ LCAHt 18 STPUCTOlE bASC t

6; C O M T ~ O L SYS nhss Q2 SOLAP BLiNCET BASS $ 1 PONES QISTR B&SS I

b Q HECH & E L f C R r J RASS rs ANT s r n u c nrss 6 6 ANT U A Y E G U ~ Q E BASS - a ? ANT I t L V f I l t B N BASS i s ANT c a ~ r z o r c ~ r s nrrs rn 6 9 A h T BUR D1STR HbSS I

10 &ST P&R PPOCLlC NASb L

71 ANT BASS I

1 2 S T R l J f l d k E COST m

PJ CUNrROL St3 EDST 74 SQLAR BLANCCT COST i s route ~ 1 s t ~ COST i& t 4 t t H t E l t C P r J COST ?? ANT 571Ui COST s

?a ANT Y 4 V t G U i B t : COST Z9 AHT t L V l l R i l N COST •

80 ANT CUbTROl CRTS COST t

B1 & h T PssP DISTS COfT rn

5 2 ANT PdE P P O C I T C C O S T L

8 % A Y T casr • 8-4 NO O f FRCtCHT F L l t H T S m

8 3 C P f u S E P V t C E N O O F FLTS = 8 6 O f $ COST I

8 7 T O T A L TEaNZP COST &S ltEC:EkNA COST t

I J COYfTfUEtI€lN COST L

9 0 I H T E R f S f FVRIHG GOWSTR ? I t i r t T U C f & R E & FACT01 e

q2 TOTIC NA5S t

1 3 TOTAl COST -4 COSTJUWE I

99 eosrraus

l * t l t C * O P turn2 SrblStteO CMILtWt ?.3'+SttD0 W TOTAL &.8:tE*O? I42 8 . 2 1 8 € * i 5 US-HZ b,P7BE*Ol NEUTONS b . 2 ? 8 E + J i PER t N S t T.%COE*Ol HEGAWlTr ? . *??E+O l TBNS 4.a%fE+O$ TONS 1 .402€+02 TBNS f.cl:e+Oc T3dS I. 2 2 ;E*OS TCNS l.e56t+G: TONS l .&?OE*B3 TUNS l . J t P f * O * TONS * . r r l k * O f TONS I.!ll:E+O: TONS I*;aOC+Of 108s 3.f:BE*OS TONS 3,13?E+OQ TONS 2.O'SE-Ot 8 i L t t O W r . 3 t a e - 0 2 a r # . ~ t o n 2.52eE+QO B l L L I O N f,:9@E-02 B l l L I O N 3 .057E-02 B t L l l O N %.: IS€-Ol B l L r i D N S . S S 8 E - 0 1 0ILL:ON + . 3 3 * E - Q l B I L L I O N L.658E-01 BttlION 1.*:2€-01 B l L L l O N Z . c J J € - Q i B i l i l O N 2 ,3@1t *OO B I l l I Q N 2 . 3 8 6 f + O t 1 . ? J h t + O \ B.O lOE-01 B l i L l O N b.QSsE*@O I ! lCCl@N l . * c8E*OO 8 1 l L i O t 4 L.Ot-E*3O B I L L I O N l*lIOt+00 a1CL fON 1 . O l * € + B ' J t!.JJOE+O* TONS 1.7?8€+0l BIbC lO t4 2 .%G5€+03 * c . * . ~ E + o ~ n t L L s

t l .babE+W ACRES 1

Page 319: SYSTEM DEFINITION STUDY PART IN

Tsbb A l l (w) ~ k r L t ~ = 5 9 8 6 ~

1 LIQT f - t f f F 1 L I E N C T L WET CELL E f F I C X E I C t t W S X C C U W l € ~ X S R EFFT i U.**ET FACT- S ws I-se-• 1 BET EsgRCV cam E f F t 7 i t f W t 5 E E f S t t t E ~ Y 8 W E f i s * +DufB BXSTff EFFT t HET W - E F L F f I C f f l t Y

1. 1bf.L BEAH E C F l C I E l t V 11 BET I S M E F F I C l E l l e l t z ISTESSE~T E f f r c r E t e v L S RfCTEl iY I tF -bC EFF XCXEW 14 W? RF i f = f F F V l S X - T O - W EFFICIE(tCY 16 BC-TB--1s EFFXCIEICY 17 W E E A L L PWVSIChL EFFY l a LEE& E fFEET lVE EFFV I* b&*rs l f ? &.€A L I IRTEIIX* D I A 2 1 RE9atiRED SIDELOBE SWtW zz T r e E r REQW~RED foe SL ~ i l 2 1 T~ANSAIT 'ER POUER TAP€E 2 6 PE=EiYEE AYCfPEAK RATE0 25 XATR &VS/PEAK R 4 1 1 0 26 &far) SPREIO F l C T O . t? R&BIATED EF P M R Z I C T & l D I & M T E R ZI B i M ARE* 38 &VE&AGE B E M I POYEE BE86 31 CEhC BEAH IWTEWSITV sz ~ E R IW 1:xw BEIR 31 s + T f . ~ i t E LEST. 31 ciUneEe OF BBYS 35 XAtR PYR DISTR LOSS 3 6 AD1 B1V USEFUL AREA 3 7 B I V SIZE 3 B SPS ARE* 33 FIE&# SOLhR INSOLAZIOn 6 8 SOLAR CELL OUTPUT 61 ?OTAPV JOiWT CURREbiT -Aw 4 2 i O T & l V JOINT CURREIT -SW 6 3 TOTAL PROCESSED POYER i 6 TOTAL KLVSTROW IWPUT 4 5 TOTAL KLYSTRON WTPUf 4 6 NJRBER 0 s tLVSTRONS 6 7 nrx KLYSTRDN PICKINS OEM 4 8 WAX IF ZOUER OENSXTV 6 9 NGHBZR OF SUBAR~A7S 56 RECTENNL AREA

8, $IS€-81 & .S8lE-Oa I - J1#-bl *-393€-8L 9 - WSE-a t z . 22 fE -01 t . s a t € - 8 1 9.e*s~-a1 a.223E-81 * . e w E - m t. & % a € -81 t . 7 N E - B l 8.P'E-.t 8.4. e€-81 6 - 4 3 Q E - S l 1.2S7E-81 I.b+QE-bZ 7.151E-02 ?.ZlblL+O? u2

-2 .IJBE*OO ltll 3.765€*)1 €#D 1.338€+01 itl l . f 3 S E * I 1 91 , t - 0 l f E - 0 1 s. I~?E-~E I . 576E *QO Q.13OE*O3 H E f l 3 u T T ?.l iCE+OO R U t 4.SSZE+Ie I t I + . Q f i E + B t 112 t 9.tbaE+as ACSES a l . l l 4 € * 0 1 W C H Z S.~ITE+OI autenz I .C11E+OJ HESAUATT Z.Z03€+01 B I Y S 1 .762€*01 BAYS 1.54JE-Q2 Z.B96E*OS RZ t I . ~ l Z E * l t A C R E S B b.6OOE*OZ NETERS 7 .705€+01 KBZ 1.6%3€+%2 6U 1.248E+01 6 U 1 . 5 6 7 € * 0 4 AHPS S.&IPE+J4 AHPS 1 .794Ec03 tlE6AWATT I. l t 8 € * 0 4 HEGAYAT7 1 .001E+06 HEGAUITT 1 .390E*05 7 .5646*00 PER SUB 5.035E+O0 KUfMZ ~ . ~ o s E + o ~ PEa ANT Z.ZLIE+OI HZ t S . ~ ~ Z E + ~ ~ I C R E S I

Page 320: SYSTEM DEFINITION STUDY PART IN

S t FEAR ult TU€1**L tY(t I

52 OC W T W t C9#R I

S f CRIB POYES S4 LA- AREA ? E l RfCI I

SS 'tC m W I Y E t t l A .I

S& TWtUST PER CORYLI I

st n t ina~ t w rnrustrlts I

58 C D # r m L W E & 1

5 1 UlnU&L CIDPELLAUT I

48 StWCT0.f R*Sf I

i & CmlTROL SYS *ASS. I

4 2 SOLAR OLUI IET WSC t

I f MUER OXSTU ISASS I

14 men a ELEC RJJ MASS I

4 5 &ST JTRYC NASS I

b b ANT i&&vEfUIBE -5s 8

4 7 ANT R L I S f W H -Sf w 16 ANT COUfROL CUTS M S S I

6 9 ANT PUR oxsrr nrss I

7 8 ANT PUI PROCLTC UASS I

7 1 ANT I A S S I

72 STRUCTURE COST I

7 3 COt~IROL SVS COST I

7 6 SOLCU IL INKET COST I

7 5 POUER OISTP COST I

76 XECHIEtEC R I J COST I

7 7 AH1 SfRUC COST I

t a &nr uavE6eroE COST . 79 A#T ELYSTROR COST I

&8 ANT CONTROL C I T S COST I

6 1 ANT PUB 0 1 5 1 1 COST I

6 2 ANT PUP PROCITC COST I

as ~ n r COST I

j+ NO aF FREICMT F l i C H T S I

85 CREY SERVICE NO O f FLTS * 86 01s COST I

6 7 TOTIL rarnsc cost I

8 s RECfcNNI COST I

8 9 CONSTRUCfIOM COST I

9Q t N l E l E S T DURING CONSTR s 9 1 LATITUDE AREA FACTOR t

9 2 TOrAL MASS 1

9 3 TOTAL COST I

94 COST/UUE 8

9 5 COST/KYW I

t * * & f f - 0 : ICWI2 3.ll*iE*ea SY/Ll&m 7.4&0€*8. SV l e t & & S.?18E+O? nt I . t JQC* t s a e - ~ t b.2?oE+al UEYT#iS &.278€+01 PER I W T t .&10€+81 IECAUATT Z.S72€+01 TOC15 4,065E 403 T W O l.*OZE+OL TOWS 3.943ZE +04 T m S 1.228€+03 TOItS 1.S90E*tJt rms Z.OOBE+lS TOWS X.?ZbE*B* TONS 1,1432*03 TOUS 7.508E*02 TOMS 2.1?3E+03 IONS 3.516E+OJ TONS 3.532€*04 TOMS 2.OZ)E-01 B l t t X # l 6.310E-02 B f L C l W I 2.526€+00 U I L L I O n 3.l92E-OZ B I L L I O N 3.338E-02 B I L L I O N 4.410€-Ol B I L L l O N l.O3SE+OO OILL ION 4.396E-01 B l L L I O M 1.ISTE- 91 I X t L i O N 2.Zt3E-01 OILL ION Z.633E-01 BXLl lOW 2.559€*00 BlLLXON 3.162E*BZ 1.807E+01 8.684E-01 B I L L I O N b.34Sf+OO B Z L L I M I 1.708C*00 BlLLfOW 1.OBcE*Oo l I L L l d U 1.143E 400 B X L L I W 1 . C l 9 f 400 9.055€+04 TONS l.s:9E*Ol ~ I i l I O N Z.451€+03 S 4.557€*01 R I L L S

Page 321: SYSTEM DEFINITION STUDY PART IN

u.

&U

*d

--

-?

J)

W-

-d

*

#R

d~

k~

CU

WO

'~

LW

)I

JI

~C

1L

&~

4(

~~

~~

~~

~~

~~

~~

~L

.C

~

....

....

....

.,..

....

....

..,.

..,,

,...

...*

. I.

..

..

..

.

s~

~s

~~

~~

c-

n-

~~

~~

e~

wr

wu

mn

~~

~~

~&

J

CJ

O~

~C

~J

O~

I*

~-

O~

Q(

C~

~~

~U

WW

M~

WW

~~

*

ro

ul

i-

.r

S*

.~

9.

*,

r*

~~

Ir

Oi

.d

*~

Pe

3C

IC

1J

,O

~-

*r

~h

)~

~~

-r

D~

rQ

~

4.

wI

r~

r-

4&

WI

*&

li

rr

.*

e~

r(

r

~-

r=

m-

we

a*

ri

v"

i~

u-

im

v+

tm

r-

~u

~~

r~

~a

r

~~

-a

-+

.~

-g

.r

,.

,

~a

n~

r~

r~

11

~;

rw

r.

wr

ur

ra

u~

m

m~

mm

~m

~~

mm

wn

nn

mm

mm

mm

mg

cm

mn

w~

~)

nm

mm

~m

nm

m~

~m

nm

~~

mm

mm

mm

~

.*

.~

**

*-

**

-.

**

*I

**

**

~*

**

*~

l*

+.

.,

lv

II

I

11

11

11

11

11

11

~

~O

OO

OO

WO

QO

OQ

~~

~Q

~Q

Q~

OD

~O

~~

B~

~O

O~

O~

O~

~~

,~

~~

~~

~~

~~

~~

a

.r

wr

-w

~;

u8

V-

~~

~~

~~

N~

~~

~C

~~

LN

Q~

C.

CD

CO

YC

~L

LL

LL

-L

L.

~-

L~

~~

UL

U~

* ?=

- -r a iii

w M

4

Page 322: SYSTEM DEFINITION STUDY PART IN

i t MJT W*ML CYI I

U W T t t t T ) O i l E R I

33 CRlS I

W tw AREA PER RLCT i

f S *'re W Of I l l f R t t A I

54 TURUST ? E l COIWER I

I? W R i l E l @F TWffUSTERS I

58 CO#TtOL POUER I

5 9 & n u A C PRO?€ CLUTT I

40 S t f f U f W R f m3s I

& 1 COXTROL SVS ?%ASS I

42 SOLAR O ~ ~ K E T RASS I

I 3 W i r E t BEST& WSS I

14 n ~ c n a ELEC R ~ J nkss = 45 ~ T R U C BASS I

66 MT YAVEEUIBE ASS I

4 7 ANT KLYSTROU HAS5 L

4 8 ANT CONIROL CKTS I A S S I

0 ANT PUR O ~ S T ~ MASS 9

70 ~ n r PUR PROCITC #ASS I

71 ANT WASS I

7 2 STffUCIUUE COST t

7 3 CONTROL SYS COST i

7 4 SOCAR BLAWKET COST I

7 5 POUER D I S T t C O S l 7 4 RECHIEtEC R I J COST I

7 7 ANT STPUC COST - 7 8 AWI NAVEGUIDE COST I

7 9 ANT r i r s r a o ~ COST a

8 0 ANT CONTROL C K f S COST I

81 r n T PUR DISTP COST I

82 ANT PUP PROCITC COST .I

81 ANT COST I

84 WO bF F R E l G H f F L l S H T S I

. 85 CREU SEffYlCE WO OF F L T S 86 OTS COST 8 7 TOTAL T R I h S P COST 88 RECTEWNA COST 8 9 CONST UUCT I O N COST 9 0 I N f E I E S T DURlNG CONSTR 9 1 LATITUDE AUEA FACTOR R

9 2 T O T ~ L ASS n 9 3 TOTAL COST 8

9 4 COST/KWE = 9 s COST/UUH 8

4 .esze+~ awn2 b. * l sE+aa w c 1 8 H 8.545€+00 fY T 8 t 4 1 1.93SE+@8 82 l . $ l a E * l 4 RC+Z 7.6**€+01 MEHTtWS t , 4 w ~ + e t PER Imr 9.443E+Ol I E f A M A T T I . l S * E * e l TOWS i . * 4 o E + a s 1011s 1.719€+82 TO#t f. ??9E+OI TONS i,8CYE+BS TOUS 9 . 7 6 1 € + 8 1 T M l S I . 8 8 0 E + 0 2 TONS i . f l C E + O $ TOUS l . l 6 Z E + 0 4 TOWS 9 . 0 2 5 L + 8 Z TONS 7.6%bE+C2 TOYS C.Z8IE+O3 TONS z . z s a ~ + e ~ ons Z.4SbE-01 & I L L l C M 7 . 7 3 i E - 0 2 B I L L I O M S.O98E+00 B I L L I O N Q-BOIE-oz o I I L x o n 2.0SOE-02 O I L L I O U 3.4SSE-01 O I I L I O N Z . 5 8 8 L - 0 1 8 I l l I O W 5 .285E-01 B I L L l O M 1 .992E-81 B I L L X O N 8 .301E-82 B l t L X O n 2.954E-01 B I L L I O N 1 .7 l fC+wO O I L L I O W 2. t i 6 P + O Z 1.49SE+Ol 7 . 9 5 7 € - 0 1 B tLL lO.4 1 . 0 5 6 € + 0 0 B I L t I O H C . ~ + O E + O O B r i i x o n 1 . 0 1 7 € + 0 0 B I L L I O N l . Z 9 f l E + 0 0 B t L L l O N 1 . 4 1 9 € + 0 0 8 . ~ 7 6 € + 0 4 TONS 2 . 0 7 7 € + 0 1 B I L L I O N 2.CZSE+03 S *.SO7E+OI R I L L S

PA,, & - Q U W

&.954E+O+ L U t i . e t s E + a l L U I t I . t 9 t E * a S LUI # #.33ZE+Ot L U I f 4.87lE+OC LI* f 2.152E+$S L I R t I . l O Z L + O i L B H 8 9.511€*8& tM 1 2.561€+07 L o l l f 1.9tO€+O& L B A t 1 .&95E+O4 LBA I 9.638E+Ob LBN B + . 9 3 4 € + 0 7 t 9 M 1

Page 323: SYSTEM DEFINITION STUDY PART IN

t LtWt fumf l i C i t t l Y F t 2 WET tCtL L f f l P t f r n ' l I liSlf C m Q r l s I t B l E f f V i B t l M f f t F f i E l O l t s #tf t - P O - l 6 H I T fW€CSY corn EEc* P A ~ E A U ~ S E rrr teirsler e antgsnk B ~ E S ~ t s t t t i s v

W f P C - l l f iFf l C I C # t ' l t e f D C l i l r C I l r f t f l t t f * f * t t ~ E T EDFECEEUEV IZ 1 l r i t r c f P r rrrxetrwev 1% CSCTEHHL ef-BF f f f t C l f & C t i # E l tf t t w * f f f v LS Bt - tJ -BC f t i i l S t f Y C V t i C€-la-fietit E T i t C t E W V i t i 3 V E t a t t P Z b t f t C % C E F f Y .a &eka t F f i ~ f lbr t i € V IS 8 i a X t f i Q C I ZB I#iik#Z+ P t * 2 1 C f O U t < r ? S I D E %dl& SUICI 22 1 4 P t P i t 9 U t U f b Fee S t SU :B t P I C l S ! i l f U BDEtP T&Cf R 2% R € f r f V t P 4 k b i P f 4K t a t 1O 2 % m t s ~ ~ G ~ P E ~ K eAt ta 21 Cf &a §FiSf A b F a t f a t 2 t S&Bi&Tf4 I f P b U f U )I BEAH P 1 4 R f f f U 2% PE&?r 4PE4 JO AYE It&;:€ Sf An PULlf e O f NS 5 1 P f & f 1 1 4 @ t N l E N f 1 T V 1: F O U E ~ i w n a i N @Ern S f s a l f t l l f f L f N € = I H t* NaHRCP Dt A A t S 1s x n t e PEI D ~ \ ' F Lass 11 r a t @ a t u a t r u i rtfr ~t ~ r ( r at:& 38 fP% I C 1 4

I* nt sw ~ ~ 1 : 4 9 ~ X W L A ~ I O W

C B S L I : ~ P c t i t nutPuf i t %tl:- IPV S t l t W r ft1ei;iNi -&- 6 : E i 1 i . t a ' t i ; ' tN1 C;lRPIhf *,' 6 3 l i l i *i f % i l i t < s t t! P J Y t ~ 5 9 I t I T i l K k V 4 1 1 t l H I h P U f 6 % : d l & : k l t \ t P ~ l N DU7PUf ii kt:?4Sf 8 or rtr\tegw?i 5 : P I X \ b i Y % t i ' O N 8 4 i klh:; BEN 45 P A \ B t f , l & t Y V L h % t 1 Y - 9 kift!85@ Ctb \ i i i l 4 Y R A V S St3 C L S t t N M * ARE4

& * S7M-el i . i l t f - O l L f 4 Q I - e t %.&**%-8t * . a * i g = a t t .28 f f - l l * * %e*€-e: 9. tars -e& a. ti:€-St * . l t e f -€ t t @ . * t l E - P i *-S2€€-D& 8.%,2ff - B l S.)r%E-Qi &. t l t Z E = O t 5 . * 8 * E - m & f . l ? * C 02 1.T:rf-@: & . 8 5 I t . l t NZ 1 . :set .OD rn 2.itlf*%l PI l.Qicf+Dl DI l.Ptef*3l hb 2.u-.-t-ai 1 . 3 0 O f - 6 1 k-ibf€*2R S . * 2 d i + b J N E f A W l T t.i~s~r8t En t a . m a ~ * a e nt b % . 6 3 2 f +BI N Z f t . ) b l E * 6 1 A f l t f t S S . S t r f * O D RM3CMZ ~ . i * s f * a : nu-enz s. ~ : J E S S I n tmna t l 2 . : i ! t r * o l 84r5 z . t r t i * o : Brvs : ,=?sf n: C t\*et+a> &> t t . B l l € * 8 t A C t f S 1 & , & J J f *O: N E l t t S *.+,-t r F 1 $a: I.2:Tr*d: b w 1 . % i d E S O ! bU 1 x : % k * t l % Aes-s b 3 * 1 1 1 : - &BPS 2.1 'BE r J I H:O&MATf l.qlsL+JC N f S A Y A t l 1 .;P-.E * a * n t t a u 4 r r 1 , Q ' 21 . + 0 5 2 . D ' : i ra t PtP SUB I. i . * k ~ O l EiJ H? i.BclC*Pi Y E * ANT %,i2lf+O? W I

Page 324: SYSTEM DEFINITION STUDY PART IN

s1 WIIt I r n s T l l l l r n L )Iht I

i) R€ OIitCtlf tOIIft I

$3 Otlm POUft s S* LA#& &WA ?ti e m f 8

s i -Y- see 9~ i m e t t ~ a TWIUIF PER COIMCI a

i t wn~ft OF V ~ ~ U S V C U S SIJ pewreat ~o..rr • st ~ W I L t*a~rai*nr 48 tttUETUff BASS I

a t tMltor svS MASS I

rZ serir L ~ A N ~ E ~ ~ 4 5 % 4 s Wft Plffe l a s f I

LQ MftM L flee @ # J (IAfS i.

LI AWt gt4Ut HL5S I

6. ant urvicut~r nrss i

L Z 4Hf tlYflUB# BASS - ANf S i i H t P U i CkiS l44SJ s

rr an1 PUR e ls lu a i s l I

T O rwi ~ u e PI~SLIC MASS ? l AM; 8 4 5 % I

t Z S t l U C t U Q t C B I f 7 % e o ~ t e a i 5v5 COST rn t i s.tt 4~ 91 9Hlf T east . 3 5 BOi:LC Q t i i I COST I

li H E C H I F t C 6 I i J COSt t f AH1 ZtPttC iOS1 I

t d ANT UIWIGU~PC rasr 1

?9 4Nf tlViil0N ERST i

&N1 CtlNTRol C k t S Cost I

a1 ANT PU4 P 1 5 t i t CBSl 1

e l rsr PUI PSDCL~C east @ % ANi COST * I Q wo a~ , a t tcni ~ r t ~ n r r I

QZ CCtU S C B v I C E WO SF F L I S = Qea B T f €051 L

B T I U V A L ~ P A N S P coot t

8% BtElfHHI COST 8. Ti1H214Vi I ION COIt 9 O l N l f R f % t P l i P l N t CDNIlR - 94 L A t ~ l U B f AYt* EAC1BU * 91 1 0 1 4 1 Na5S - 9 % 111141 iO%i 1

94 C I ) S I ~ & U L - Qi CO5likUH I

8 .&93@*88 h W U a *.6ltf*00 OY#iltH l. bl?C+00 CM TOtAk &.3&?€+Q8 HE L.BtBf+t* LO-B2 t . L * * E * B t HCYfLlif ?.i%w+~t C ~ R tnsr V.LSBE*Bi NfBAUAlt J. trrr+a\ rens i.BiQE*B1 fQUf I.l\*f+PZ TOUS f . f :9E*0Q FdHS L.B4it+Of TOUS I.tl@€*Ot TOWS ?.2BQf TONS i . 2 t l f t 8 1 tQX5 i.l.IC*09 fan% ). C: 2E +a: TOMS B,i$OC*B2 iONS r . z s i f * @ a ta#s z . * ~ e t * o * roMr Z.QBQL-Ot O t t l t O N 2 . ? I ? & - a 2 LILIt(H1 J . O * S Z * B J B I i L I t % M * . P O O C - Q 2 BILLION 2 . S b k E - @ - BtLLIQN 3.423: -UL BliklON J. ; z t f - a r erlrluN i . l b * f - B i BliLtON i . r ~ s ~ - a t P ~ L L ~ O N % . l t 3 5 E - B 2 BllttON 2,tSiC-Oi BfCLtBN \.bs@€*€!O BtlllON & * @ a S € * @ 2 k . ;si\. t o 1

B . Z ! S L 0 1 BllltoH & . 3 0 * C * D 6 BIIllQN S.SQ.'f *DO @tLlION 1 . Bt91 * b e Blll lDN l . ; + I k * @ O @llLli'N &.cteirea b . l \ : f * O w f ONZ 1.*3-t*0\ BtlttON 2 . l k I k * Q S * ~ . z r s t t a t R I ~ L S

Page 325: SYSTEM DEFINITION STUDY PART IN

j tgent tnrur C F e x e t E r n v L WET CELL € f C X t l E # C * 3 sasre C~WYERO~IHI. E s f r 4 l L i W f f C 1 F*CTORS I &US 1-SQ-R 1 rn EWERCY cowv EFSV F A R f W i S f EfFlCXEWCV I AWTfWA P W E I R J f l R E F I V 9 MET m-tF E F F t C l E S C V

g i IDEAL a r m EFFICIEWCV 11 WET 8 S A n EFFICXEHCY t 2 I N T E I t E P T E f F I C l E H C V t 3 REClEt iU& t f - D C E F F l C I E I I C 1+ NET U f i l W R ESFV 15 Df -ta-M: PFF t f 1EWtV 16 DC-TO-GU~Q w F r c t E r m I ? O V E I I L L Pt lVSlCAL EFFV 15 *I@€& EFFECTIVE E f F V I Q e t A W U E t AREA PO AHTtMNA B t & 2 1 R E O U t P f b 5 1 0 f L 0 8 E SUPPR 22 T l P f R EEQUtUfO FOR Sl SU 2 % TR*HSUtTFEU POYEP T A P P I 24 U E C f t V E R AVt+'P€Ag RbTXO Z S xuta AvG/P€AK R A T I G 2e e E A n SBUEAD FACTOR Z t R19fATEO E f POWER t& BEAH D t i R E T E U 29 BEAN AREA 30 i V E P A G f BE&# POUER DENS s i e u u s f i f f INIEWSITV 32 BCUfR 1 N RASH BEAH 33 f A f f L l l T E LENGTH 34 N U R 8 f l OF BAYS s5 xnte FUR D I S ~ R LOSS 36 &OJ BAY USFFUL AREA ~t W A Y SIZE 38 SBS %RE4 13 ttEbN SOLAR I N f O l A T I O N 40 S U L h R CELL OUTPUT 41 RBf&RV J O ~ N T CUCAfHT "A* C 2 F i O f a l Y J U t N T CUIRCNT *8* C 3 tOT4C FROCESSEO POUEU C f TOTAL KLVSTUON INPUT 4 5 TOTAl KLYSTRON OUTPUT 6 6 N u n s c n OF u i v s r ~ o ~ ~ Q? n*\x r i v s r R e N P A C ~ ~ N G DEW 6% M A X Uf BDHtR D I N S I T V *9 WuneER DF SUBIRRAYS 50 RECTENNA AREA

l lE6AYATT It8 ( i . @ l b E + O O A t B ?I? 1 l r l i Z E * Q 4 ACRES B ?tU/CIIZ nu/cnz PESAMATT 8AVS RAYS

U 2 < 1.@1ZE+O2 ACRES 1 H E f f R S tnz GU GU *BPS AttPS BEGAUATT HEGAYAT f ITEGAUATr

PER SUB UHf'UZ PER ANT Mi! 6 1 . 0 1 7 E * 0 4 ACRES B

Page 326: SYSTEM DEFINITION STUDY PART IN

)I PEA& ANT t w t M % & i We 8

5 t M W T P U T COYER 1

5% 6RIO W L R SC LAM0 AREA P E E R € C t e 5s *r- non ar IHERTIA s i tneus~ p ra corwra $7 N U t l l E f f OF T W R U S l f l S i

59 C O H f t O t POWER 39 AWtHIAL P l i O B f L l A I i f m l d STRUCTURE RASS s 6 1 C O N I P O t SVS I I A S S 1

6 2 5 P t A R UCAWKET nASL m 6 f POWER D t S P R B A S S m 64 N f C H L E L F C R f J S4SS 1

6 5 ANT t t f t U C NASS I

b l ANT UAYEGUIOE R&SS e 67 ANT U L Y f t B O N NASS &a WT CONTPOL CYTS &ASS . 6 % ANT P H I PtS1R MASS 1

f 0 ANT PUR PPOCITC #ASS a ?t hWt H&SS L

72 OTRUCfJPE COST I

7 3 CDHtPOL S Y f EOSf 1

T Q S U L ~ ~ OCANUET ecst I

75 POtlEU B t S t R COST I

7 6 R E C H L E L E C R f J COST I

I7 ANT f T P U t COST I

7 8 AHf UIVfCUlQE COST 7 9 A H 1 k i V S T P D W COST 8 0 ANT CUNtROL CkIS COST I

81 ANT PUu 9 1 S I U COST 8

8 2 ANT PUB C€!OC&TC COST s

8 3 &NT COST I

8$ NO OF C R F ? c 4 T F l f G N T S I

. 8 5 C l f b l S F R V i r f KO O f F i T S = LC o ts COST t

a? TQ1A1 %RANSF COST aa arcrcntrr cast 89 COHSTRUCTIUN COST I

3 0 I N t E U f S T DUUt%G COHSTR 91 L I T t TUUE ARE A FACTOU I

92 T O T ~ L BASS I

3 3 10tri C O S T v4 CQSTIUUE 9

95 C O f Y l iUH I

Z . f % S € * I Q t U 8 ( l t *.SIZE+OO 6 Y l k t W t 8 . 7 S l t + B O EY TQTAt 1.869E+tS& NZ t .o toe* t* re-N2 Z . 6 9 9 € * U l n E Y t w s ? .&9?E+d t PER t N S T 9 . & 4 3 € + 0 1 I IEGAUATT I . l i i E + O l TOMS *.9bOE+OS TOUS 1 . 7 I 9 E t O 2 T Q N t 3 . ? ? 9 E * 5 1 TONS I , 8 C ? P * a f TOWS l . P B l f + O Z SOWS *,8OOE*O2 TOMS 8 . i 5 S f +Uf TONS l .1&ZE*OQ TQ#S %.QZ1€*42 TONS i . ~ S P E + O S T a n s * . l b l E * O S TUNS 2 . ?+Of + E l i TONS L . 4 1 8 f - B L I Z L L f O l l t . 7 3 7 f - a : B t l L t O # 3 . % 9 b f + 0 8 I I L L t O U 1 . 8 9 i f - 0 2 B i l l I Q X 2 . 6 1 3 f - O Z B l L L X O N 3 . 7 9 7 E - Q i B l L L I m 4 5 . P T 3 E - 0 1 B I L L l O N 5 . 2 9 S E - 0 1 B X L L I O N l.*QTE-at B I L L I O N l . f r 2 ~ - 0 l B ~ L L X O M 2.954E-at B I L L I O N 2 .Q36E+OO b X L L f Q N 3 . 1 8 8 E +OZ t .E.?ZE+O1 a . ~ 5 ~ ~ - 0 i SILLSON 6 . C 0 6 E t O O I X i L I O W 1.9qiE*JO B I L L I B N i . o e a r + e e e t i i s o n I .ZJ?+E*OQ B I L L l O N 1 .419E+QO * . l I O f * O * TONS l . J ? I E * O i B X L L I D W Z . ? 5 4 E * O f 4 . 1 9 9 € * 0 1 ~ I l L S

gRtGW;U, PAGE B OF Q U m

t 18 1 tm I L OII 1 L@N 1 i B I I 1 C In 8 t bN 1 ibn B 1 BN t i rn B t rn 1 L an I 1 I U B

Page 327: SYSTEM DEFINITION STUDY PART IN

~ N T E W DIAIIETEP VALUE l . 1 9 0 € * 6 0

SOLYTXlm I E S U l f S

1 L I W T 1WPUT EFFfCX€WCY 2 NET CELL € F f t C I E ) I C I S &ASIC CWYERStON.EFFV 6 BCAMEET FACTORS 3 BUS I -SQ- I I i NET ENERGY CONV EFFV t r u E m i s E EFFECIENCV 8 ANTEMHA P w E e D~STII E F ~ Y 9 NET BE-Rf EFF I f IEXCV

10 IDEAC BEA8 EFCECXEMCY II MET BEAH EFFICIEI ICV f Z 1NTERtEBT EFFfC lENCV 1 3 RECTENNA I F -DC L F F l C l f M C i l NET R f L I H U CFFO l S bC-TO-BC EFF tC tEkCV 1 b dC-TO- tP1D EFFICIENCV 1 7 DVERALL PWYSlCAl EFFY l a A ~ E A EFFECTIVE EFFY 1 9 BtANeET AREA 2 0 AWTERNA 01A Zi REPUIPEO SIDECBIE SUPPR 2 2 ?&PER REQUIRED FOR 5 1 SU 23 TPJHSRITTE I BOWER TAPER 24 RECt tVER AV68PEAU RAT10 2 5 f 8 T R hVG#PfAk RATIO 2 1 BEAR SPCtAD FACTOR 2 7 RAD1ATED PF POUER 2 8 BEAH D l A n E i E R 2 9 BEAN ARE& 3 0 AVCUAGL BEAR POWER DEWS 5 1 PEAK BEAH INTENSITY sz P O H ~ IW a A i n n E r n 3 3 S A T E t t l T € LENGTH 14 NUHDCR OF BAYS 35 XHTU PUR DISTR LCSS 36 4 0 1 BAY USEFUL AREA 3 7 B A Y S t L E sa sps r a t * 3 9 EEAN S O L A R INSOLATIDN 4 0 S O ? & R CELL OUTPUT 4 1 ROTdPY JOINT CURRENT "A* 4 2 ROTARY JOINT CURRENT "B" 4 3 TOTLL PROCESSED POUER 4 4 TOTAL KLVSTRON INPUT $5 TOTAL KLYSTRON Ri'TPJT 46 NUHBER O f RtYSlRONS $ 7 H A X K r v s r a o N PACKING DEN CI nrx RF POUER D ~ N S I T ~ 4 9 NUHBER OF SUBARRAYS 5 0 RECTENNA AREA

8 . S t t E - 0 1 1 * 6 8 1 € - @ 1 1.36OE-UIl 9, S t * € - 0 1 * .6*1€-01 1.213E-81 9. 3 4 9 t - 0 1 * , t S Q L - e l 8' l 7 O L - 0 1 9.781E-01 9 .077L-01 9. b6ZE-01 8.97ZiE-Ot 8. S 9 t E - O l 6 .3OlE-81 6 . 1 l Z E - 0 1 7 .413f -02 b . 9 4 5 f -02 8 .651€+07 @82 < Z . l l TE+OZ l C t L S t

. I . 6OOE+OO KR 9.142E-61 I1 t 2.659E+Ol D8 1 . 2 5 t E t 0 1 DB 1 .251E*01 DB 1 .P49E-01 3 .267E-01 1. SCCE+OI) 5 .933€+03 nE6AYATT 6 . 7 7 2 E t 0 0 UH < 5.451f+OQ I t 3 ~ . O ~ ~ E + O T nz t 1 , 4 9 3 ~ + 0 4 ACRES t 8.901E+OO HU/CIZ 4 . 5 6 6 ~ + 0 1 nuawz 5 . 3 8 3 6 + 0 3 REGAYATT Z .?O lE*O l BAVS Z.lLIE*@Z BAYS 2 . 4 Z l E - 0 2 4 . 0 9 6 ~ + 0 5 n 2 ( l .O lZE+B2 ACRES 1 6.600E 102 HETERS 9 . C 4 f E t O l KRZ I . 2 i % E * O I GU 1 . 5 3 0 E + O I GU 1.172E+OS AMPS 6 . 8 8 4 f t 0 4 AHPS 2 . 1 7 9 ~ + 0 3 n E G A u A t t 1 . 4 1 ? E + O f i Hf GAYATT 1.20SEtOC HEGAWATT 1 .673E405 1.356E+OL PER SUB 9.029EtOO YU/HZ 1 . 8 5 9 € * 0 4 PER ANT 3 . 3 9 9 ~ 1 0 7 n 2 ( 6 .400€+03 ACRES 1

Page 328: SYSTEM DEFINITION STUDY PART IN

SI M A S * W t f Y C U t 4 I t PW 8

OI Bf WfWt tWILR I t f & t D tb&iER ii U U D h t C h H e @LET E

JI -v' tmn @F IUE?~B* 8

11 tnu u s t rau e e ~ n ~ r S t N # U f l S f t # U t t f T t R t * sa t r n t ~ ~ i ralitlt 8

1% i N r t t ) i t ?BBFPLL&UT 10 S f l U e T U I C #*St * li EWTBQI svs U*SS a 1 2 t e t i a p t i n ~ r t n i ts 1

13 reucr ststr uiss i s urtn r cirr rcr wtr I

i s a w S ~ ~ U C nrss i r r ~ r u r v c t x r ~ r k i s t i z awt rtv;raew 8 ~ s ~ a

&a I N t COItLOi CkYS 8 A t l I

&% i N t PKY ':;Sfft ma53 I

t e i t t t auri 22% nirs e 71 &#f )lass #

I2 SlBUCTt$IE CbST i.

? S C9HTlal f r c C O I i I

tr SDLII E :AN~ET cast rs ru i ; ta ozsts COST ?I RCtHttCFt P-2 € @ S t 77 IWT f l t U C EJST 38 rnr u i v c t u l o r cost . 3% AH1 k C V S t W N COST rn UB ANT eanrrar CUTS CDST • S t ANT FUR B L S t R dDST a

S t ANT Pi:& f Q O C t T S C O f f 85 rn t C O S ~ a

8% NQ BF F E ~ ~ G N T f : t 6# t f a

, as C ~ E Y S C R V ~ C E c r ~ or r k t t B i O f f 6 0 S T a

I$? T Q l i l f t A N f P COST I

SS e f C f E N H I C Q f T 1

89 CONSTRUCtteU t o s f 1

1B f w T ~ t f f T BURrNB CPWftR = 11 L I T I T U B E $ @ € A f i C ? O U a

9 2 T D t A i R & f S I

- $ 5 f 0 T L l C a f T t

94 CO$flkUf 9 s COSf ikUkI t

i. ~s*e+e* LDU \.0t3t+BF I D A t . f t t t t 0S 118 8 * 3 s a t * e ? i l P 4 i,BltE*B1 LBN 3.818C+Bf lB?t z.aZtC*eb iBI 2 . i f J f +at i & N z . a i s t r e t irn k s%92seQi La8 I.Q:?E*di l % B *.*3bC*Bi tIH I.?flf*O? 188

Page 329: SYSTEM DEFINITION STUDY PART IN

A W f t # I C I B t A l l t f f r t SULUftOW B f M l t t

r

I L!GMt I M W t LFFtCtEWCY - a UET C f L L L F l r l C l f # t V a

3 I A f E t CBUYPPbfMl C F f Y a 4 a ~ * w r t f C ~ C T W S * I BUS I-SB-R 1

I NET fNER6V CONY CEFY I

T A U E ~ Y ~ S E ECCIC~EHCY I

I k n t t w w i p e u r t P ~ S T ~ EPFV v MET ~ e - a i E F F ~ ~ E E H C I L

10 fPfAC Bf&R EPF1CLCUCY I

Ik N f t &Can P F C l C t E W e t I

12 l N f EUtf PT f Ff f Ct fWCY I

t s recTexua IF-BC: rr-rctrne * 14 HEX t r c i ~ ~ E F F V rn 1 % B E - f a - B C EFFICIENCY I

tr P C - f a - L u l e fiFttlfkCY . I ? ~ v f e n i i PNYS~CIL CFFY &

18 ARE A E f f f E f t Y E ECFV t

li L € i N f t l L P E I I

20 AHfF.R?i& 0 1 4 * 2 t CfCUiPfD StBitDlf SUP?@ t

2 2 I I P t l t P t P U t t f B FUR S t SU - 2 5 f U & r i i N ! f I f f2 CRWLR TAPER m

29 ~ E C C ~ Y ~ R & v s r m * u ~ A T ~ B 2 5 xnts r v c ~ f ~ r t ~ & f l e t& BEIn s ~ s t A D F A S T O R I

2 7 R X B I A f C D BF BBUCI L

t~ s f a n P ~ ~ R E T F W rn

at B t 4 H &$LA s

$8 kYf%AGE BE &N POUEU P t U S j t #'E&tt BE4R t N i T N % l T Y rn

32 POUte I N N L l N % t A R 5

3 ) S A T € : ~ ~ T E ~ E S C T H 8

36 NUEBfP BF BAYS 3 5 X r n l P FUR B f S f 4 LOSS 5 b ABJ LAY USEFUL AREA s a z ekv rrrc a

,a ses r t i c * = 81 satna r w s ~ i ~ t i a n rn

CB SUILR E t L l O U f P e T t

e l Z O l A r Y JofNT tkJf?RfNT "A* i~ uaTkav . ta!Nr CvaaeNr *a* - 4 3 I O T A 1 Pf t l i ' tCSED P O U f R 13

6% f O I A t KLVSTRQ' I h P V l m

4 1 T O T i L X L Y S I I B N DJfi'UT i b NUHBEf? 0 6 t L Y f l B U N S 8

i z f fax ic iYslRtW4 P4CkINt; DEN 4s R A ~ ~i P O W E R ~ E N S I ~ V . 6 0 NUMPLR OF S ~ J B ~ R P A Y S a

5U RLCILNNA

& * S?S€-@1 & q@@ke-81 1 .3beE-B l S,3*9€-01 *.&*1€-@1 I . L l f E - e \ B . Jl'&h-Qf v. ? 1 Z f - e l 6 , t % t - O 1 * , & t f E - B t O=IO?€-Ut 5 . ?2 l t -Ot Q . i B Z f -at &. 6 % ? E - @ l a . Je*€-e# 6 . tOSE-O1 t . S l ? t - B P 7.022f -62 8.85tf*t7? n2 \ , & 0 0 f + 0 0 un 2.Z56f*PI E& i.3?CE+Bi bl t , 3 2 G F + O I DI 1 .,LaE-ol f . l : + f - 8 1 l.SluE*BO 5.951f*C3 REG&YATt t . $ l s t + Q O KH t 4 . 9 3 8 f *00 81 & % . 9 5 9 E * B ? RZ t 1 . Z t S E + f J I ACRES I ~ . Q * ~ E * o I nutcns 5 ,&*3f+131 Hhl#CRL 5 . 4 1 2 F + O f BESAUATt Z . ~ Q I E + O ~ B A r s 2 , 1 6 t f + b Z BAYS Z . Q f i 1 f - 0 2 G . O ~ & E + O J n2 t 1.01Z€+92 l C R E s 1 6.CBCE+O2 #ftElf ?.Qk?E*Ol kt!: 1 . 2 ? 8 1 + 0 2 6 W l . S f D E * Q l 6 U t . i c a t * a s r n P s & . 8 6 0 L t Q C AflPS 2 , t ? Q E r Q t YtCAUATT I .B::t+Z6 H t C I Y A T t ) . 2 J 9 € * 0 1 BEGANATT 1 . 6 39E *95 l . f : 3 f 4 o l F L R SUB t . % : : r + @ € l rbJiS2 2.Jslt*0% PER ANT 2 . ? B P E * O f n:

t 3 , l I l f +%4 ACRES k t 1 , 1 f * E * e b nt 1

Page 330: SYSTEM DEFINITION STUDY PART IN

st rut ANT r n r r n & i tut 8

sa ~t WITPUT P O Y ~ U 8

IS erta ~awre 8

s i u n o A ~ F A err r r c t I

IS *r- nu8 OF IUCRT~A f i THRUST PER CPRWLR ST X U ~ ~ P I OF T ~ C U S ~ E R S 8

06 C W ~ R O L PONE& a f) ANHUAI PIBtECLAUT i

i e S T R U C T U ~ E nhis • i k tawreut SYP U&EF a 62 SOLAR Bt4NWPT MASS I

6s C O U ~ R D ~ S T C nrss a

i* nt ie t t t E ~ E F &#.I nrts IS ANT S ~ R U E &ASS 6 % ANT UIYEFU~DE nrrr i t mr r rust to# n ~ r s 8

il l Q T FB#I*OL C1T0 B&tS a 6% ANT PWI B ~ S T R BASS ?&3 ANT tW4 PROta fC nAS5 8

71 ANT RrPS • I 2 ST lYCTURf COST * 7 3 CONTROL SYS COST 74 SBLaR 8 l A N L f t COST Y

2% POUEr D t Z I l C O S T Z1 H E C t I a f L f f U J J COST I

7 2 ANT SICUC COST s

?a ANT YAYIGUIUE tost . 7 9 AHT 6LVSfPDH COSt 80 LNT CONtPOL tKTO COST a

a t ANT PUS PIZTR eorr • 82 AN1 BUR BRUCITC COST s

8 3 AN^ ~ O S T a

84 NO O f Fe f fGMT FLIGHTS s . 8 5 CtEU SEBYlCC WB QF f k T S 36 0 1 5 COST a

81 r 0 T A L IPANSP COST 85 I E C T f N H h COST B I EOk4StRQETlON C O S t 9 0 tNTEPtST D'111?46 CONSTR 8

11 i ~ ~ t t ~ a e A ~ L A K A C X Q E 9 2 TOT41 C4SS s ? J TOTAL CDST 9 4 C n S t l t t l E a

?J EOST8hUH s

t m J Z 9 O * 8 0 E W R L r.rrea*re B M r t t M t @.maE+oe QY TOTAL ?.834€*6? HS t . ~ t ~ e * t * KS-nt ?,CVI€+Ot WCUTDNS ? * 4 ? ? € * 0 t PER tNST %.11%1*01 BEGAYATT 3 . t S i E + 0 t TOHS 4.?&Of*BS TONS l . ? l *C*Q1 re#$ S.??*f*B6 TOHS t . Q f B L * Q 3 fQNS t .S t26*02 IeHS &.62OL*Q3 taNS t . f *a l *or T ~ N S t . t i ? f * Q Q T O N I % . O b T f * B f TDHO t . Y t T f r e s FONS 4 , : d l € + B f TONS I . * $ IE+Q* TOWS L. ibOE-U1 @ t l L f O U Z.Z1Zf-O2 B I L L I O H S.O?&E*Qb S l L L I Q N 4 .773E-82 BELL ION 3 . 1 2 5 f - 0 1 B t l i I O N Q.ZL3E-81 B I i l f O N 8.386F-Dl B I L L I O N S.JO3L-01 B I L L I O N 2 .BOIC-a i B I L L I O N T , B T O E - O ~ ~ i i i ~ o n Z . 9 5 4 f - 0 1 B l l L l O N P.49ZE*00 9 l l i I O N J.CPi€+OZ 1.99br*B1 *.)FIE-81 D l i L l O N 6.85*E*BO B I t L1QW i.DiOC*UO B r L i I O N 1,19*E*OB B l l L I O N 1.26rE'oB B l l L l D N k,41P€+00 r . ~ s a r + o * TONS Z . Q 2 ) € * 8 1 B l L L l O N 2 . 2 f i f + O f C C . l ? ' ? E * O l R l i l S

Page 331: SYSTEM DEFINITION STUDY PART IN

1 L S I X T lNPUT t f F I C l € N C V 2 NET CELL EFFICIENCY 3 BASXI: COCIVERSlOY EF FY $ 8 l A H t E T FACPOIS J &US t-59-R I NET EWf l [ iV COW LFFY t AREAWISE EFFICZLNCP 8 ( r 1 1 T E W POUER 5 l S t R EFFV 1 NET &-Sf CFFICXENCY

1e IBEAL rrrn w P s c t r H c r II NET BEAU EFFfel fPfCY t 2 IHTERCEFT EFCrfIENCY 13 REGT€MWI RF-DC E F F I C r E W t i NET RF CINK E f P Y i s OC-70-5C f f f l C t € N C Y fl OC-TO-ORID ZFf lC lENCV I t OVElALL BHYSfCAL EFFY 1 8 AREA E F F E E T l V E EFFY 1) 0LAHCET AREA 20 ANTENNA OtA 2 1 REQUIRED S10ELOBE SUCPR 22 TAPER REQUIPtD FOR SL SU 2 s TRAHSHITTEB POUFU 26 PECElYLI hVC/PEAK RATIO 25 XRIR AVt8PEAK RAT10 26 BEAtl SPREAD FACTOR 2 7 RADIATED R f POYfR Zb BEA8 DfhUEtEO 29 BEAR AREA 30 AWERAGE BEAU POUER DENS 31 PEAK BEA8 INTENSITY $2 P O L ~ E ~ XN HAW man 3 3 S A t E t l l T E LENGTH 34 NUHBEZ OF BAYS 35 xniR PUR DISTP LOSS 36 ADJ BAY USEFUL AREA 3 7 B l Y SIZE 58 SPS AREA 39 ?lEAH SDlAR iNSOLATXOW 4 0 $OlAR C E L L OUTPUT 4 1 ROTARY J D l N f CURRENT 4 2 ROTARY JOtNT CURRENT '8" s 3 TOTAL PROCESSED POWER 4 4 TOTAL RlYSTRON INPUT 4 5 TOTAL KLYSTRON OUTPUT 46 NUHBER a6 x r v s r a d n s 47 WAX KLYST90N PACUING DEN 4 8 #AX R F FOUER DENSITY 49 NUMBER OF SUQARRAVS $0 RECTfNNL AREA

VALUE * Z.BBQE+OO

8.l?%t-Q1 t .451€-81 1.360€-81 9, St?€-B I 9 * * 9 t E - 0 1 1.213E-01 *. U * E - O t 9. ?*OE-Ol &.19IL-01 9.83tE-01 9.13lE-81 9. ;6SE-bt 8.9&*6-0 1 8.738f - 0 1 4.63SE-01 4.ZQIL-a1 7.371E-Gt 7.093E-0Z 8.851E+07 h2 i t.t6tE+R@ ACRES )

.2. OOOE +O% KN i l.Z*JE*BB R I 1 2.841€*01 D8 i.SITE+Pl DB 1.387E+01 DB 1.8P6E-01 3.010E-01 1 *&OOE*OO 5.953E*03 HE6AUATt ~ . Z S Z E * O O Kn c i . s i * ~ t a ~ n r B Q.154E+O? HZ < l .@ZbE+04 ACRES B 1.509E+Ol nM/C?l2 & . 9 3 8 ~ + 0 1 n u 4 c n z 3.436€+03 NEGAWATT 2.701E*O1 BAYS 2.161€*82 BAYS 2 .O9SE-O2 4.096€+05 n 2 t 1 .OlZE+OZ ACRES 1 &.SOOE+OZ HETEIS 9.447E*01 KRZ 1,27&E+02 GU l .S33E+OI 6U l . l 6BE+O5 ARPS 6.861€+04 ARPS 2.179EtU3 HEGAUATT l.G??E+OQ UFGAWATT 1.209€+04 flEGAYATT 1 .6?9E*OS 9 . 4 5 6 ~ + 0 0 PER sue r . 2 9 5 ~ + 0 ~ xwnz 2.905EtOQ PER ANT Z,336E+Ot fl2 ( 5.773€+03 &CUES 1

Page 332: SYSTEM DEFINITION STUDY PART IN

5 1 PEAK &NT TWERNAL CNR w sz ec OUTPUT FOWER 53 6 R 1 0 POUEI 5* LAN0 AREA PER RECT 55 * Y e NOR OF l N E R T I A 56 THRUST PER CORNER w S t HUHBER OF THUUSTERS t

58 CONTROL POUER 59 ANNUAL CROPELLAWT t

60 STRUCTURE NAPS I

6 I CONTROL SVS BASS bP SOLAR BLANKET NASO 15 POWER DXSTR MASS = $6 REEH €LEG R t J NASS m

6 5 I N T V R U C HASS 1 6 ANT NAVEGUIDE NLSS 6 7 ANT KLYSTRON NASS w 6 8 ANT CONTROL CKTS RASS L9 ANT PtlR DISTR *ASS a

70 ANT PUR PROCI:C NASS a

2 1 ANT MASS 72 STROCtURF COST a 73 CONik 11 f Y S COST m 74 SOLAR BLINI iET COST 8

75 POWER ~ 1 s t ~ cosr . 76 RECHaELEC & / J COST 8

77 ANT STRUC COST I

78 ANT U 4 V E G U 1 O E COST I

39 AYT KLVSIRON COST a

80 ANT CUNTROL CUTS COST t

81 ANT FUR DISTR COST I

8 2 ANT PUR PROCLTC COST m

8 3 ANT COST I

G* NO OF FREIGHT FLXGNTS t

. 8 5 CREW Sf %VICE NO OF FLTS 86 OTS COST t

8 7 TOTAL TRANSP COST t

19 RECTENNA COST t

8 9 tONSTRUC710N COST 90 INTEREST PU4;%2 CONSTR 8

91 LAtXTUDE AREA F A C i ' R t

9 2 TOTAL MASS a 93 TOTkL COST 34 COST /KHE t

95 CoSTrKUH

a Y 0 I Z 6 U 0 L l N U GM TOTAL nz KG-nz NEUTOWS PER INST nEGAblATT TONS TONS f ONS TONS TONS 1 ONS TONS TONS TONS TONS T ON5 TONS TONS BILLXOW B i L L I O N B I L L I O N B l L L I O N B I L L t O N B I C L l O N B i l L X O N B I L L I O N I 3 1 l L l O N B I i i l O N B I L L I O N B l l L f O N

B I l L l O N B l L L l O N B I t L I O N B I L L I O N Z I L L I O N

TONS B I L C I O N t YXLLS

ORIGINAL PAGE Bb mPooRQvm

l . *S&E+84 ACRES 1

L EN 1 LBN t LBN 1 1 nu 8 1 0n j LBr4 1 L Br4 1 L l n 1 L BN B LPII f ten 1 C B ~ )

L B n I

Page 333: SYSTEM DEFINITION STUDY PART IN

MTEWY* D~~RETER VALUE • I .wae+sa I Q L E T I a R E f 9 l T S

L L I s & T E W w T EFF IC IE IL tY z W T CELL f F f I t t E Y I S SASCC C B m E & S t a EfFY G S L U u E T FACTFHS ' S W S I - W - R 6 WET EME.6'1 COWIl EFFY ? AREAUtSf EFFtC1LYCY 8 hMTEww* W E 1 DtSTR EFFW ) & E l = - I F EFF tC tEWtY

10 IDEAL SEAN €FFEClESCY 11 UET BE- E f F l C I t l i t ' 1 1 2 IHT fRCEP1 E F F I C t E Y t Y I 3 REClEU#& R f - M : EFFICIEWC 1 4 H E 1 e F LtWU EFFY 15 W-TO-DC EFFiCtEUCttr 1 6 OC-I@-GRID E f F I C I E n C V 1 7 OVERALI PHYSICAC EFFY 18 &RE& ECFECftWE E f F V 1. BLANKET AREA 2 s ~ s r y w r c a e l & 2 1 REWi i tEW S I E L O l E fOPC. 22 xrpm REQUIRED FOR SL su 2 3 1PANSfl lTTER POYER TAP€* ZI R f f E t V E t AYC/PEAt RAT10 25 f H J R AVffPEAX R4T IO 2 6 bEAn SPREAD FACTOR 27 I l A b I A f f D RF PQYER 2 8 bE&R Dt&RETER t 9 B E I R &PEA 36 AWEILCE B E I N W Y E l MWt 31 PEAI BEAS t m r t m t l v 3 2 PWEU tn akin BEAR 3 3 SATELLITE LEN6fW 3 6 NWIIBER OF F A Y S 3 5 XRT* PgR D ISTE LOSS 3 1 &DJ 8AY USEFUL AREA 37 BAT 511E 31 SPS AREA 3 9 REAN 50L4R 1NSOLATIUM CO S O i i I CELL OUTPUT 61 ROTARY JO IWf CLRRENT 'A' C2 ROTARY aOIHT CURlENT "6" 4 3 TOTAL PlOCESSEO POYER 6 4 TOTAL KLVSTR0td INPUT 4s TOTCL KLYSfRON OUTPUT 4 1 UUtlBEU O f CLYSTPONS 6 7 ? M E KLYSTROH PKKXNG DEN 6 s nrx RF POYER DENSITY C9 NURBE* OF 5uB1RffhYS 5 0 REETEHNA AREA

a - sr*e-a1 1 . 4 O f E - l l 1. S I C - a 1 *.3*9E-U1 ~ . 3 * 5 € - 0 1 1 .Z.LE-a1 ,* 3'Zes-Dl S.&llSE -81 8.112E-01 3.158E-B1 8.SSSE-01 3. 5 1 2 E - a l 8, 92bE - 8 1 a. 3 4 I E -B1 i.O*SE-81 S.@LIE-81 7 . BCBE-Q2 &.5~7E- I )2 1.851€+8i5 I 2 t 2.5*9€+# ACRES B 1 .000€*08 EN @ b . Z l * f d l (It I Z.364€+81 0, 9 . 3 i t E + % 8 DB 1 .@00€*01 01 2 .86 iE -O i 3.9%3E-Z1 I .4SOE*OO 4.951E*03 l 6 E C A U t T 1 + 3 1 8 E * 0 1 I 8.189€+60 I 1 1 I - I b C E - 0 8 HZ I 3.37@E+WACRES 1 5.552€*00 UYtCII2 2.208E481 nWCW2 1.207E*03 t lECAUATf f . Z i O E + O l BAVS 2 . 5 6 S i +02 BAVS 3.?t??E-02 1 .196E+05 HZ < 1.612E+OZ ACRES 1 6.6BdE*02 nETERS 1 .113€*02 K82 1 . 5 1 9 £ * 0 2 6 Y $-&ZSE+ZZ GS 1 .399E*05 A3PS t . 1 5 7 E + 0 4 AnPS Z .S63E*03 RE6AYATT 1 .456E*U I ?%EGAY&TT I .CO7E*d4 6 k 6 A Y A l T l.9SSE+OS 3 . 3 9 1 € * 0 1 PER SUB 2.2 SSE +O l KU/N2 7 .261E+03 PER ANT :.67ZE*OI fl2 i 1.89&€+04 ACRES 1

Page 334: SYSTEM DEFINITION STUDY PART IN

It M A @ & W t T * @ l l l l l t M U # Oiltwt CBrrtl e eS CtkO eW€II e I* t*w a a t ~ rea t a w SL rn*- OF IC# tT th l a t & l t ) l T *It CII.l#l s t W R I ~ et t n e e s ~ ~ r ~ sa ~mtret POYII IS Arl) lUAl C I I O C I t l A W t be S~&UC~UI€ BASS a 11 t O W t t d C f *S # A t 5 az SBIII ~ i a n u e t MASS • IS ~ B ~ C P ~ t f t u BASS !a

rr B ~ Z B 1 E ~ E C l i d &ASS a

hs ~ n r j trut nrrb a 11 AM^ e a r g ~ : ~ t e ~ n ~ f f I

4: ru1 & C ~ S ~ P B W RASO I

$a m e r e w r e a i c t r o nasr 1

C 1 L N t C U I D l f f l R A f f FB rnr r ~ s . s . a e t r r c nrss . :t ant R=+ .> • t: s t t i te~ t te r CBST 1

:s C B # ~ U O L HTS c a r t I

:r ! & s i r e I t * M % E t C O s t - t S Cbili(l F l % l C C t t L t m

74 ?4f fHLLl f . @ l d C P Z f 1

t f AWt f t C U C COff i d A N i MAYtEU1PE COST 1

t v i ~ t KC~B~CBI I COST 8 B LWT C b N f R B I C f l f COST w a t ant PSI ~ t s t e COST rn 8: r ~ f BUR P I G C ~ ~ C C Q S ~ a

a:, rnt car t a a i nQ OR t f f i t G n t F C t G n t t rn

. e i caru s t s v t e f na OF F ~ T S - a. QIS CO%f a: t a t r ~ trrnor c ~ s t 88 PCC:CNNI eo5t B* C Q N ~ I I U C ~ ~ ~ W COST t

t3 f+i;-lif: PUCiNC CQHfrU $1 1 4 t t l t t t l k ~ e f r f r t ~ o t t

$3 t n r r ~ mass I

9 3 t s t r i cast t i C O ' 5 f t T U f 1

*S ri latlrun a

i.)ltt*@I UUtclZ 1.1b')€*8* CYCItYt t . l a 2 l t a t m for*& t .~SSE+QI nZ t . t a i ~ + t * ue-nt ) . l S l S * Q l ULYT#CI t . l l B f * 8 t ?El 1-T 1 . 8 e a f r t ~ nEeAwrtl t. t19geat tons s.arrf t iat taus 2 . B*SE+QP teus i . 4 9 2 f *@I tWf t . a s : r * o d TONS I .Q%*C+O2 r a w s S . Q Q O E * B ~ t e w s I. J ~ z E + Q S :GUS L. f%aE*t ! r toNf i .B5c i .PB IONS I .Qb:f * 8 1 TDUf Z . O S ' t + O f t 0NZ i . % i ? E * Q I ren t ~ . + * : r - o t ~ ~ i i t ~ b i * . i * 6 E - R 2 q l i C I O l l S.bl:t @ I l I 1 @ & r . t 5 a E - e : s t ~ i t a w ~ . i ; t r - ~ - e l i t t m s.*esr-et ) t i i t e n 2.55SC-QI @ t C i t W ~.LS\E-OI & t i t I a n P.s:,oE-@~ I t i t t o n I.OB:E-OI B t L i t e n s . i t S C - a t B ~ C I ION i . ? l i f t Q 0 8 t i C t B W 3 . % t l i + Q Z I . * r * C * a I 9 . f F t C - Q i B t L t i O * & .@F?f re8 8 l i i t B W 1 . 6 1 1 f * a P 8 t L i l O N I , i l d C * O B m t i L l o W i 1f:C+PB B t i C t B N I . a t s f *a i l $,9IBE *i l l TOUS z . a : i ~ * e t a t t i l a w 2 . a t * € * a 3 * * . s t n g i i s

Page 335: SYSTEM DEFINITION STUDY PART IN

1 LIGNT X N t U t E F F I C X E L l t V z nrr CELL E F F r c r r n t v 1 ehstt CMIVEIS~~~~. EFFV 4 e i A w u f t FACTBRS 3 BUS f -SQ-R 4 YET ENERSV C W V E F F V 7 A R f A M r f E EFFXCIECICV 8 ANTENNA POUER DXSTR E f F Y V N L t RC-RF E F F I C I E N C V

16 1 D E A i 8 E A R EFFICXEWCV 11 W E t BEAM CFFIC IEWCY 12 IWtERCEPT E F f l C I E N C V I f RECTEHMA R f - D C E F F l t X E W C 16 NET RF LXWY CFFY 1 5 bC-TO-DE E F F ! C l E N t Y I 6 OC-TO-GRID SF F I C I E N C V I 7 O V E P L t i PHYSXCAL EFFV 18 AREA C F F f C T i V F E F F I 1 I B L I N I C T AREA 2 0 A N I f U N A D I A 2 1 RECUIPEO S IDELOBE SUPPR 22 t recu UEOUIPED FOR st su 2 3 T ~ t Y S ~ l t T E R POUf f f TAPER 2 4 RECElYER AVG/PEAK R A t X 0 2s x n r a AWG/PEAK RATIO 2 1 BEAM SPQEAO FACTOR 2 7 R A O I A I E O RF POUER 2 8 BEAN D l A m E t L R 2 9 BEPM AQEA 30 AYERAGE x r n P O ~ E R B i n s s i PEAK w a n XHTENSITV 32 P O l I f R XN W A I N BEAR 3 3 S A T f L t t T E L E N G I H 3 4 eunecu OF BAYS 35 X H t R PUR O I S T R LOSS 3 6 A D J B I Y USEFUL AREA 3 7 BAY S I Z E 38 S F 5 AREA 3 9 HEkH 5 0 L A R I N S O L A T I O N 4 0 SOLAP CELL O U f P U t C 1 P B l l P V J O I N t CURRENt -4' 6 1 RBTASV J O I N T CURRENT "8" 6 3 TOTAL PROCESSED POHER 44 TOTAL KLYSTRON I N P U T #.I TOTAL KLYSTRON OUTPUT 6 6 NUBBEE OF KLYSTRONS C 7 HAX K l V i T R O N PACKING DEN 4 8 MAX RF POUER D E N S I T Y 4 9 NUHBER OF SUBAPRAVS 5 0 RECTEWNA AREA

a. f 7 5 E - 0 1 1 .(LOlE-BI 1 5 4 0 E - @ l 9 . S t t E - 0 1 9 . 3 1 5 E - e l 1 . Z O l E - e l * . 3 7 0 € - B l *.6*2E-O1 8 . l l S E - G . * . 7 0 f E - D l V.OO9E-01 V. 5 5 6 C - 0 1 8. t S 5 E - l ) l O . 4 3 9 E - 0 1 6 . 1 3 2 E - 0 1 s . w a E - o 1 7. iS:E-oZ 6 . 6 9 2 E - 0 2 1.05:€*08 I 2 t Z . S 5 9 E + B i A C l E S 1 .l. ZOOEtOO UR a 7 . 6 5 7 ~ - $ 1 wx 1 2 . 4 9 Z E * B 1 88 l . l 0 3 E * O i D I 1 . 1 0 3 E + 0 1 D 8 2.Ol:E-OI 3 . 6 0 S E - 0 1 1 . 4 8 7 E * 0 0 6 .933E 4 0 3 HEGAYATT 1 . 1 Z 6 E * D l K H t b.tVVE+OO HE 1 I . 9 6 3 E + 0 ? H Z t 2 . 4 6 2 ~ a 4 ACRES 1 6 . 3 5 % ~ *00 nulenr 3 . 1 8 5 E + 0 1 H U I C R Z 1 2 4 6 E * 0 3 H E 6 A Y A T l 3 . 2 1 O E * D l BAYS 2 . 5 6 % E * 0 2 8AVS 3 .076E - 8 2 4 .O96E+05 HZ € l . B 1 Z E + O 2 A C R E S 1 6 . 6 0 0 E + 0 2 METERS 1 . 1 2 3 E * O 2 b'R2 1 . 5 1 9 E + D Z 6 Y 1 . 8 1 9 E + 0 1 GY 1 . 3 8 5 E + 0 5 AMPS 1 . 1 5 4 € + 0 4 AWPS 2 . 5 6 3 E 4 0 3 BEGAYATT 1 . 6 5 6 E + 0 6 B E G A Y A T f l .CObE+OS REGAHATT 1 . 9 5 5 C * 0 5 2 - 5 5 Z E * 0 1 PER SUB f . 6 9 9 ~ + 0 1 rum: 1 . 0 4 6 € + 0 4 PER ANT S . J 0 4 E + 0 7 8 2 f 1. J l 5 E + @ ~ ACRES 1

Page 336: SYSTEM DEFINITION STUDY PART IN

%I ~ t r u met tnttert rw s t Rc wtwt mmtt BS U U t 8 m S R f* L l W I A t f A f L t REEF s t ,re MII w t * t t t t & I& t t a e u s t c t r c o u ~ e S? W l t B t R QF t U t t t S t t U S I& CDWtROl P W f R m

JI mwri +ro+rirrwt aa s t w ~ t u a e n A s s 6 1 C ~ W ~ R Q L svs nras s 12 SOCAR ~ ~ A ~ K P T nrss 1s wet OISTR erss ra m e n r c t r c 1 t3 #ASS &% & H I j l U U C I A S f L

&$ ANT * 4 v t G U t O t MASS IF ant ILVSTP~N R A ~ S I

i a L N t t e k t P O 1 E l T t 1 4 1 s 1) LNt PbIU B I f T R &ASS rn :a ANT PUU r e t t $ t c & a s s : t A&; HASS 7 2 STPUEtUCC C D I f 7 3 CBHIUOl fV% S o f t L

t* t e i r l E ~ A N K E ~ COST tf ~ e m r R E J ~ U t o f t 7 1 RCCHt f lEC I t J EDST s

7 7 ANT StUbC COST 1

ta a n t urrrcuter COST :* AYT k iWStUQN cast L

@a ANT E ~ N T P Q ~ t t t f COST at rnt ~ u c o t r t i cost &t AWt FUR PttBCLIC CbET ea r ~ t cast 8* NO BF cUf tGNT FL tGWt3 8% c t ~ u S C e r s t C nu OF f i t s rn a. OTS ca'it 8: t 8 t k i TRANS^ CBSV 88 B(CtC?iMI SBS1 e

ee C B M ~ ~ P U S I ION enst s

$0 t w r t l t r t Q U ~ ~ N G CbWstU I 1 1 4 T t t U P f * P E A F ~ € t O U t z r e t r i n r s s * $ 5 1 0 t r i ZQSt rn

JC CBST fkUC = 9 % CUSl--kUN s

@*S&S€*06 L8# I . Z 9 9 € + l t i l U *.sett*es L I I I * . 9ase*e t ill S.?S*E*€M i B I I P . s r + ~ + e s i e n I . S l f E * O l 188 1 , S?O€ *B? LPR Z.*r.€*Qt t an O. 3:a~ + e i inn t . t ? t r + ~ ian I . L t a t * O f LIB i . O * 5 & * 0 f i a n

Page 337: SYSTEM DEFINITION STUDY PART IN

1 L f W T ZWWT EFFIEIEUCV 2 )#I CELL EFFlClEWCV 1 1151 - CWVE (tSZDX, E FCI 4 S&A*ET FAETWS 3 llSS x -59-R 6 MET EUEIGY €@MY EFFY t AREAYESE EFFXCIEYCV a &mfnP(* ~ ~ v f t PISIR EFFV % NET DC-IF ESFIC1E)ICV

la EDEAt B E A l E F F t C X f m V t i WET a an EfFrcrwcr 1 2 1MfERtEPT EFFIC IEHCI 13 R L C ~ E ~ A RF-BE E f F : t I E m 16 n E r i~ i tnr f F r r 1s DC-Tt3-be E F F I C I L M V 1 6 BC-TO-GRID E f F l t l E n E V 17 OWERhtL PWVSICAL E f FY 18 &PEA EFFECTIVE EFf Y 1% BtAWCET AREA Za A ITCWA D I A t l *EQUlPfD SlBfLOBE SUPPR Z L tAPEP RfPUtRED FOR S t SU 23 T R A N S ~ I T t E f f POiiEE TAPER 2 4 @€CEtVEt AV6tPFAK RATIO 2 S XHTR AV6,PEAK RATIO 26 BEIR SPlEAD FACTOR 2 7 RADIA1EO RF POWE 2 8 BEAH DIAWEIER Z I BEAR AREA SO AVERAtC BEAH PMSER REMS 3 1 PEAK 8 E M INTENSITY $2 PDUER IN nriw BEAR 33 SATELLITE LENGTH 3* RU~DER OF 8hVS 35 xniiz PUR DISTR LOSS 3f ADJ B A Y USEFUL AREA 37 BAY S IZE 38 SPS AREA 39 HEAH SOLAR INSOLATIOH 5 0 S!lt A R CELL OUTPUT ~i P O T A R V JOINT CUUUENT -A- 5 2 POT&RV JOINT CURPENT "6' 6 3 TOTAL PROCESSED POYER 4 4 TOTAL KLVSTRON INPUT 4 5 tarfit KLYSTRON o u r p u t 5 6 NURBEP C f KLYSTRONS C7 U IX KLYSTRON PICKiHC DEW G 8 HAX PF PCUER DEt4SITV 4 9 NUHBER OF SUBAPRAVS 50 RECTENNA APE&

i .S t *E -B l 1 .&BiE-BI 1 J IBE-P I 9. S*%E-Bl $.3%fE-Bl 1.2116-81 9. J z e f - $ 1 I * *UUE-81 8.1 l l E - 0 1 9.7b4E-81 I - O Q I E - 8 1 9.bSSE-01 a. ISLE-O l 8.55bE-81 b.222E-01 1 .B lLE-01 7.257E-02 b. 790E-02 1.052E+0& 112

.1.400€*00 UW 2.615€*@1 Db l . z t f E + 8 : DS 1.215E+BI Dl! 1.9&4E-U1 3. JGOE-01 1.5 JBE+00 &.9JOE*OS HfCAYATT %.93.?E*@O KW C 4.172€+BS HZ I ?,lS8E+O? 112 C 1.91SE+O4 ACRES 8 8.09,r * 0 0 I(UIC112 6.120E+Ol nuf lcn2 b.ZIOE*OS REGAYAT1 3.2 iJE+Ot BATS 2 . 5 6 8 E c 0 2 BAVS 3.118E-02 C.096ErOS * I t 1.812€+82 ACRES 1 6.600£+01 8ETERS 1 .123€+02 KHZ 1.510E+Ot 6U 1 . 8 1 9 € * 0 1 GU I . ~ ~ ~ E + o s LnPs 8 . i 536 +04 A r p s 2 .563€+05 HtGAYAfT 1.65LE*O4 PlFGAMATf 1.407E+OC UESAWATT 1.95CE+05 2.024E*01 PER SUB 1.3C:E+DI K W H 2 1.*;1F+Ok PER ANT 4 .356€*07 HZ ( 1.8?7€*01 ACRES 1

Page 338: SYSTEM DEFINITION STUDY PART IN

st mm mt tn~rrrrr m I8 uc miltttt Wt s t u t u s H I- LIII p e t met I

IS *re l l ~ n w tartti s t ~ w t l PER t ~ t I

i t Wtt)IW& w F U U r r t T t t l 9

ta COntRhl ?Wf R st *WAC CiCitPsLLrnr * 1) t t l U t t U I l 14%) i; c m t t e i s r ~ XI • at S o i l * I C i W f t t AiSL a i s POHE* ~ : s t e nrsr 6% BECU 8 E ~ E E era #ASS LS ANT qteue nrso 6% mt w r v g a u r o r nrst a t ANT K l f S f l O U I A J f m

40 ~ N T e w r r a i c r f s nmt 6% &#t ?We DIS tR & a f t te AWT P I ~ C ~ T C natt 3 8 &Nt 1 i f S a

t 2 S t t U f t u l E CBSt ?a :bnta~& ffs LOST ?S P B i & I B&&UK€t C 8 S l t ) COY*& B I f t R COST s ?l A f r M l f i f C t i 3 CBtT If i N i d t t W CDSt - ?a A ~ T u & v i e u i e r corr t i rnt t t i v s r e a n COST 10 ANT E ~ N T ~ O L ~ t t ~ COST 81 ANT ? U I D l S t R COST 82 LMT PUU ~ u o c t f e COST I

0 s ANT eosr * 8% wo BF cei t ~ n t F L I C ~ T Z - 8 1 C t c U B f D v t C E WO 8 1 CCIS 81 O t S COSt 8

et T B ~ A L t1trk5P cast 88 l tC tCHN4 east rn a* i @ N S i ftUC t t@N CQf ? 1

*Q I M l t R E S t PUUIMG CQMStt = i t L ~ T ~ X U O Z AREA F ~ C T Q R %

9 2 TOlAr B455 $ 3 tQ fAL COST 94 L a s T r l i u i a .% C63t/liU?( m

'*om U Y I I I I +I8 S Y I k IWI **t Qw TOtliC r# ma +t% It&-ni +(I: C#YtBm +et ?Ell &WIT +I2 n€l iAYAtP *&I fD#S *t i twt reg tens + @ I 10nS *as l P E S re2 T W S *8i l@NS +IS tWiJ + O I t M P f * I f fQNf *e f tam +BJ taws

taws -el B t i t t O l l -82 O t l C I Q L ) *88 8 l C k t O l l ,-IZ r l k t l m '-RZ BtCCIOW ' - a t B I L i t a n - e i B t L i t O U '-@I B I L L I B U . -at b t L L I B N : -e l SILCIQW : - a t @ t l L l B M r Q Q I t i L l O N

. *a2 *el -01 I t L L l O W

'400 a t i i l e n *QQ I a i C t Q N *PO 8 l L L i O N *QQ r l l i t O N '*@€I

4 0 % tans t*OL I l L l l Q N L e o 3 b : * E l NILLS

Page 339: SYSTEM DEFINITION STUDY PART IN

1 t 1 W T XUWT EFFlCIEMCV Z wET CELL E F F I C I E I K Y s BASS& tanrmsgm- EFFY

DLANffET FACTOtS 5 B?lS 1-50-R 4 WET EWERG* CQtltl EfFV 7 &REAYISL EFFIClE@CV I h N T E # U POUER ef t t i t EFFV 9 YET Df-PF E F F l t l E W C Y

f a IDEAL e E A I EFFICIEHCY 11 YET B E M I E f f I C f E W ' l f 2 t#TERCEPT E F F I C I E l i t V 1) ~ECTEUWA RF-OC E F F I C i E n t 15 MET RF t tnr EFFY l S DC-TO-DC EFF IC IEhCY 16 me-to-GRID EFFXCIENCV I 7 OVCRALL PHYSXCAL EFFY 18 AREA EFFECTIVE EFFV 1 9 BLANKET AREA h e ANTEWNA D I A 2 1 REQUSRLD S IDE lObE SUPPR 22 TAPER REQUIRED FOE SL Sti 2 3 TRANSf@t t fER POWER TAPER 2 4 UECEIVE I AVE0PEAU RAT10 2 5 x n T u AVWPEAK R A T I ~ z 6 B E c n SPREAD FACTOR 27 RADIATED RF P W E R 28 BEAH DIkHETER 2 9 BE1R AREA 3P AVERAGE BEAR POUEE 0E&S 3 1 PEAK BEAH tWTE#SITV 32 POUER I N HAIW BE&# 3 3 SATELLITE L E I I G r l 3 4 MUnBER OF BAYS 35 xnie PUR IIISTR LOSS 36 ADJ BaV USEFUL AREA 3 7 B A r SIZE 3 8 SPS ARE& 39 HEAN SOLAR INSOLATXOW 4 0 SOLAR CELL OUTPUT 4 1 ROTIRY JO INT CURREWT *Ag 5 2 ROTARY JO lHT CURREWT "8' 4 3 TOTAL PROCESSED POWER 4C TOTAL KLYSTRDN INPUT 4 5 TOTAL KLYSTRON OUTPUT 46 NUUBEl Of KLYSTRONS 4 7 n A x KLYSTRON PACKING DEN 4 s nrx aF POUER ocusxrv 41 nunBEtt OF SUBARRAYS 5 0 RECTENNA AREA

8 . 5 t t f -61 1 .*e iE-a t 1 * 3 i # E - l l 1. 3 t t E - 6 1 t - 3 9 5 E - e l l . Z B l € - 6 1 *. St*€ -ex 9.4BbE -11 8 . l l t E - l 1 9 .8OfE-Bt t . f )97E-81 9 .702E-61 8.979E-01 ~ . ~ s o E - o ~ 6.300E - 0 1 6 .111E-01 7 .33 tE -62 6.LTSE-02 l .OStE+Oe I 2 i 2 . S 9 W + H ACRfS I

.1.600E+80 f fB t 9.94ZE-@l RE j Z. tZZE*Ol DD l . ZPSE*QI DB 1.299E*O1 DB 1 -9Z9E-Qt 3 . l 7 6 E - b l 1.563E+OO 6.93OE+Qf N E C I Y I T T 8.18OE+QO Urn i S.S18E+~O Rf t 6.194€+07 8 2 t l.SJlE+QI ACRES I 1.017€+01 M l f f U Z 5.271E+01 HU/CIIZ 6.304E+O3 HE61YATT 3.2tOE+01 BAVS 2 .568€+02 BAYS 3.123E-02 C . B P ~ E + O S nz t I .OlZE+BZ ACRES I 6.&OOE*OZ RETERS 1 . 1 2 3 € * 0 2 KIiZ 1 .519€+02 6 M 1 .619E*01 6U ~ . ~ B ~ E * o s AnPs 8 .158€*04 AHPS 2 .563€*03 REGAYATT 1.655E+O4 REGAUATT 1.407E*O4 HEGAYATT 1 .954E*05 1 .630E401 PEE SUB I.CSSE+Ol KYfH2 1.859E*OC PER ANT 3 . 4 8 4 € + 0 7 MZ t &. lO lE+B3 ACRES I

Page 340: SYSTEM DEFINITION STUDY PART IN

st -*a AUT T W E ~ L ~ ~ l t - sz rs mtwt WBsR s t ~ t t m m a e rn H LA- AREA t f e R E ~ B • JS =Ym llOII W X ~ t T I b Sb T i l e U l I t E l CetnEa 37 USNBER OF TURUSTEUS s@ f O I l l t U L tOILf R e st UI1%LAL m P E i i l r l l 1 60 f t l l t t ~ f t t ~ f NSS .i

I t CBnTROi S Y f RAfO I

sa PDLAR ILAWUET N ~ S S S f feuft mtstr BASS .I

64 aicn i E ~ E C a#& #IPS rr MT ~ I R U C ruse II mt u & u r ~ u t ~ r mro rn I ? ANT tLVSTRMt MASS I

ill A#T CMlTtOL S I T S RASS I

69 AWT CUR D f S f l BASS I

10 ANT P Y 1 PPOC&TC NASS 7 1 *nr NASS = ?Z S f t U t l U R E COST t 3 CDMtROL SVS COST I

74 SDCAI b iA* lET COST I

75 POUEI DfSTR COST I

?& HFCMlELEC R f J COST 77 At41 STRUC COST .I

?8 A N I UAVfGUtRE COPT I

?9 ANT KtYSTRM1 COST 80 ~ N T C O ~ T P O L CUTS COST I

a i AWT P ~ R DISTR COST 82 ANT PUP PPOCtTC COST I

83 ANT COST = 86 MO OF FREXGWT F l l C N T S I

- I S CREW SEtVlCE NO OF C l T S = 86 OTS COST I

a? TOTAL TRANSP COST 88 RECTENHA COST I

89 COXSTRUCTXO~ COST I

90 INTEREST DURING COWSIR 9 1 LATITUDE AREA FACTOI 9 2 t o l l 1 NASS I

* 9 3 TOTAL COST m

96 COSTfKUE = 9 5 COSTfUUH I

1 Rum i e Y t l l Y P

OY TUTh l ' nz I t6-lla

WEllTQ*IC ma IYST

' N E W A T T tam

1 T o m T W t t TOnS

I tm taus

1 T a n s b T e n s s TONS I TONS r TONS , TONS I tom

BILLXOW 8ILLtDL1

1 B f t l X O W ' O X l L I Q # ' BELL IOW

8 I L L I O U B I L L I M ) B f LLION o t i i t o n I t L L I O # B l l L I O N

I D ILL IDM

I b I l L I O N 1 D I i i I O N I b lLL1ON I 8 tLLXOn I ax i i ton I I TONS

8ILLIOW 1 *

I 1 11s

Page 341: SYSTEM DEFINITION STUDY PART IN

k f W t 1-1 I S F i t l E W t Y t&T C l t L E C * l C & f l C E Y i MS2t FMIYf e S f W EFFY (I Ik*WLEf f *CfsSf s tflf f -3Q-R 4 &€f I U E R S Y CWIY f f F Y 7 A t f r U t f i fSftttfMS% I L % T f # n A FWEP D f f t l t f t C t * SET BC-ltf l i F C t C l € + K V

f a t a ~ ~ t &Ern E F F ~ C ~ E C I C Y 11 HET BE** m e w t t Y e v f Z 1 W T C R t E P t L f F f C R L U C W I 3 W C t C W A W - B t f F C E C l f # C t* XPt R f t t N L ECFV 11 D C - I @ - W E f C i C I C r n V 14 I t € - I O - S C k B E F T f C I E ? K Y a ? ~ u ~ i t ~ t k PnrsfCXt LFCV 18 I t E A E F F E t t i V E E F F V f * I t A W l f ? l t t A zs A u r e n k n e z k rt r i a u s e m s i t x i o w surrt 21 TAPflt f f f e U l K f D FOB 51 5tt 23 T t C H S R l f T E B BQUfP TAPER ZQ R E C E I V E R AVS+PCAK # A 1 1 0 TJ rnrs r v e i P r r r r r r t o 24 B E r n S P l E i D FACTOB Zt R a D I A T L D RF P W f R 28 O f i n B X i t 4 E f E R 2% b € h R AttEA 583 A Y € % & t E BEAV FOYER @EMS st PZII C f r n ~ W T E W S I ~ V 32 POUtR I N H A l N BEAR 3s S I T E C C l l E iEWGTM a i twnftsa or arvs 35 x n l e PUI D ~ S T P toss 34 A O J B A Y USEFUL AREA S F B r v SIZE 18 SPf h P t 4 39 HElH 5 8 1 A P 1 N S U t I t l B H $0 SOLIP C E L L a U f P u t 41 RBTSPV mint turafwr Or* 42 % 4 1 A R b J B t W f EUURCNT *Dm i s t e t r a eaucEosEn Pauru 64 T O T 4 1 LCYSTUON I N P U T 4 5 f 0 T A t kLYS1ROH QUVPUT 46 NURl f R O f I L V S I R O Y S 6% nrx r i v s r a o N pacftHc oEn 48 #AX PF fUU€R B L N a l t V 4* HURBEP OF S U 9 4 1 3 4 V 5 50 RECIC@HA AREA

@. SF?S-O l I*lbI€-@Z t . t r ~ - t l t s* S**E-$8 t. SS3f -sr 1 . Z l t f E - e f s. 3 t l t - O t 9. f E&f -et &. f&3E-@B *.&f 3 F - S f P ' i e f f - l l % % T S s E - e l 8 - % M E - € + k a.723E-eB *. %at L - O l 6 . t t B f -91 F . Q f 2 f - 0 2 i . V i 4 f - B L 1 -652f *01 II f 2 . 3 t ) f * la l C I f t f & - 8 O Q € + B O E l l 1 L . l t % E * B I R I 1 2 . & l I C * Q t D8 1 . S T B P t Q k DI 1 . 3 7 & € + 8 1 QS 1 *&%SE-f$l 5 . 8 4 k f -91 8 . 5 * i € + O d b,158E*Q1 R E S A Y & f f 8 . O c S f * @ Q &R € i .%)VF+BO 1I1 a S . Q b i & * a t NZ f t .2f&E *81 &C&LS 8 & . 2 6 8 E + O l R U f C I I I 6 . ~ r 1 ~ t 0 1 Rurcnr 6 . ) u * € + O J R f G A U A t T I.:tOE+Ot B A Y S 2.56d€*P2 I b Y S z . :3*€ - 0 2 4.%PQ€*05 W t I l * Q t Z E * O Z hCI€S I.bRBC*DZ HETERS I . ~ z ~ c + o : tn: 1.5t*t+e: t Y 1.819t*@l EY t . ~ s % E s o 5 Ants I . ~ = ~ E * B ; a n P s 2 , 5 6 3 € + 0 3 f l f F A Y A t 1 I . b & Z E * @ C t iEGAWAT1 1.413C*OQ n€GA!dATT 1 .?62E t 0 5 1 . $%Of +DL PEP 5VB Q . ? 9 O t * O O C U J R t Z . $ l f f * O f PER ANT l , 8 5 9 L * Q ? 82 t 7.1156+83 4 C W Z 1

Page 342: SYSTEM DEFINITION STUDY PART IN

31 ?EAU mt TMERAAL WR f Z @e OUTCUT ?OY(ER I

31 a t & @ W € R e s4 IAMB AREA ear t r t v ss -tL llen o~ r n ~ t r x ~ I

31 TWRUfT ? f R CORNER s t mnrcr or rnrurrcrt e sa CONTROC POM sv r n r n * ~ ~ r ro r i i i rn t 8

1P S f t U C T U R f RASP a 4 1 canraot tvs nrss e 1 2 3 0 L A R B l & # U E T &AS& I

ii mbt~r PISTR BASS I)

I* n t C H ELEC R t J RIII &S AWf $TUU€ B A S S 11 AUT U&VftU1Df MASS a 11 rnt r ivstaon nrst I

68 AWt CONTlOL cats m.ss I

13 &#T FUR D I S T R ?US$ t o AWT Puff P l O C & f C BASS I

Z l ANT &ASS I

? Z STRUCTUIE CQST 7 s C O N ~ R O L SYS cast a

7% SOLAR B t A N I E t COS? I

7 3 F O M E l R I S t R COST 16 B Z C H I E L E C U # J C M T I

t t ~ N T O T R U ~ COST . 78 ANT UAVEGUIDE COST 7* ANT U l Y S T R b N COST e

10 AMT CONTROL & I T S COST •

81 ART PUY DISTR test &Z IHT PUi? P I Q C I T C COST I

as A Y T e a s ~ I

8 % Nl? OF r U E t G H T F~lrnTl . 8 5 CREW S € l ? V t C f NO OF f L T S 8 6 OTS COST 1

8 7 TOTAL TRAWSP COST i.

88 R E C f f N N A COST a 9 CONSTRUCTION COST 90 t N T E R E S t UURtNG CONfTR 8

9 I L A T I T U D E AREA F A C t O I • 1 2 t ~ f a t n a ~ s I

' 9 3 TOTAL COST I

9 3 C O S T 8 t b I t 9 3 COStf lKWH

t .$tseroo a n a t S . 6 $ 2 t * l 0 WIlXLilt t * l l l € * 0 1 PY TOTAL I . Z t l C * O ? I t I . Z O l E * 1 4 ts-n2 ~ . I f e € + e l ri€YVOm * . t s e ~ + 0 1 PER rmr t . i e e ~ + a : n c a Y A f t S.?S?E*Ot TOUS S . 8 * 6 € * 0 1 TBWS 2 .04 3C t Q P TONS * . ~ ~ Z E * O I rant 2 . $a&€ +%& T M I S I . f t O L * O Z TONS 1. b2OF * B f TONS 3 * 3 9 8 9 + 0 6 TOWS l . 3 & i E + O I TDWS 1 .O iPE+Oa TONS ~ . O O ~ € * O f TONS S . B S f E + O I T a N S 3 . ? f S f * B Q tans 2 . 9 Q t E - Q 1 B S L l t O l l v . l t 4 C - B z O t L i t 0 1 1 S .&a lE*OO 4 t L L t O N b . 7 2 1 E - O t l f l l 1 O W B . Z ~ ~ E - O Z n t ~ i t a n * . 2 1 3 € - 0 1 R 1 L t I O N Q . & I & E - O k B 1 L 1 1 0 M b.Z'B6E-01 B I L L I O N 2 . 3 3 V E - 0 1 I t L L t l 3 N ~ . I ~ s E - ~ L B ~ C C ~ O N S.C?SE-@I r r i i t o n Z . i T 8 f t Q B B I L L I B W 6 . 0 1 7 E t P Z 2 . Z 9 i f + Q l l . O t 8 E + Q P b I L L I O W 1 . e l t E + B O B I L L I O N 2 . 1 1 i f * B O l I i L t O N l . f T l E * O Q B t L L l O W l . & l t C * O O R X L i l D N 1 . 419S+OO 1 . 1 6 S i * D ~ TONS Z . Z 6 B f + O l BSLCXOH 2 . 1 4 4 € * 0 3 @ 3 . 9 6 f E + O l R I L L S

Page 343: SYSTEM DEFINITION STUDY PART IN

&WT€WA DtAMETtl VALUE - 2.$OOE+OO

u t l U l t a c i trserrttt

i i l m T lHwf EFfSCfE Ie ' f 2 i iET CELL E F F t C I f m Y 1 UI~C C W Y E R S ~ ~ ~ . E ~ F V * l t A m E T FAeTOtS 5 BUS I - S O - I 1 Wir ENER6F G W * EfFV I I R E A Y I S E E F F f t t E W 1 I AntENnA POYIU OISTU EFFV , H&t =- IF E f F t C t E N C V

t l I D E k L & E M E ? f f t t l E R t V 11 M E f 5PAB EFFEEEEmY 1 2 fMTfREfPT I F F X C X E W F i l tEETElQltA E F - 5 C EFFLGtEMC 1 4 # E l RF L I H K EFFV 1 3 DC-TO-Dt EFFICZCNCY 16 DC-10-GRkD EF f iC IEWCV 1 7 OVERALL PHYSICAL EFFY 1 4 A&€& E F i E C t l Y f E F F t 19 BLANKET AREA ZQ ANTEHNA D I A 2 1 REQU1RE0 SIDELOBE 3 U C P E Z t TAPER P f B U l R f D F O I f L SU 23 TUANSRITTEt POYER TAPER 24 RECEIVER AVGRPfAK RAT10 2 s xntr r v c t p r r r U A T X O t i wrn SPREAO FACTOR 2 7 RADIATED RF POYfR t e w i n n r * n r r E u 29 BEAH AREA 3 8 AVERAGE BEAU POUCU DENS 31 PEAK BEAW 2MTENSItV JZ FOUER t N M A i N BEAR 33 S A T E t l f T E LENGTH SC HUHBER 36 BbYS 3s XRIR PLR DXSTR LOSS 36 A b l 8AV USEFUL I R E * s t erv SIZE 311 SPS AREA 39 REAN SOLAR iNSOCATlON 4 8 SO119 CELL OUTPUT 5 1 RUTARV JOtWT CUgRfNT -1- 4 2 ROTARV J O l N T CURRENT *B' * 3 TOTAL PROCESSED POWER QQ TOTAL ULISTRCN INPUT C S TOTht KLVSTSOH OUTPUT 4 6 n u n e E u OF KLVS1RONS Q' HAX KLYSTRON P ICK ING DEN 4& H l x RF POUEP DENSiTY 4 9 HUROER OF SUBAPRAVS 58 RECTENNA AREA

a. s?s~-at I . @ e l f - B l 1% f 6 O E - l f 9 . f $ *P - l 1 9. J1SE-SI l * 2 0 1 € - 0 l 9. f l 8 E - s t 9 .722E-81 @.139€-01 9 .lhS?C-01 %.IQ?E-Qt t . 7 9 1 E - 6 1 8 .966E-01 8. T t t E - O l 6.42OE-81 6 .227E-01 7 .476E-b t 7.QOSE-UI l .OSZE+Ol I Z Z.OQOE*OO kI) 2 . 9 0 5 € + 0 1 DB 1 . 4 3 3 € * 0 1 01 1 . 6 3 4 € + 0 1 DB 1 .%6Q€-0 t Z . t Z 3 L - 0 1 1 * 6 2 1 € + 0 0 6.95CE+03 NEEAUATT 7 .364€+00 UR t 4.576E+QQ H I > I.ZSPE+O? HZ I 1.0SZE+Q* ACRES ) 1 ,43CE+QI RblJCW2 R.PS~E+OI nurenz 6.3&:€*03 NEGAUATT 3 . z t o ~ ~ e 1 aavs Z . 5 6 8 E c t I t BAYS 2.7Cl3Z-02 Q . O P L E + O ~ n2 ( ~ . o ~ z E + Q ~ ACRES B 6.QOOE*02 HETfRS I.l26E*Ot KHZ 1 . 5 1 9 E * Q 2 GU l . 81PE+O1 GW 1 . 3 8 4 E + 0 5 1RPS %.129E+C4 AWPS 2 . 5 6 1 € + 0 3 HEGAUATT 1 , 6 6 l f + O f HEGAUATT l . S l ? E + O C HEGAUATT 1 . 9 6 1 E + 0 5 1.138E101 PER SUB 7 .572E+00 YU/MZ 2 . 9 0 5 E t 0 4 B t R AHT 2 . 3 9 6 E t Q f M i ( S. tZBE+@J ACRES 1

Page 344: SYSTEM DEFINITION STUDY PART IN

s i PEAK ANT THERMAL PNR I

S2 BC WTPUT PWER I

53 SRIO POUER w S* LAND AREA PER RECT w $5 w Y g #On OF INERTIA I

S6 THRUST PER CORNER w 57 WHBER OF THPUSTERS w 58 CONTROL POWER 1)

5% ANNUAL PROPELLA~T I

6 0 STRUCTURE HASS I

6 1 CONTPOL SVS #ASS w 42 SOLAR BLANKET NASS 6 3 POUER OISIR HASS w 6 4 KECH 4 ELEC t I J MASS m 6 5 ANT STRUC HASS 6 6 ANT tfhVEGU1DE NASS 6 7 ANT YLVSTRON @ASS I

6 8 ANT CONTPPL CKTS ASS I

69 ANT PUR DISTR RASS I

70 ANT PUR PROCLTC #ASS * 7 1 ANT SASS 8

72 STRUCTURE COST 7 3 CONTROL SVS COST I

74 SOLAR BLhNKET COST I

75 POWER DISTR COST = 76 HECHIELEC R/J COST I

77 ANT STRUC COST I

7 8 ANT YAVEGUIOE COST .;

79 ANT KLVSTRON COST 80 ANT COWTROL CRTS COST 8

8 1 ANT PWR DISTR COST w 6 2 ANT PUR PROCLTC COST I

8 3 ANT COST 8

84 NO OF FREIGHT FLIGHTS I

. 85 CRfU SERVICE NO OF FLTS 8 6 OTS COST 8

8 7 TOTAL TRANSP COST t

88 RECTENNA COST 8 9 CONSTRUCTION COST 8

90 INTEREST DURING CONSTR 9 1 LATITUDE & @ € A FACTOR I

92 T O T A L nhss I

93 TOTAL COST I

9 4 COSTIKWE I

9 5 COST/KWH

1.616E+OO KWN2 5.48SE+OQ GN/lIWK l * O l + E + O l I M TOTAL 6*062€+0? *2 1.2OlE+lQ R6-)12 i . lSOE+Ol NENTWS ~.XSOE+OI PEP I n s 7 l . ICIE+O2 NESAUATT I .?69E+Ol TONS S.l94E+Of TONS 2.043E+02 TONS 4.49ZE+OQ TONS 2.589€+01 TONS 1.704E402 TONS 1.000E+O3 TONS 1.726E+04 TONS 1.3&3E+04 TONS 1.059€+03 TONS 2.299€+03 TONS 5.037E+03 TONS 4.128E*OC TONS 2.947E-01 BI11IOW 9.19bE-02 B I L L I O N 3.682€+00 B I L L I O N 6,731E-02 B I L L I O N 3.578E-02 B I L L I O N 4.460E-01 B ILL IOY 1.035€+00 B I L L I O k &.201E-Of B I L L I O N 2.338E-01 B I L L I O N 2.483E-01 B l L L I O N 3.475E-01 B I L L I O N 2.931€+00 BXLLION 4.192€+02 ?.395E*01 l. lZSE*OO BILLXON 7.934E+00 B I L L I O N 1.932€+00 B I L L I O N 1.437€+00 B I L L I O N l.QCbE+OO B l L L I O N 1.419€+00 1.198€+05 TONS 2.315Etb: B ILL ION 2.175E+03 $

4.043€+01 H I L L S

ACRES a

1 8

LBN 1 1 BN a L BH 1 L B ~ 1 LBN > . L B n b 1 0 n 1 L e n 1 LBH 1 L o n 1 L El i P i ~ f l 8 LBIl 8

Lbf l 1

Page 345: SYSTEM DEFINITION STUDY PART IN

-ING PAGE BWNa NGf FSLMEb

DIIPD24071-1

APPElYDIX B STAGING COST OPIlMiZaTION

An optimi~ation of the average operating cost as a function of staging velocity was performed as required by Task IV of the Part 111 work statement. The aim of this optimization was to utilize the mass, performance and cost data of previous launch vehicle point designs to develop parmetric trends. These trends were used to deternine the staging velocities that -J. auld result in minimum costs per flight for both winged and bailistic two-stage vehicles. In addition, a launch vehicle with a winged upper stage and bdistic booster was evaluated using the pararnetnc trends.

2.0 METHOD OF ANALYSlS

In order to simplify the analysis and reduce the number of independent variables certain perform- ance characteristics were fixed. Initial t h m t to weight ratios for the first ar. 3 second stages were set at 1 :30 and .95 respectively. High chamber pressure LCH41L02 engines in the 8.9 x 106 newton (2x 106 lbf) thrust class were used for the booster and standard SSME's were used for the orbiter.

The vehicles were sized to deliver a payload of 400 metric tons to a 477 km altitude low earth orbit (LEO) inclined at 31°. All cost calculations were based on a 14 year operational progrim with a 400 flight per year launch rate.

The method used to determine the vehicle sizing and cost per flight for a particular staging velocity is illustrated in Figures I and 2. Stage ideal velocity requirements for the given staging velocity are determined from parametric equations. These equations were derived from the loss data of previous vehicle point designs.

The ideal velocity requirements are used in conjunction with the groundrule engine Isp's and initiai assumed mass fractions to ealculace the propellant masses for each stage. Mass fractions are then developed from parametric equations using the staging velocity and calculated propellant masses. The new mass fractions are used to recalculate thc propellant masses. The sequence is iterated until the solution converges. The parametric equations for mass fractions were developed from the ballis- tic and winged launch vehicle point design mass estimates.

Page 346: SYSTEM DEFINITION STUDY PART IN

\ RESIDUALS a RESERVES

DRY MASS

VEHICLE CHARACTERISTICS

BCOSTER DRBlTER

WP X X A/F MASS X X ENGiNES MASS X X fPSNIASS X X

Figure 1 Sir Gig hiethodology

Page 347: SYSTEM DEFINITION STUDY PART IN

mfGMAL PAGE I;; t~ ma Q U ~

Page 348: SYSTEM DEFINITION STUDY PART IN

p d r i z s and mas fmctkm are &tern- the mt!Ri&t caa be beuekpd. a d aidrams kame fnwn life and r p f m t criteria tsted in 'table I .

cZlrt t !%xneu ftrrt unit c4x&s ate ggeiWmt5fj f m the P $ ~ c ? & CiaBtiollft\jp b e d €In k i n g

Pamaehic €us? Mdd d t o fsr the pmkms @nt design bum& ve&ek When tk9 a m M t c

B'J to ?be TFU cmls and the night wuirrglpnt+ tuc p t o d w t i o ~ and upares cook azc pmat.& for r:te v a k x s hardware ekrnmt~. The p ~ i i m t mts are ea/cubttd using tile

hPFdan factors am3 rat msts ;ir dawn in T a w 2.

Gfx~mr3 .zp?.ntkm %ad systems emst trends -.ww deve/Opd as a fmc t im of the numbot of engines

fn#a *k gwxieal SPS ballistic and wingged vehsks cvst p r night data. The* c a t s are ewhincd with the I;==Ju%re and pmptfant c a t s and to these wctticd c a t s wbkk srr cmnthlly tE@t ntt: depenjent, t o _&2 the t n t d merap sail per flight.

Ttre st*g ~ e t ~ i t y optirni;h;ttion nrns wort pcrfomed for the fdle~ying 2-zt~ge t~hkk cytions:

Option #I 1 bitistic fprwtmhlc' bmstrfr and orbiter with a LC&!tO- - booster and SSME pow-

em! orbiter

Option 4 i 3 Same as $1 except winged rr-citversbic kmster ;id orbiter O p t h g31 Same as # I except hlfistrc recctznblc hn-tt'r and win,& orhrter.

The m i t s sf the staging velocity oplinltrst~on for 3 400 i>i_ehtilear !J >ear program are sttu#n in

E'WW 3. lhe options with ballrsttz reii-\t'r;lbIi. hcxbtc'n tend to optimize in the lfJ.Wi3 to / I .OlY)

Ips stagingvctwity (relative r;l&-tfy) range. F11e v:lnged \chicle optlmum stqtng wlcwte) appears

to be in the to 7000 fps stagtng \elocrt!, range. The \ct>ritl\rlir% to prcqwllat~t ic-t \aristtot~s

were cvaluatrd for a +Yr; and + Z W change 118 rhc liqtttd nii.rh;tnc and liqutd h ~ d t q c n costs as

stated in T ~ h k 2 . The impact of bH2 cost \ t r t~ t ro t~ . on tttr' Option --"I and JT ctmcCpt\ an. jhwvn on Figure 4. The loats of the aptrmum staging \r'Jcxttirs shows a slight increase in the optirnurn

velocity as LH: costs increase. 'Itli. In\plit CIS !X-ll4 sost \ar;attons. shcwn in I-tgure 5. ha- .a dtght

reverse etf'cx-t as compared to incrcawit LIi: ~t )%t \ 791t- icrci13 of the opttrnittn staging \c.locifies for incre=d methane cost show a sitpttt di8cn'as in the optiinutv \c.lcx-it).

Page 349: SYSTEM DEFINITION STUDY PART IN

AIRFRAME

OESlGIY i lFE - 3aiFLIGHTS

REFURB-IYT - 33% OF UNtT CUST EACH 100 CLtGHTS

REPtENtSXUENT SPARES = OF UNtT CQ6TiFLIGHf

ROCKET ENGIN=.

DEStGFi Llf E - INOEFiNtlE

REFURBISHIMNT = 30% Of UNIT COST EACH 5U FLIGHTS

REPLENISHWENT SPARES = 0.51FL OF W I T COSTIFLIGHT

EREREATHER ~ l _ i ~ ~

OESIGAi LtFE INMFlNITE

REFURBtSHI#ENT = 15% OF UNlT COST EACH 500 FLIGHTS

REPLENISHlYlENT SPARES = O.lU% OF UNIT (XISTfFilGHT

TIWc 2. Ulrit RopkM Costs

PRGPE LLANT BURDEN FACTOR

UNIT ?ROPE LLANT COST Sfkg

Page 350: SYSTEM DEFINITION STUDY PART IN

50% INCREASE

25% INCREASE

BAtLtSTIC 2 S A G E

STAGING VELOCtN F f m C REUTlVE

Figure 4 Inipacf of LH 2 Cost on C<~st/Rieh t

Page 351: SYSTEM DEFINITION STUDY PART IN

EfAGItsG VELOCITY FWQX RELATIVE

Page 352: SYSTEM DEFINITION STUDY PART IN

A t i r t ~ ~ orbit transfer ~~ computer codc was igod to sirnulate the d- porsered orbit trader af !Ps gtoauks from low Earth orbit to g e 4 s y r . m orbit. The import- olrtf~oftbis~~incfudtMttuse~&~d@tygrdie9&&~tion of d t r t i o n d m tlte vehieae p+r#5&rough the Earth's dmhw, pn a p W phnt m f a f t i - dmge thrWkg hw Pnd bxpxatioa of a pigt &miai/ektric thxmthg orbit trader per- fomance. A ~ b f o d r d ~ o f U l e i n t c g r t i n g ~ r i t t r m i s s O l a a r a i n F t g r r e C - l .

Earlier studies empbying simpler orbit transfer simulptios codes had bkated that the optimal trip time for the selfgowrxed orbit transfer is about 180 days. The electric thrust r e q u i d to accbm- plizh a t r a d e r in tbk length of tiroe is, in tbe case investigated, not sufficient to control the vehicle attitude when thc orbit altitude is less t h about 2500 Wometera Aocor$ingly, it was necessary to mpplantnt ekctric thnut with addithid chemical thrust during tbe eariy phae of the tnnst'er.

?hbbtrp adyses were d w t & using the orbit M e r d e before the thnating algorithm was into-ted. T k e s h o d €hat the amount of total t h w t required to control gravity gradi- ent was sensitive to various parameters including the (1) seasonal am-Earth geometry, (2) the rela- tiw orbit position cumpad to the sun position, and (3) the spacecraft clack angle with respect to the orbit geometry. m e clock angie is an angle of roll around the sunwan) looking line.) These eulier results were reported in the Part 11 final report %oIewe 5.

The d t s discussed here considered a combination of sun geometry and orbit geometry that is neariy a worst case for gravity gradient problems.

The selected calendar date was January 1,1990. when the sun has just passed mistice. The orbit inclination was 3W with the orbit line of nodes oriented such that the angle between the orbit plane and the Earth-sun tector was nearly maximized. This causes the vehicle to fly tilted with respect to the orbit radius vector such that the gravity gradient is at its maximum value, as i l lw trated in Figure C-2. The moments of inertia of the spacecraft are such that %he gravity gradient torques about the x and 2 axes are large. The gravity gradient torques about the three axes are plotted for the fir, .w of the transfer in Figure C-3 Note that the x and z peaks are separated in time such that t.* gravity gradient torque is high during most of the orbit.

Page 353: SYSTEM DEFINITION STUDY PART IN

F " i c-1 Iaqglatiorr Stcp Flaw

Page 354: SYSTEM DEFINITION STUDY PART IN
Page 355: SYSTEM DEFINITION STUDY PART IN

The thmt it& Mrfm~tt lr law med estaMidtzit a %xiling \alee tm total thrust. E k t m t h w t is

eftarrys e@emfPlf sf &C ntaxifflum ~~aiktrk *&UP [for this raabzis 2fBO t a u t t m per r'rmr). exwet due&@ &a&trr r-Cir)$b ~Iren n s ehtrit. thrust IS r~eilaMc. rtlcnticd thrtlst ts used to augmnt the Wlf tftmt wp t e %he mifirye value. hriq shadow g+eri&e chem.tcai thrast is us as mqui~d to

M t & t-&ic3e attituje. but no tm&ttrkmat irnptkle IS tpplirxi. The at.\titttln af chen tb l thrust

at a b r sped& fSilO %etxmk) npiJiy dihrts the net average total s p w i f i imptlk rr i W w W ia Fima C-4 The tr;rrt?itcr sin~rilatigm mdf: kvrnrutcs r twt tntcgmted a\ crag! etTecttvz

~e- i t l c mtfwkse. This irtzlurdPri the ckk-tutcaf mad rkctrte miking c#3'&ts srld rite losses of rl'fectiw

ant%r h a w e sf mdie~& a& w m<atitatiizfts. j h i s cuniktlattte awzqte 1SP a a setwtrL-t irtdiatut of the ctTectik'tt prft~mtanlr achiewd tt? the syatcttt uctdet these transfer wntittiirnr.

Gravity grdkar roFque C X ~ be dfeligif by chm*ging the spa~wmt;itt clock mgk. l%ew protr;akt) urt&bl~*.l;%n* izptim;-tl stratppi~x hut these wenn not tttwstigated. S~titulatian~ Bere w n for ~ ~ ~ x i r n r t e & 1 Cs rew, fo iamthatc the ctfwb of spar~cntl c l w i mglc and the \ a lw ef thatst

whg, 3%- r w l t s are shewn in F~puir E'-5. For the parttcitlttr ~ t t t anti c~tbit g c ' t ~ t l ~ ~ t r y zon4it-

d, the k r zlrwk aa@e was I,W. t'.itng this clrwi; angle the flmast ceiling a s ~atiitd t o itetenntnc

the ~ t i - 1 whte of the thmst m i f t ~ . 13th was iwnd trt tw em newforts per tlrt?ntet. tRX3

newtons rhstnr. thntst and J W newtuns chzmtcat thntst).

n\e s~'r:ttk iittptt!w tttstrlr?, f o r tllr tint t\ t f f~~ t r ; t t~ r f k11 f'tpuw ('4 n t s lttrtor?, the

e t k t i v c yucttjr' t t~ t r i t l r tthc tnstatttst?~*t*t&.c \.tlurS of rrstt\btitln thrust divided by rtrtat p r ~ ~ p z l l t t ~ t

flow.) I t rfw shn\tx the r.ttt11~kttt z d\t.r.gc qwatic uttp\tte Xote that th t zifc'-ti\z \pc<ifi%-

irnyuisa. gtx-s ttr renl N hen all t hn~s t 1.r pt\\jttitc,i t ; ~ prilt i f ? pradret\t cantn-l or rtitnt~g r~c-irltstlan

p~rirxis. rhe tlinist \utltnp law ts irwd to u,.t taa\tttlttttl ttrrtrbt ttttlc\\ t t t~vc thrii\t t t t ~ t r that t'i

w ~ t ~ d tkl i.at~thd pt>\ity gmdtk~~t. 111 t t i r ~ cc',iw\, the tftfttst ci'tling t\ \toldtcit a ~ \ d tc~tai t t t ~ i ~ s t I*

ittrdc equal to the anteititt r~qiitwti !o i \ l t \ t ~ d dtttttirti'. . . \ Is%. 11' tlw fltr\ist ;ctltttg I\ lcxs than tltr at ;ttlablt i ' l ~ i t ~ t ~ thnt\t then titc ~\a~l,~P11' t.lr.;trtc tllttttt i\ u ~ t l .

This n~.\tlt t1t9-s t\ol represent art c-pttrtrtint tran\let Knit. i~lttrrtttrat~rti of t t ~ r a s>\t~.rrt t> .tn cttor-

n~ortsli) catnplc\ pwblettl, ttttt%t\ tng at It.;t\f rttc r t ~ ~ l ~ ~ # t r ~ g p,tr.tmctcn

Page 356: SYSTEM DEFINITION STUDY PART IN
Page 357: SYSTEM DEFINITION STUDY PART IN

TRACK ANGLE

Figure C-6 Iq, History. Fit Rev.

------ EFFECTIVE Is

- CUMULATIVE tSp

>-I * L L a-

10 40 wl 83 1W 120 IlhSE. DAYS

Figlrre C-7 Sktubtiott Rtwlts kt LEOGEO Transfer

CUM ISP

000

Page 358: SYSTEM DEFINITION STUDY PART IN

Orbit transfer plridrttwc laus Attittide strategies Attitude i o n t ~ d law%

Thnrsttng tlgorithrl~r rrip time and lsp C'hrtntc+il clectrtz b i e t~d tr~~ us. time Cor~ftgttrrtttrtn srmnpzttIznt optitttit;lt~ott I hr r.tngr OI ~ieparttrrr. geotnrtnzs. '.ansiJrr~np ardsnn ~ t ~ r i arbtt irrti'tlt.ttton.