Syngas to Energy Liquids

download Syngas to Energy Liquids

of 6

Transcript of Syngas to Energy Liquids

  • 7/28/2019 Syngas to Energy Liquids

    1/6

    BNL-66589

    $qposiu.in inCh@ysi$ on %$vigas CbrwerdonihFwk and C&ntidakDiviiiion of Petroleum ChemistrySpring ACS Meeting, Anaheim, CA

    March 21-25,1999DEVELOPMENT OF ATOM-ECONOMICAL CATALYTIC PATHWAYS FOR

    CONVERSIONS OF SYNGAS TO ENERGY LIQUIDSD. Mahajan*, JE. Wegrzynand Z Lee

    Building 815, Department ofApplied Science,BrookhavenNationalLaboratory,Uptou New York 11973M. GuwvichOffice ofHeavyVehiclesTechnok@q U.S. Depwtm@ of Energy,WashingtorqD.C. 20585

    (Keywordx catalysis,syngasconvcmiomoxygenatedfhels,methano~&methylether)FAX 516-344-7905

    INTRODUCTIONThe subject of catalyticsyngasconversionsto fiels and chemicalsiswellstudied (l-3).

    But globally,the recent focus is on dlevelopnxmtof technologiesthat offkran economicalroute todesiredproducts (4). EconornicaIti=rt of naturaigas Ilom remote locationsandwithinc lathratehydrates is of continuingrnterestat BrookhavenNationalLaboratoV(BNL). Underthisprojec~ a LiquidPhaseLowTemperature@PLT)concept isbeii appliedto attain highlyefficienttransformations of natund-gasderivedsyngasto specifk products. Furthermore,a morepreciseterm AtomEconomyhasbeen recentlyintroducedbyTrost to describedevelopmentof9highlyefficienthomogeneouslycatklyxxlsynthesisof organicmolecules(5). T~en fromrdkrence 5, the term AtomEconomyis deiinedasmximkhqg the numberof atoms of all rawmaterialsthat end up in the product with any other reactant requiredon incatalyticamount. Forapplicationto methdnetransformationsthat mayrnvolveone or more step%atomeconomyofeach of these steps is critkd We,therefore, oonsideratom-economysynonymouswith overallenergyefficiencyof a pxxxess. Ibispaper descriis potential liquidproductsfromcatalytic-.~

  • 7/28/2019 Syngas to Energy Liquids

    2/6

    syngas conversio~ i.e. gas to liquids(GTL)technologiesandprocess considerationsthat arenemxary for economicaltransport of natural gas. AsSUCLhe present study definesan atorw*nnnm;enl d9nrl~rAtn a-h m~- cvwmnAm u CTI tshnrdn-MW- U- W - W--J -~. -~.~ V -. *--W. -.. . . . . - . . -A.-- -.- . . .NAlUKAIJ GAS CUN Vl!XSIUNS

    Weconsideroptions to promote natural gas usage that meet the followingset-forthcriterix l) fitsweIlinthe present dis@MiOnW&tr@me ,2) safebased on public perqtio~ 3)is m harmonywith the environrne@and4) fklvorableprocess economics.Equations 1-13, showncollectivelymF= 1, represent availableoptions to harness energyfiorn. .&. . r.. .-2.... -_-l: --*:--- l%-Uwd g- LUI Varluus appilwuulm -.-n . A-IL ---- -xc-: -. L AA.> ---1UC u VG1all CLLC1gy Ucllvcl y Clllvlmlvy Is ucll.uGu us

    &=&-(& +b+G+Ql& (14)where

    = .-.-1 A-A . LET --4 --- -. A _ --n -L-Lulul Mum Cucrgy m luuurd gias al Lb WGJI NW.~ = energy required fir exploration drilhng,and refiningi-e., total energy that is required tobring naturalgastothe surke.~=_mtitip~*orc_ tiom~d*ek_tik.~=energyneededto transport.Em= enerw fnr f=mfim~ tal cmnmlimee. . . . ~ . . . . ..- .- . ..*__.

    Thedeliveryefficiency(Q refm to the stored ener~ mnatural gas. The followingdiscussionsets fbrth the directionfor the present study1. Themost exothermicprocess isto burn natural gas at the well site. Natural gascmnbustionenergyis20,551BTU/lb(Equation 1).Due to a mismatchbetween source location-md~~ mmo+~gQ-IIC mdmF91 rmc k 6* Kfmdbi 9A t_h_ txpmcnartd in ref%omtd tianbrc -w .. &w . . . . -y...- rv. . -n ..-.-.. X- ....Wimizhg energyinputthat is requiredto transport gas is the goai.

    2

  • 7/28/2019 Syngas to Energy Liquids

    3/6

    2. Naturalgastranspbrt either as compressednaturalgas (CNG) or liquefiednatural gas.(LNG) is knowm Here,LNG is the Pref- optionwithdeliveredenergy efficiency(E=) of-80?!. As shownin Equation2, this servesas the baselinebecause this physicaltransformation--L. .- -* -CI&.*.&n+:..flz \ u E -..1 qh. nUllly&yuueaG-s ~ VL Jlquwawwu \qJ. A =.*.#l+:.. 1A pAAlezG, q Wpuus w * taut w UqUcablvll lw.- -. . . . . . -----dt3iveIY d%ihfi)y k d)out 16,WU B-J.U/lb.

    3. Other options to transport natural gas as other liquidsare considered. In conversionofnatural gas to energyliquids(GTL), the totaI energyrequiredfor chemicaltransformation(l&)determinesdeliveryefficiency.W* Ithe available&@ directmethane to metband is considereda viableprocess(Equation3). Thisroute is underdevelopment(6, 7).A Tn t hm a-8-. a - d fWT n n +k n *km t9nn*7cbn+kwil *wn-&4an nwnnativs n#k.e a wmda+w AC .Iamm 4%.1w u Au .puu+ uw WVAX vwubzwusu s w u-m~wy yxv VXLWAO cc v a AwbJ VA WS- AUWL

    product options. Here, the Em term inciidex~= Em=lE~P+EST (15)

    whm Ewrelates to syngasproductionStepI andE~~relates to Step II mwhich syngasisconverted to liquids. ~ fiveproduct options are consideredintwo broad categories. Theseare a)hydrocarbonproducts (Equation9) andb) oxygenatedprodtis (lUp&ns 10-13).n...m+e..e 1n-l 9 dvmlA k vhmnarl ;.ihtannntnvt nf lK&U ae . i&vlcttn& lwaq~. bo+~ AkntathvlJ.#yucuNub7Av-s- -=- - v-w w au UAw w-swab WA Avaww+A w w AWvv- J a

    . .ether (lJM@@ ~thy~ fOXIIIW2 (!M-~) can~ (kkd fio~ ~L ~w8uS? OfIW%W htterestin dimethylether (DME),this product is consideredseparately. The basis of this paper thusconsidersF-T liquids,MeO~ DMEasviableoptionsto LNG.. Two guidelinesare consideredCriticak1. hy tiloned natural gas-basedcostsmustincludepreservingoptions that allownatural-am,... ana &dOtA.b at +ha w dn+ n#Anlbaw~a$-aJ#ai bWWJS GLIWJUb WA UW= WAJ .2. it is to benoted that ail fivereactions ~-Euations9-iYJ are exothermic. But the overall .

    3

  • 7/28/2019 Syngas to Energy Liquids

    4/6

    GTLtranstbrmatbn is a net energy user and overallprocess efficiencyis dependenton energyre@redfbrcemicaltransfbrmationsl& Since both Canal Hatomsrnnaturd gasareenergycarrkX&mdnking transportof these atomswillminimhe til value loss oftk deliveredproduct. It is thisaspectM the term AtomEconomyrelates to.

    Fromthe overall discussio~ it isclear that minkkhqg % % k km i.e. total--~ maximiz E@ Inthispaper, theem@asis isonminim&@ %tirnmrelates tothe~and I&termSrn EqUatiOn14.THE LIQUID STATE OPTIONSR_tit_~(ti ~t-)_gmmahqtid k*dhe&, &ongoingBNLR &D effort is directed tombimizetlw~term Theemphasis isonatomeconomyof catalytictransforrmtions and this formed the basis for developingnovelcdysts toattain these goals. In addition to ongoingwork at BNL related to GTL, other promisingsystemsunderdevelopmentare also considered. These are:q Directmethaneto methanol conversionusing Catalytic technobgy (6). Anotheroption

    is still urder development (7).q The Syntroleumapproach that uses air for partial oxidationofmethaneto produce syngas

    (Step I or Equation 4). The eifectof eliminatingan 0,-sepmtion plant but inmasedo- pressure (to accmnmodateNzm syngas) duringF-T synthesis.

    q TheBNLapproach utiking the LPLTconcept for methanolproductionq DME synthesiswith upmming technobgies includingthat based on the BNLLPLT

    concept.q TheBNLone-pot -is of methyl ftmnate.

    AIIearliercosting study(8) that took the cradle to grave approachmcalculatingoverall

    4

  • 7/28/2019 Syngas to Energy Liquids

    5/6

    energy efficiencyfor various transformationsis relevant. SpecificaIIyreviewedin the presentstudym emergingatom-economicalGTLtechnologies that emphasizesakty andenvironmental

    _ ~ ~st ~~~es of *o~s optio~ to _fi ~ti gas fiornremote locations.W* presentlypopular LNG option alfdeliveryefficiency- 80??as a baseline,conversionofnatural gas to clean liquidfhelsm skid-mount~ product flexiile, and economicalGTLplantsatthe well-siteis the goaLLIbIRATURE CITED(1) Hutching$G.J. and Scurre&MS. (eds.), S@e~ ElsevieqCataLToday, 6(3) (1990).(2) Hind~ J.P., Hutching%G.J,, andKienn~ A., Catal.Rev.- !%i.Eng. 35 (l), 1(1993).(3) Dry,M.E., J. Organomet. Chem.:372,117(1989).(4) RemoteGas Strategies, pp. 4,5 and 13,14,April 1998.(5) Tro% B.M.,Angew.Chem Int. Fd. EngL34,259 (1995).(6) P-R-A, Taube, D.J., Gamble,S., Taube, H., Sato4 T., and Fuj&H., Science,280,560(1998).(7)Lh M.,Hog- T., S- A., J. Am Cbem.SOC., 119,6048 (1997).(8) Stodolslcy,F. aud Santir&D.J., C!HEMTEC~54, October 1993.Work at Brookhaven is supported under US DOE Contract No. DE-ACO2-CH1O886.

    5

  • 7/28/2019 Syngas to Energy Liquids

    6/6

    Figure 1: The Reaction SchemeWell-site Usage: ~+ 20, ~ CO,+ 2H,0Physical Transformation: cH4@)+EL c%)Chemical Transformation: ~+ Em ~ EnergyLquidStep h Syugas Production

    cHug)+EsP co+nH21. Steam Reforming: q)+H20 ~ CO+3H,

    ii ~.C~J+%02(Air) ~ CO+2Hz+@QStep II: Syngas Transformationsx CO+ y~z + Em ~ Hy&WiKbO~~ OxygenatesI. Hyd r o ca r b onSJdwsiS (F-TPR=ss)nCO+ 2nH2 - (-CH2-)~+ nHzO%Mdhanol SynthesisCO+ 2HZ ~ CH~OH3. DimdhylEher Syn thesi s2C0+ 4Hz + (cH&o +H~o4.Methyl Formate$vnthesis2C0+2~ ~ CH@CHO

    (1)(2)(3)

    (4)(5)

    (6)m

    (8)

    (9)

    (lo)

    (11)

    (12)

    (13)