Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids...

12
O O N 9a NH OMe O Me H 2 N O NH 2 Monday, August 16th, 2004 Jeremy May, Dan Caspi, Neil Garg, Jenny Roizen and G. Sekar Synthetic Enchantment with Mitomycinoids Mitomycin C S y n t h e t i c C h a l l e n g e s : • Complex stereochemistry • Avoiding aromatization to pyrrole, indole, or hydroquinone • Sensitive aziridine and quinone • Hemiaminal ether linkage at C(9a) • Originally isolated and characterized by Japanese and American pharmaceutical companies as a consequence of antibiotic screens. • Mitomycins A and B were isolated in 1956, followed by Mitomycin C in 1958. • Mapping the structures engaged the interests of chemists and crystallographers for 20 years. • Early on it was discovered that mitomycins are potent antibiotics (gram positive and gram negative bacteria, and mycobateria) and cytotoxic agents. • Mitomycin C (Mutamycin®) is the most potent of the family, and is also a widely prescribed antitumor agent marketed by Bristol-Myers Squibb Oncology. • Elucidation of the detailed biological mechanism was very challenging, and the original proposal in 1963 by Iyer and Szybalski has been experimentally verified with few changes. • Mitomycin C is also among the first bioreductively activated drugs, and it is selective for hypoxic (O 2 -deficient cells). "The synthesis of a mitomycin is the chemical equivalent of walking on egg shells" History of the Mitomycins Biosynthesis and mechanisms of action: Boger, D. L. Chem. Rev. 2002, 102, 2477. Herbert, R. B. Nat. Prod. Rep. 2003, 20, 494. Synthetic studies: Danishefsky, S. J. Synlett 1995, 475. Kono, M. Synlett 1992, 778. -S. Danishefsky

Transcript of Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids...

Page 1: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

O

O

N

9a

NH

OMe

O

Me

H2N

ONH2

Monday, August 16th, 2004

Jeremy May, Dan Caspi, Neil Garg, Jenny Roizen and G. Sekar

Synthetic Enchantment with Mitomycinoids

Mitomycin C

Synthetic Challenges:

• Complex stereochemistry

• Avoiding aromatization to pyrrole, indole, or hydroquinone

• Sensitive aziridine and quinone

• Hemiaminal ether linkage at C(9a)

• Originally isolated and characterized by Japanese and American pharmaceutical companies as a consequence of antibiotic screens.

• Mitomycins A and B were isolated in 1956, followed by Mitomycin C in 1958.

• Mapping the structures engaged the interests of chemists and crystallographers for 20 years.

• Early on it was discovered that mitomycins are potent antibiotics (gram positive and gram negative bacteria, and mycobateria) and cytotoxic agents.

• Mitomycin C (Mutamycin®) is the most potent of the family, and is also a widely prescribed antitumor agent marketed by Bristol-Myers Squibb Oncology.

• Elucidation of the detailed biological mechanism was very challenging, and the original proposal in 1963 by Iyer and Szybalski has been experimentally verified with few changes.

• Mitomycin C is also among the first bioreductively activated drugs, and it is selective for hypoxic (O2-deficient cells).

"The synthesis of a mitomycin is the chemical equivalent of walking on egg shells"

History of the Mitomycins

Biosynthesis and mechanisms of action:

Boger, D. L. Chem. Rev. 2002, 102, 2477.Herbert, R. B. Nat. Prod. Rep. 2003, 20, 494.

Synthetic studies:

Danishefsky, S. J. Synlett 1995, 475.Kono, M. Synlett 1992, 778.

-S. Danishefsky

Page 2: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Isomitomycin A

O

O

N

OMe

O

Me

MeO Albomitomycin A

X R HMitomycin B OMe H !Mitomycin D NH2 H !Mitomycin F OMe Me "Porifiromycin NH2 Me "

O

O

N NMe

OR

Me

X

OH

X NO

OH

O

NH2O

NH

NH2

O

H

N

X Mitomycin A OMeMitomycin C NH2

The Mitomycinoid FamilyKey Structural Types

X FR-900482 CHOFR-66979 CH2OH

7

65

5a

8a8

O

O

N4

9a

9

32

1

NH

OMe

10 O

Me

X

O

O

Me

MeO

O

O

N NMe

OR

O

Me

X

N

NOMe

O

H

H

ONH2

NH2O

NH2

O

X R Mitomycin G NH2 Me Mitomycin H OMe H Mitomycin K OMe Me

Biosynthesis of Mitomycin

7

65

5a

8a

8

NH2

OH

O

HO

3

2

NH2

1 OH

9aHO

9

HO10

OH

O

D-glucosamine

• Studies in the 1970's and 1980's revealed that 3-amino-5-hydroxy-benzoic acid (AHBA), D-glucosamine, carbamoyl phosphate and S-adenosyl methionine are involved in the convergent assembly of these natural products.

• The basic building blocks have been known for some time, but the specific order of assembly has remained undefined.

• Mutant strains of S. lavendulae allow for the isolation of biosynthetic intermediates (complete set of genes for mitomycin biosynthesis has been identified and characterized).

Sherman, D. H. J. Am. Chem. Soc. 2001, 123, 6712.Sherman, D. H. Chem. Biol. 1999, 6, 251.Sherman, D. H. J. Bacteriol. 1999, 181, 2199.

H

P

OO

ROOR

H2N

O

carbamoyl phosphate

(from L-citrulline or L-arginine)AHBA

7

65 5a

8a8

O

O

N4

9a

9

32

1

NH

OMe

10 O

Me

H2N

ONH2

Page 3: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Reductive Activation of Mitomycin C

O

O

N NH

OMe

O

Me

H2N

ONH2

enzymaticor

chemicalreduction

OH

OH

N NH

OMe

O

Me

H2N

ONH2

OH

OH

N NH

O

Me

H2N

ONH2

- CH3OH

O

OH

N

NH2

O

Me

H2N

ONH2

DNA!-attack

H+

Quinone Methide

• N2 and N7 atoms of guanines in the minor groove of DNA are

primary alkylation sites.

• Alkylation always proceeds in the order shown.

• !-attack is also observed with the unnatural enantiomer of MC,

potentially accounting for the lower cytotoxicity (50%).

• Completely unreactive with DNA at pH 7-8, but in the presence of

reductants, cross-linking occurs in < 1 min.

N

NNH2N

HN

O

guanine

dR

OH

OH

N

NH2

O

Me

H2N

ONH2

DNA

OH

OH

N

NH2

Me

H2NDNA

DNA

reduced mitocene

N2

N7

DNA

Rebek's Stepwise Approach

N

COOH

R

OMeO2C

N

MeO2CCO2MeCO2Me

R

N

CO2Me

R

MeO2CO

Ac2O

KO-t-Bu

N

H2NO

O

OCONH2

NH2

OMe

J. Rebek, Jr. J. Org. Chem. 1984, 49, 5164

N

O

O

XOCONH2

OMe

X = OMe: Mitomycin AX = NH2: Mitomycin C

CO2MeMeO2C

NHFranck's meta Photo-Fries Rearrangement Approach

O

N

O

NH2

h!

O

N

O

NH2

O

NH2

N

O

NH2

N

O

OH

R. W. Franck J. Org. Chem. 1977, 42, 105

14%

MeO MeO MeO MeO

Huisgen pyrrole synthesis

65%

82%

Enantiopure SM

Page 4: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

One-step Bicycloannulation Approach

NH

NPhNaH

COOMe

Br

N

NPh

COOMe

60%

NNPh

COOMe

Br

NNPh

COOMe

Br

N

Br

NPh

COOMe

R. M. Cory Chem. Commun. 1983, 1244

NH

O

THF, 0°C

NaH

SMe2

72%THF, 0°C

IN

O

SMe2

H

N

O

L. S. Jimenez J. Am. Chem. Soc. 1994, 116, 4977

N

NH

O

O

MeO

N

NMe

O

O

MeO

OMe

J. Org. Chem. 1996, 61, 818 Tetrahedron Lett. 1996, 37, 6049

N

O

O

XOCONH2

OMe

X = OMe: Mitomycin AX = NH2: Mitomycin C

NH

N

NH

OH

O

(±)-Mitomycin-K

2-imidoyl indole

2-formyl indole

Intramolecular Radical Cyclization

N

OBn

OMe

MeO CH2OH

NBOC

Br

N

NBOC

OBn

OMe

MeO CH2OH

HBu3SnH

AcCN, toluene reflux 55%

N

NH

O

O

MeO CH2OCONH2

H

F. E. Ziegler J. Org. Chem. 1997, 62, 1083 Tetrahedron Lett. 1998, 39, 2455

N

COOEt

NCPh3

Li

D N

NCPh3

COOEt

N

COOEt

NCPh3

SnBu3

D

MeLi

- 65 °C

PhSeCl

80%

E. Vedejs J. Am. Chem. Soc. 2002, 124, 749

N

NCPh3

COOEt

D

Li

N

OMeBr COOEt

OMeO

Bu3SnH, AIBN

toluene, heat

N

OMeH COOEt

OMeO

OMe

OMe

N

O

COOEt

A. F. Parsons Synlett. 2002, 1431

44%

N

O

O

XOCONH2

OMe

X = OMe: Mitomycin AX = NH2: Mitomycin C

NH

(+)-Demethoxymitomycin A

Anionic Cyclization

Enantiopure SM

H

7.3 : 1

Page 5: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

N

O

O

O

BOC

O

Miller's Transannular Cyclization

5 mol% HNO3

MeOH, 135°C 81% N O

OMe

N NH

OMe

O

S. J. Miller J. Org. Chem. 2003, 68, 2728

N

O

O

N

O

O

TiO-i-Pr

O-i-Pr

N

O

Ti

O

O-i-Pr

O-i-Pr

MeO MeO OMe

N

OH

OH

OOMe

c-C5H9MgClClTi(O-i-Pr)3

O2 workup

60%

Jin Kun Cha J. Am. Chem. Soc. 1997, 119, 8127

Cyclization Through TitanacyclopropaneN

O

O

XOCONH2

OMe

X = OMe: Mitomycin AX = NH2: Mitomycin C

O

NH

Total Synthesis of FR66979 and FR900482

S. F. Martin J. Am. Chem. Soc. 2000, 122, 10781R. M. Williams Angew. Chem. Int. Ed. 2002, 41, 4883M. A. Ciufolini Angew. Chem. Int. Ed. 2002, 41, 4888

Synthetic efforts before 1977 Y. Kishi J. Am. Chem. Soc. 1977, 99, 4835 (references cited therein)

enantiopure SM

Danishefsky's AttemptsActivated Cyclopropanes

N NH

OMe

O

O

Me

X

OCONH2

X=OMe Mitomycin AX=NH2 Mitomycin C

O

Me

O

O

NPhth

OCO2Me

O

N2

O

Me

O

O

NPhth

O

CO2Me

O

5:1 drFrom Claisen and

Diazomalonate formation.

NH2NH2Rh(II)

O

O

O

Me NH

OH

•O

CO2Me

O

O

O

Me N

OH

OCO2Me

O

Me

O

O

NPhth

CO2Me

CO2Me

OH

CSAMeOH

NH2NH2

(CONHNH2)

+

N

<25% yield

H

H

(87% yield)

(42% yield)

(47% yield)

Page 6: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

OBnOAc

O

O

Me NH2

Br

OAc

O

O

Me NH

H

OBn

Br

SePh

OAc

O

O

Me N

H

OBn

SePh

SePh

NPhth

OBn

O

O

Me N

H

OBn

NMe

O

O

O

Me N

H

OBn

NMe

OBnOAc

O

O

Me NH2

OTBS

BrHg(OAc)2

OAc

O

O

Me NH

OBn

OTBS

Tandem Ring Formation

N NH

OMe

O

O

Me

X

OCONH2

X=OMe Mitomycin AX=NH2 Mitomycin C

Oxidation at C9a Needed!

Indole formation a continual problem.

31% yield from Claisen precursor to selenide elimination product.

From a Claisen rearrangement:

(51% yield)

Oxidation at C9a

N NH

OMe

O

O

Me

X

OCONH2

X=OMe Mitomycin AX=NH2 Mitomycin C

N NP

O

O

Me

X

OP

H

N NP

O

O

Me

X

OP

OR?

Looking at these sorts of compounds led to bioactivity studies.

OBn

O

O

Me N

H

OBn

OAc

OAc

OBn

O

O

Me N

H

OBn

OAc

OAcO

mCPBA

OBn

O

O

Me N

OBn

OAc

OAc

Ac2O

PolonovskyReaction

OBn

O

O

Me N

OBn OBn

O

O

Me N

OBn

OAc

OAc

OBn

O

O

Me N

H

OBn

OAc

OAcOAc

OBn

O

O

N

H

OBn

OAc

OAcOAc

11% 25% 26% 18%

R'

R

either R or R'is OAc

Imine formation here is possible.

Oxidation of C9a is not straightforward.

Page 7: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Oxidation at C9-C9a

N NH

OR

O

O

Me

O

R=H Mitomycin HR=Me Mitomycin K

OTMS

O

OTMS

Me N

OTBS

OAc

OAc

OsO4

OTMS

O

OTMS

Me N

TBSO

OAc

OAc

O

OsO

O

OH2S

OTMS

O

OTMS

Me N

TBSO

OAc

OAc

OH

OH

OBn

O

O

Me N

O

NMe

HOBn

O

O

Me N NMe

O

OsO

O

O

Nuc

O OBn

O

O

Me N NMe

OH

O

OBn

O

O

Me N NMe

OH

OsO4

PetersonOlefination Amazingly, this intermediate could not

be equilibrated to Mitomycin H or K.

Mitomycin H and K

Hetero Diels-Alder ReactionsOH

X NO

OH

O

NH2O

NH

FR-900482 X=CHOFR-66979 X=CH2OH

The FR Series of Mitomycinoids

OBn

I

MeO2C NO

OMOM

HO

OBn

I

MeO2C NO

OHOMOM

1) OsO4

2) Aziridine Installation

!

1) Olefin formation(77% yield)

2) Heck reaction (90% yield)

OBn

I

MeO2C NO

OAcOMOM

NAc

OBn

MeO2C NO

OMOM

NAc

OTIPS

MeO2C NO

OMOM

NAc

OTIPS

1) epoxidation (76% yield)

2) SmI2 (90% yield)3) TIPS incorporation (92% yield)

1) DIBAL (93% yield)

2) MnO2 (85% yield)

OTIPS

NO

OMOM

NAc

OTIPS

O

H

OH

NO

OH

O

NH2O

NHH

OFR-900482

70% yield

Page 8: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Intramolecular Hetero Diels-Alder

N NH

OR

O

O

Me

O

R=H Mitomycin HR=Me Mitomycin K

Mitomycin K

H

OO

O

O

Me

OMe

Li

NO2

OHO

O

O

Me NO2

OMe

h!

O

O

O

Me N

OMe

OO

O

O

Me N

O

O

OMe

O

O

O

Me N

OMe

O

HO

1) PDC (65%)2) PhSCH2N3 (90%)

3) L-Selectride (77%)4)

O

O

O

Me N NMe

OMe

O

N

N

NSPh

SIm

S

Im

S

Im

1) AIBN, SnHBu3 (52%)

2) h! (48% yield)3) Ra-Ni (70% yield)

1) TMSCH2Li (90% yield)

2) Ag(II) (16% yield)3) PPTS (81% yield)

N NH

OMe

O

O

Me

O

Mitomycin K

Use of Bn causes aziridine opening in the presence of radicals.

(65%)

(80% yield)(45% yield)

X

O

O

N NH

OMe

O

NH2

O

MeO

OBn

OBn

a) H2, Pd/C

MeOH

MeO

O

O

HN

b) O2

MeOH

OH

OMeOMe

40-50%H2N

OHOMe

OMeMeO

OH

OH

H2N

OHOMe

OMe

1. PhO2CCl, Pyr., CH2Cl2

2. MeSH, cat. BCl3•OEt2, –45 °C

MeO

O

O

HN

OCO2Ph

OMeSMe

HgCl2, NEt3

CH2Cl2

67%

MeO

O

O

N

OMe

OCO2Ph

NH3

90%

MeO

O

O

N

OMe

OCONH2

Al2O3

30-35%

MeO

O

O

N

OMe

OCONH2

Deiminomitomycin A (trans) Kishi, Y. JACS 1977, 99(14), 4835-4836

Kishi's Route to Deiminomitomycin A:Michael Addition / Trans-annular Cyclization

1:1 cis:trans

X = OMe Mitomycin AX = NH2 Mitomycin C

cis decomposes

Page 9: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

MeO

OBn

OBn

a) H2, Pd/C, MeOH

b) O2, CH3OH

MeO

O

O

HN

OH

OMeOMe

H2N

OBn

OMe

OMe

NR NR

HBF4

CH2Cl2, rt77%

MeO

O

O

N NR

OMe

OH

Kishi, Y. TL 1977, 49, 4295-4298Kishi, Y. JACS 1977, 99(14), 8115-8116

Kishi's Route to Mitomycin A:Michael Addition / Trans-annular Cyclization X

O

O

N NH

OMe

O

NH2

O

X = OMe Mitomycin AX = NH2 Mitomycin C

R = (CH2)3OAc or Me

R = (CH2)3OAc

TrBF4

CH2Cl2, rt90 %

R = Me

O

O

CH2OHNR

O

O

NH

85%

MeO

O

O

N NR

OMe

OCONH2

1. NaOCH3, CH3OH, CH2Cl22. DMSO-DCC, TFA-Pyr, rt

3. HClO4, C6H5N(CH3)2 CH2Cl2, rt

1. COCl2, C6H5N(CH3)2 toluene, CH2Cl2, rt

2. NH3, CH2Cl2, toluene 0 °C

MeO

O

O

N NH

OMe

OCONH2

Mitomycin A

NH3

MeOH

H2N

O

O

N NH

OMe

OCONH2

Mitomycin C

CH3I, NaHCO3MeO

O

O

N NMe

OMe

OCONH2

N-Methyl Mitomycin A

NH3

MeOH

H2N

O

O

N NMe

OMe

OCONH2

Porfiromycin

Lancaster, J. JACS 1962, 3185-3187

X

O

O

N NH

OMe

O

NH2

O

X = OMe Mitomycin AX = NH2 Mitomycin C

Kishi's Route to Mitomycins A and C, and Porfiromycin:End Game

If R = (CH2)3OAc

MeO

O

O

N NR

OMe

OH

Page 10: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Isomitomycin A

X Mitomycin A OMeMitomycin C NH2

The Fukuyama Approach

7

6

8

O

O

N

9

32

1

NH

OMe

10 O

Me

X

O

O

Me

MeO

N

NH

OMe

O

ONH2

NH2O

1

2

3

Fukuyama Total Synthesis Efforts:

JACS 1987, 109, 7881-7882; 1st generation synthesis

JACS 1987, 111, 8303-8304; 2nd generation synthesis

Problems to consider:

reactive quinonereactive aziridinemethanol elimination

Fukuyama's Solution:

Prepare Isomitomycin A

and perform 'Mitomycin

Rearrangement'

9a

9a

Isomitomycin A

O

O

N

OMe

O

Me

MeO

Albomitomycin A

NH2

O

H

N

Mitomycin A

The Mitomycin Rearrangement

7

6

8

O

O

N

9

32

1

NH

OMe

10 O

Me

MeOO

O

Me

MeO

N

NOMe

O

H

ONH2NH2O

JACS 1987, 109, 7224-7225

7

O

O

N NH

OMe

O

Me

MeO

ONH2

7

O

O

N NH

OMe

O

Me

H2N

ONH2

NH3

MeOH

Mitomycin C

Mitomycin A

Access to Both Mitomycins A & C

JACS 1962, 84, 3185

• Mixture isolated from fermentation broth of streptomyces caespitosus• Mitomycin A is heavily favored

Page 11: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

Isomitomycin A

Fukuyama's Route to Isomitomycin A:Assembling the Carbon Framework

O

O

Me

MeO

N

NHOMe

O

NH2O

OBn

MeO

Me

OMe

N3

Ph

O

• masked quinonemoiety

OBn

MeO

Me

OMe

N

O

O

SEtOTMS

Ph

OBn

MeO

Me

OMe

N3

O

O

SEtOTMS

Ph

O

OTMS

EtS

+SnCl4 (0.1 equiv)

CH2Cl2, pyr, -78 °C

95% yield

toluene

110 °C, 3h

86% yield

OBn

MeO

Me

OMe

N

O

O

SEtOTMS

Ph

N N

-N2

• High diastereoselectivity? Possibly endo Diels-Alder reaction, then retro aldol.

JOC 1981, 46, 3970-3977• aziridine seems pretty robust

OBn

MeO

Me

OMe

N

O

OAc

SO2Et

O

HNO CCl3

O

9

9

Isomitomycin A

Fukuyama's Route to Isomitomycin A:Late-Stage Manipulations O

O

Me

MeO

N

NHOMe

O

NH2O

OBn

MeO

Me

OMe

N

O

OAc

SO2Et

O

HNO CCl3

O

NH3

MeOH

OBn

MeO

Me

OMe

N

O

NH2O

O

O

OBn

MeO

Me

OMe

N

O

OH

SO2Et

O

NH2O

OBn

MeO

Me

OMe

N

NH

OMe

OH

O

NH2O

OBn

MeO

Me

OMe

N

NHOH

O

NH2O

NaBH4

61% yield 9a

• bridgehead hemiaminal (9a) stable to reaction conditions!

Page 12: Synthetic Enchantment with Mitomycinoids · 2017-01-12 · Synthetic Enchantment with Mitomycinoids Mitomycin C Synthetic Challenges: ¥ Complex stereochemistry ¥ Avoiding aromatization

The Total Synthesis of Isomitomycin A, Isomitomycin C,Mitomycin A, and Mitomycin C

OBn

MeO

Me

OMe

N

NHOH

O

NH2O

9a

OBn

MeO

Me

OMe

N

NH

O

NH2O

9aCSA

MeOH

60% yield

• highly strained iminium ion formed under carefully controlled acidic conditions

OBn

MeO

Me

OMe

N

NHOMe

O

NH2O

1. H2, Pd/C, EtOH

2. DDQ

77% yield

O

X

Me

O

N

NHOMe

O

NH2O

Isomytomycin A

Al(O-iPr)3

MeOH, 23 °C

91% yield

O

O

N

OMe

O

Me

MeO

Albomitomycin A

NH2

O

H

N Mitomycin A X=OMe

O

O

N NH

OMe

O

Me

X

ONH2

Mitomycin C X=NH2

NH3MeOH

Isomitomycin CX=NH2

X=OMe

NH3

MeOH 85% yield

Mytomycin Synthetic Challenges and Solutions - Summary

X Mitomycin A OMeMitomycin C NH2

7

6

8

O

O

N

9

32

1

NH

OMe

10 O

Me

X

ONH2

9a

Problems Solutions to date

• quinone reactivity -aromatization -Michael acceptor

• install at late stage• carry as aromatic derivative

• C(9a) reactivity -loss of OMe

• install functionality at C(9a) early• install C(9a) OMe at late stage

• reactive aziridine •!install at late stage

• stereocontrol -no asymmetric synthesis to date

• make more rigid system to enhance diastereoselectivity

Team 1

Team 2

Team 3

Team 4

New Solutions?