Synthesis directed at the disruption of a protein-protein ... · – Hay fever: H1 antagonist...

49
Synthesis directed at the disruption of a protein-protein interaction in asthma Alan C. Spivey RSC/BMCS 2 nd Symposium on Chemical Biology for Drug Discovery AstraZeneca, Alderley Park 20 th -21 st March 2012

Transcript of Synthesis directed at the disruption of a protein-protein ... · – Hay fever: H1 antagonist...

  • Synthesis directed at the disruption of a protein-protein interaction in asthma

    Alan C. Spivey

    RSC/BMCS 2nd Symposium on Chemical Biology for Drug

    Discovery AstraZeneca, Alderley Park

    20th-21st March 2012

  • Format of presentation

    • Asthma & allergic disorders – Background & biochemical cascade – The hIgE/FceRI protein protein interaction (PPI) – Therapeutic proof-of-concept - Xolair®

    • Peptide-based antagonists – Synthesis & activity

    • Development of the germyl-Stille Reaction

    – A photolabile safety-catch system • The synthesis of aspercyclide A & its C19 methyl ether

    – Racemic total synthesis, optical resolution – Asymmetric synthesis – Emerging SAR data

  • Asthma & allergic disorders – UK figures

    • The prevalence of asthma is increasing worldwide:

    – 10.8 million sufferers in the UK (~20%) – 12.5 GP consultations pa (183,000 bed days) – NHS annual asthma bill ~£890 million – Cost of lost work days estimated ~£1.2 billion

    Nasser Allergy 2008, 1624 [DOI]

    http://dx.doi.org/10.1039/b707517k

  • Asthma & allergic disorders - Medication

    • The majority of current medications address ‘downstream’ symptoms, e.g. – Asthma: b2-adrenergic agonist bronohidilators e.g. albuterol

    – Hay fever: H1 antagonist anti-histamines e.g. diphenhydramine

    – Eczema: anti-inflammatories vs. leukotrienes e.g. zafirlukast

    – Anaphylactic shock: injection of adrenaline (epinephrine)

    Stinson C & EN 1997, Jan 6, 25 [DOI]

    http://dx.doi.org/10.1039/b707517k

  • The allergic response – Overview of the cascade

    Block PPI

    Gould Ann.Rev. Immunol. 2003, 21, 579

  • Proof-of-principle – Antibody therapy

    • XolairTM (Genentech, Novartis) was approved by the European Commission in Oct 2005 for the treatment of chronic asthma in all 25 EU member states

    - Humanised monoclonal anti-IgE antibody (~149 kDa) - Prescribed for severe asthma/hey fever - Subcutaneous injections required every 2-4 weeks - Expensive (£10K/patient/year)

    http://www.xolair.com/

    http://www.xolair.com/

  • The IgE-FceRI protein-protein complex (1)

    Gould & Sutton Nat. Rev. Immunol. 2008, 8, 205 [DOI]

    • The ligand (IgE): – Y-shaped C2 symmetric dimer (L-H)2 – Heavy (e) chain is involved in FceRI

    binding – Heavy chain comprises 1 variable (Ve)

    and 4 constant (Ce1, Ce2, Ce3, & Ce4) domains

    • The receptor (FceR1):

    – membrane bound, comprising 4 subunits (abg2)

    – extracellular a subunit is involved in IgE binding

    – comprises two small (86 residue) globular domains a1 & a2

    http://dx.doi.org/10.1038/nri2273

  • The IgE-FceRI protein-protein complex (2)

    • Characteristics of PPI: – High affinity - Ka 10-10 M-1

    – Biphasic interaction where initial ‘sensitisation’ is reversible

    – Large surface area - 1830 Å2

    – Only a small proportion of cross-linking is required to initiate exocytosis?

    • Implications for antagonist design:

    – require high binding affinity for competitive inhibition

    – require good bio-availability to attain high intra-cellular concentration

    PDB 1F6A Jardetzky 2000 [DOI]

    Gould & Sutton Nat. Rev. Immunol. 2008, 8, 205 [DOI]

    http://www.rcsb.org/pdb/home/home.dohttp://dx.doi.org/10.1038/nri2273

  • The IgE-FceRI protein-protein complex (3)

    PDB 1F6A Jardetzky 2000 [DOI]

    http://www.rcsb.org/pdb/home/home.do

  • Peptide-based antagonists of the IgE-FceRI PPI

    PDB 1F6A Jardetzky 2000 [DOI]

    http://www.rcsb.org/pdb/home/home.do

  • • Non-’epitope’ peptides:

    • Epitope peptides:

    Peptide antagonists of IgE-FceRI PPI

    b-hairpin (binds to receptor)

    IC50 = 1 μM

    Starovasnik,, Biochemistry 2001, 40, 9828 [DOI]

    Zeta-loop (binds to receptor)

    IC50 = 36 nM

    Starovasnik, Structure 2004, 12, 1289 [DOI]

    [V6, A12] MCD

    IC50 = 0.6 µM

    Buku, Chem. Bio. Drug. Des. 2008, 72, 113 [DOI]

    a2(C-C’) mimetic (binds to IgE)

    IC50 = 30 μM

    Sutton, Biochem. Soc. Trans. 1997, 25, 387 [DOI]

    Ro 25-7162 a2(C-F) mimetic (binds to IgE)

    IC50 = 40 μM

    Danho, Proc. Am. Peptide Symp. 1997, June 14-19, 539 [DOI]

    http://pubs.acs.org/doi/10.1021/bi0109360http://dx.doi.org/10.1016/j.str.2004.04.015http://www3.interscience.wiley.com/cgi-bin/fulltext/120750790/PDFSTARThttp://pubs.acs.org/doi/pdf/10.1021/ja963884o

  • The IgE-FceRI protein-protein complex - Hotspots

    PDB 1F6A Jardetzky 2000 [DOI]

    http://www.rcsb.org/pdb/home/home.do

  • The AB loop - Ce3/Ce4 Hinge region

    • Site directed mutant hIgE (Phe349Ala) → just 10% mediator release (degranulation assay) – Presta J. Biol. Chem. 1994, 269, 26368 [DOI]

    • Phe349 is situated in the middle of the ‘Omega’ loop at terminus of the Ce3 A-B b-strand:

    PDB 1F6A Jardetzky 2000 [DOI]

    http://www.jbc.org/content/269/42/26368.full.pdf+htmlhttp://www.rcsb.org/pdb/home/home.do

  • A disulfide-constrained A-B loop mimetic

    • Simple disulfide constrained A-B loop epitope:

    Helm Allergy 1997, 52, 1155 [DOI]

    http://dx.doi.org/10.1021/jo026693e

  • Tolan amino acids as peptide loop constraints

    • ...what if we introduced a more rigid constraint than a disulfide? – b-turn mimetics: e.g. ‘tolan’ amino acid: – Kemp Tetrahedron Lett. 1995, 36, 4175 [DOI]

    • ...what about a suite of regioisomeric tolan amino acids & analogues?

    With John McKendrick & Ratnasothy Srikaran J. Org. Chem. 2003, 68, 1843 [DOI]

    http://dx.doi.org/10.1016/0040-4039(95)00775-8http://dx.doi.org/10.1021/jo026693e

  • A tolan-constrained A-B loop mimetic • Synthesis of 2,2’-tolan constrained peptide via ‘on-resin’ Sonogashira macrocyclisation:

    – Only rink amide resin allows for cyclisation

    With John McKendrick & Ratnasothy Srikaran J. Org. Chem. 2003, 68, 1843 [DOI]

    http://dx.doi.org/10.1021/jo026693e

  • An array of tolan-constrained A-B loop mimetics

  • Synthesis of the tolan amino acids • NB. Installation of Ser353 allows for higher yielding subsequent macrocyclisations :

    With Danny Offermann

  • Synthesis of hydrogenated 2,2’-tolans • The fully saturated 2,2’-bibenzyl amino acid:

    • The partially saturated 2,2’-stilbene amino acid:

    With Danny Offermann

  • Synthesis of the constrained A-B loop mimetics

    With Danny Offermann

  • Constrained A-B loop mimetics – ELISA activity • ELISA data for the array of tolan & tolan-derived constrained A-B loop mimetics:

    – linker & sequence dependent activity

    with Danny Offermann & Jimmy Sejberg J. Org. Chem. 2012, 77, ASAP. IC50 = 660 ±70 mM

  • Ongoing work...

    • Co-crystallisation with both proteins – with Brian Sutton & Mary Holdom, KCL

    • Increase affinity by synthetic mutagenesis? – Use of germyl-Stille coupling...

    with Bingli Mo & Jimmy Sejberg

  • The germyl-Stille reaction

    O

    GeR R

    Cl

  • Where is germanium in the periodic table?

    • Group 14: C, Si, Ge, Sn, Pb

  • Ge vs Si & Sn

    • features: – Susceptibility to ipso-SEAr – intermediate between Si and Sn

    – Better stability towards nucleophiles & bases cf. Si & Sn

    • e.g. Vasella Helv. Chim. Acta, 1996, 79, 255

    – Essentially non-toxic like Si cf. Sn! – Interesting and unique germylene etherate chemistry [Ge(II) cf. carbene) – Expensive: GeCl4 ~£300 /100 g...

  • Fluorous-tagged arylgermanes - Synthesis

    OOGeCl2·

    1)BrMg

    OMe

    2) 4M HCl in dioxane

    (>2eq)

    RMgX (Xs.)

    R = 2-NapMe [86%]

    IC8F17

    mW 300 WH2O, c.HCl

    20 min

    C8F17GeCl3

    C8F17Ge

    OMe

    ClCl

    [78%]

    [84%]

    £

    C8F17Ge

    OMe

    RR1) 4M HCl in dioxane2) Ar-MgBr

    R = 2-NapMe, Ar = p-Tol [71%]R = 2-NapMe, Ar = Ph [83%]R = 2-NapMe, Ar = p-ClC6H4 [80%]R = 2-NapMe, Ar = p-CF3C6H4 [84%]R = 2-NapMe, Ar = o-MeOC6H4 [87%]

    C8F17Ge

    RR

    Ar

    features • can ‘tune’ steric and electronic

    properties of R groups for specific applications

    • fluorous-tag allows rapid purification by FC on fluorous SiO2

    with David Whitehead & Joseph Hannah

    Zhang Chem. Rev. 2004, 104, 2531 [DOI]

    http://dx.doi.org/10.1021/cr030600r

  • Pd(0) catalysed cross-coupling

    • Sn couples readily as SnR3: Stille coupling – review: Stille Angew. Chem. Int. Ed. 1986, 98, 508 [DOI]

    • Si requires an eletronegative ligand and nucleophilic activation: Hiyama-Denmark coupling – review: Denmark Aldrichimica Acta 2003, 36, 75 [DOI]

    • what is required for Ge coupling? – review: with Chris Gripton & Joseph Hannah Curr. Org. Synth. 2004, 1, 111 [DOI]

    http://dx.doi.org/10.1002/anie.198605081http://www.sigmaaldrich.com/aldrich/acta/al_acta_36_3.pdfhttp://www.ch.ic.ac.uk/spivey/publicationpdfs/currorgsynth20041211.pdf

  • Requirement for di-halogermanes

    • Ge requires 2 × electronegative ligands and nucleophile activation – initial results: (cf. conditions of Hiyama Tetrahedron Lett. 1997, 38, 439 [DOI]

    – optimised conditions:

    GeR R

    MePd(OAc)2 (5 mol%)

    PPh3 (10 mol%)NaOH (6 eq)

    THF, 70 °C, 24 h

    O

    Br CF3

    CF3(1 eq) Me

    CF3

    CF3

    R2 = Me2 [0%]R2 = Me,Cl [0%]R2 = Cl2 [36%]

    OEt

    with Chris Gripton

    # R Ar Yield/% 1 Me 4-AcC6H4 60 2 Me 3,5-(CF3)2C6H3 63 3 Me 1-Nap 79 4 OMe Ph 36 5 OMe 3-CF3C6H4 51 6 OMe 3,5-(CF3)2C6H3 71 7 OMe 1-Nap 56 8 OMe 3-Py 44 9 OMe 4-NO2C6H4 47

    GeCl Cl

    R PdCl2(MeCN)2 (10 mol%)dppp (20 mol%)

    KF (6 eq)DMF, 120 °C, 8 h

    O R

    Ar-Br (1eq)ArOEt

    http://dx.doi.org/10.1016/S0040-4039(96)02320-9

  • A safety-catch germyl-Stille reaction?

    • Target:

    • Safety-catch R groups must:

    • confer stability to a wide range of reaction conditions prior to activation (i.e. retain unique advantages of Ge vs. Si or Sn vis-à-vis stability to strong bases and nucleophiles)

    • be selectively activated with in presence of wide range of FGs – ‘magic bullet’ conditions

  • Photo-oxidative ‘activation’ of benzylic ‘R’ groups

    • 2-naphthylmethyl groups can be selectively 'activated' by photo-oxidation with Cu(II)

    • mechanism: – cf. Otsuji Chem. Lett. 1988, 229 [DOI]

    with Chris Gripton, Joseph Hannah & Chih-Chung Tseng Appl. Organomet. Chem. 2007, 21, 572 [DOI]

    GePh Ph

    OMeO

    OEt

    Ge2-Nap 2-Nap

    OMeO

    OEt

    http://dx.doi.org/10.1246/cl.1988.229http://dx.doi.org/10.1002/aoc.1270

  • The photolysis apparatus • ...a tower PC case:

    ...a Cathodeon HPW 125W lamp

  • Convenient monitoring – 19F NMR

    • sequential photooxidation of both groups monitored by 19F NMR:

    with Chih-Chung Tseng

    C8F17Ge

    Cu(BF4)2 (4 eq)MeCN:MeOH (3:1)

    h, pyrex filter10 min

    OMe

    2-Nap 2-Nap

    OMe ~1 h

    OMe

    C8F17GeF F

    OMe

    C8F17Ge

    F2-Nap

    OMe

  • Scope of germyl-Stille aryl-aryl cross-coupling

    with Chih-Chung Tseng, Joseph Hannah & Chirs Gripton Chem. Comm. 2007, 2926 [DOI]

    Ar

    Ge2-Nap2-Nap

    R

    GeF F

    R

    R

    Ar-Br (2 eq)

    C8F17

    C8F17

    (2 eq)

    Cu(BF4)2 (4 eq)MeCN:MeOH (3:1)

    h, pyrex filter~2 h

    PdCl2(MeCN)2 (10 mol%)P(2-Tol)3 (15 mol%)

    TBAF·3H2O (2.7 eq), CuI (1 eq)DMF, 120 °C, 16 h

    OMe

    # R Ar Yield/% 1 4-OMe 3,5-(CF3)2C6H3 96 2 4-OMe 4-ClC6H4 85 3 4-OMe 4-BnOC6H4 65 4 4-OMe 1-Nap 75 5 4-Me 3,5-(CF3)2C6H3 84 6 4-Me 4-ClC6H4 69 7 4-Me 4-BnOC6H4 48 8 4-Me 1-Nap 71 9 H 3,5-(CF3)2C6H3 74 10 H 4-ClC6H4 63 11 H 4-BnOC6H4 40 12 H 1-Nap 60 13 4-Cl 3,5-(CF3)2C6H3 71 14 4-Cl 4-BnOC6H4 42 15 4-Cl 1-Nap 75 16 2-OMe 3,5-(CF3)2C6H3 65 17 2-OMe 4-ClC6H4 49 18 2-OMe 4-BnOC6H4 11 19 2-OMe 1-Nap 27 20 4-CF3 3,5-(CF3)2C6H3 26 21 4-CF3 4-ClC6H4 11

    http://dx.doi.org/10.1039/b707517k

  • Total synthesis of aspercyclide A – a natural product antagonist of the

    IgE-FceRI PPI

    Aspergillus sp.

  • Small molecule antagonists of IgE-FceRI PPI

    • Fluorescein dyes MW ~700–1100 Da

    – e.g. Na2-Rose Bengal – Cheng (Heska Corp.) US patent 5,965,605 12th Oct 1999 – IC50 = 0.5 mM (MW = 1017 Da)

    • (+) Aspercyclide A MW 410 Da – Soil fungus metabolite ex. Aspergillus sp. – Singh (Merck) Tetrahedron Lett. 2004, 45, 7605 [DOI] – IC50 of 200 mM (MW = 410 Da)

    X-ray

    MM2

    http://dx.doi.org/10.1016/j.tetlet.2004.08.116

  • (±)-Aspercyclide A – Syntetic strategy

    • Features & strategy – 11 membered ring – labile paraquinol – trans-alkene – anti-1,2-diol – hindered ester – di-ortho-substituted biaryl ether

    • Aryl-alkene Germyl-Stille key step?

  • Anti-1,2-diol formation & ring B esterification

    • Boeckman modified Takai-Utimoto Condensation – Boeckman J. Org. Chem. 1998, 63, 3524 [DOI]

    • Hindered ester formation with di-ortho-substituted benzoate

    X-ray with James Carr

    via

    http://dx.doi.org/10.1021/jo980160h

  • Ring A synthesis and vinyl germane formation

    • (E)-Vinyl germane synthesis – cf. (E)-selective hydroboration: Srebnik Tetrahedron Lett. 1996, 37, 3283 [DOI]

    • Ring A synthesis

    – Porco Jr Org. Lett. 2001, 3, 1649 [DOI]

    X-ray

    with James Carr

    http://dx.doi.org/10.1016/0040-4039(96)00576-Xhttp://dx.doi.org/10.1021/ol0159367

  • Biaryl ether formation & germyl-Stille macrocyclisation

    • Biaryl ether formation – vinyl germane substrate – cf. Kulkarni Tetrahedron 1988, 44, 5145 [DOI]

    • germyl-Stille macrocyclisation

    with James Carr & Jimmy Sejberg Org. Biomol.Chem. 2011, 6814

    http://dx.doi.org/10.1016/S0040-4020(01)86020-8

  • Biaryl ether formation & Heck macrocyclisation

    • Biaryl ether formation – terminal alkene substrate – Kulkarni Tetrahedron 1988, 44, 5145 [DOI]

    • Heck macrocyclisation

    – cf. Nolan J. Organomet. Chem. 2003, 687, 269 [DOI]

    Entry Additive Ratio A:B:C

    Conversion

    ArBr - 0 : 1 : 4.2 100%

    ArBr AgI (1 eq.) 10 : 5 : 1 30%

    ArI AgI (1 eq.) 2.5 : 10 : 1 75% (52% isolated)

    Aromatic Finklestein:

    Buchwald J. Am. Chem. Soc. 2002, 124, 14884 [DOI] with James Carr

    http://dx.doi.org/10.1016/S0040-4020(01)86020-8http://dx.doi.org/10.1016/S0022-328X(03)00375-9http://dx.doi.org/10.1021/ja028865v

  • Deprotection & oxidation • Acetal hydrolysis & benzylic oxidation...

    • Need a new C19 OH protecting group…

    X-ray

    with James Carr

  • Use of PMB protection – synthesis of (±)-aspercyclide

    with James Carr & Daniel Offermann Chem. Commun., 2010, 46, 1777 [DOI]

    http://dx.doi.org/10.1039/c003190a

  • Aspercyclide A & its C19 Me ether – ELISA activity

    • Racemic ‘Nat Prod’ vs. C19 Me ether – ELISA – (±)-C19 Me ether is equipotent wrt parent! – IC50 ~50 mM

    • Enantiomers of C19 Me ether – Separation by CSP-HPLC (Chiralpak IA) – ELISA – (+)-C19 Me ether has natural configuration – 10 fold more IC50 ~50 mM

    Entry Compound (% ee)

    IC50 (µM)

    1 (+)-asp (98.4) 40 ± 1

    2 (–)-31 (98.8) 483 ± 105

    3 (±)-31 56 ± 2

    with Jimmy Sejberg, Helena Dennison & Mary Holdom (KCL)

    CD curve for (+)-aspercyclide

  • Enantioselective synthesis of ()-aspercyclide A

    with Jimmy Sejberg

    cf. Krische J. Org. Chem. 2011, 76, 2350 [DOI]

    http://dx.doi.org/10.1021/jo200068q

  • SAR studies - Ongoing work...

    • Synthesis of analogues → SAR – with Helena Dennison & Jimmy Sejberg

    • Co-crystallisation with protein, SPR , NMR... – with Lucy Smith, IC – with Brian Sutton & Andrew Beavil, KCL

  • SAR studies – aspercyclide C19 OMe analogues... • A-ring analogues → SAR

    • B-ring analogues → SAR

    with Jimmy Sejberg, Helena Dennison & Lucy Smith

  • SAR studies – aspercyclide C19 OMe analogues... • Macrocycle ‘strap’ analogues → SAR

    • Dibenzofuran A-ring & ‘strap’ analogues → SAR

    with Jimmy Sejberg, Helena Dennison & Lucy Smith

  • SAR studies – aspercyclide C19 OMe analogues... • Dibenzofuran B-ring & ‘strap’ analogues → SAR

    with Jimmy Sejberg, Helena Dennison & Lucy Smith

  • Acknowledgements • peptides: John McKendrick & Ratnasothy Srikaran (Birgit Helm @MBB, Sheffield), Daniel Offermann, Bingli Mo,

    Jimmy Sejberg & Lucy Smith (Robin Leatherbarrow @IC; Andrew Beavil @KCL; Brian Sutton @KCL; Mary Holdom @KCL)

    • Germyl-Stille: Chris Gripton, (Jan Scinski @GSK), Joseph Hannah & Chih-chung (Jimy) Tseng • aspercyclide A: James Carr (Steve Lindell @)Bayer CropScience), Daniel Offermann , Jimmy Sejberg & Helena

    Dennison (Keith Spencer & Kevin Foote@Arrow Therapeutics/AstraZeneca; Fabienne Saab @KCL) • X-ray: Chris Frampton @ Pharmorphix & Andrew J.P. White @IC

    • EPSRC, Pfizer, Roche, Bayer CropScience, AstraZeneca, Novartis, Wellcome Trust, MRC, EU FP7 Marie Curie

    http://portal.bayercropscience/http://www.epsrc.ac.uk/