Sweep polytopes and sweep oriented matroids

30
Sweep polytopes and sweep oriented matroids Eva Philippe École Normale Supérieure de Paris April 9th, 2021, Polytopics Joint work with Arnau Padrol arXiv:2102.06134 Eva Philippe Sweep polytopes and sweep oriented matroids 1 / 26 April 9th, 2021, Polytopics 1 / 26

Transcript of Sweep polytopes and sweep oriented matroids

Sweep polytopes and sweep oriented matroids

Eva Philippe

École Normale Supérieure de Paris

April 9th, 2021, Polytopics

Joint work with Arnau Padrol

arXiv:2102.06134

Eva PhilippeSweep polytopes and sweep oriented matroids

1 / 26 April 9th, 2021, Polytopics 1 / 26

Sommaire

1 Sweeps of a point configuration

2 Sweep polytopes

3 Abstraction to oriented matroids

4 Generalized Baues problem

Eva PhilippeSweep polytopes and sweep oriented matroids

2 / 26 April 9th, 2021, Polytopics 2 / 26

A = {a1, . . . , an} a configuration of n points in Rd .

a1 a3

a2 a5

a4

Eva PhilippeSweep polytopes and sweep oriented matroids

3 / 26 April 9th, 2021, Polytopics 3 / 26

A = {a1, . . . , an} a configuration of n points in Rd .

u

a1 a3

a2 a5

a4

Sweep permutation 1, 2, 3, 4, 5.〈u , a1〉 < 〈u , a2〉 < 〈u , a3〉 < 〈u , a4〉 < 〈u , a5〉 .

Eva PhilippeSweep polytopes and sweep oriented matroids

4 / 26 April 9th, 2021, Polytopics 4 / 26

A = {a1, . . . , an} a configuration of n points in Rd .

u

a1 a3

a2 a5

a4

Sweep 1, 23, 4, 5.〈u , a1〉 < 〈u , a2〉 = 〈u , a3〉 < 〈u , a4〉 < 〈u , a5〉 .

Eva PhilippeSweep polytopes and sweep oriented matroids

5 / 26 April 9th, 2021, Polytopics 5 / 26

ua1 a3

a2 a5

a4

12345132451342531452354125341254321

In dimension 2, Perrin (1882), Goodman and Pollack (1980-1993) studiedallowable sequences.

Edelman (2000) and Stanley (2015) gave bounds on the number of sweeppermutations (or valid order arrangements of an affine hyperplane arrangement).

Eva PhilippeSweep polytopes and sweep oriented matroids

6 / 26 April 9th, 2021, Polytopics 6 / 26

A = {a1, . . . , an} a configuration of n points in Rd .

a1 a3

a2 a5

a4

1, 2, 3, 4, 5

1, 23, 4, 5

13, 4, 25

12345

a5 − a1a4 − a1

a5 − a4

a3 − a2

SH(A) = arrangement of the hyperplanes{u ∈ Rd

∣∣ 〈u , ai 〉 = 〈u , aj〉}, for all

(i , j) ∈(

[n]2

).

Its cones are in bijection with the sweeps of A.

Eva PhilippeSweep polytopes and sweep oriented matroids

7 / 26 April 9th, 2021, Polytopics 7 / 26

Sweep polytope

DefinitionThe sweep polytope SP(A) of the point configuration A is the zonotope :

SP(A) =∑

1≤i<j≤n

[−ai − aj

2,ai − aj

2

].

Its face poset is in bijection with the poset of sweeps of A.Eva Philippe

Sweep polytopes and sweep oriented matroids8 / 26 April 9th, 2021, Polytopics 8 / 26

Sweeps of the simplex : the permutahedron

A = {e1, . . . , en} in Rn.

Pn =∑

1≤i<j≤n

[−ei − ej

2,ei − ej

2

]= conv

({n∑

i=1

σ(i)ei , σ ∈ Sn

})−n + 1

2

n∑i=1

ei .

Eva PhilippeSweep polytopes and sweep oriented matroids

9 / 26 April 9th, 2021, Polytopics 9 / 26

Projection of the permutahedron

A = {a1, . . . , an} a configuration of n points in Rd .We consider the projection

MA : Rn → Rd

ei 7→ ai .

Then SP(A) = MA(Pn).

Conversely, if M : Rn → Rd is a linear map, M(Pn) is a sweep polytope.

Eva PhilippeSweep polytopes and sweep oriented matroids

10 / 26 April 9th, 2021, Polytopics 10 / 26

Projection of the permutahedron

A = {a1, . . . , an} a configuration of n points in Rd .We consider the projection

MA : Rn → Rd

ei 7→ ai .

Then SP(A) = MA(Pn).

Conversely, if M : Rn → Rd is a linear map, M(Pn) is a sweep polytope.

Eva PhilippeSweep polytopes and sweep oriented matroids

10 / 26 April 9th, 2021, Polytopics 10 / 26

Monotone path polytope

w

hmin hmax h

P

Σ(P, h) ={ 1hmax − hmin

∫ hmax

hmin

γ(y) dy | γ is a section of h}.

Theorem (Billera-Sturmfels, 1992)The vertices of Σ(P, h) are in bijection with the coherent h-monotone paths of P.

Eva PhilippeSweep polytopes and sweep oriented matroids

11 / 26 April 9th, 2021, Polytopics 11 / 26

Monotone path polytopes

w

hmin hmax h

P

Theorem (Billera-Sturmfels, 1992)The face poset of Σ(P, h) is isomorphic to the poset of coherent h-cellular stringsof P.

Eva PhilippeSweep polytopes and sweep oriented matroids

12 / 26 April 9th, 2021, Polytopics 12 / 26

The permutahedron, monotone path polytope of the cube

���n = [−1, 1]n, s : x ∈ Rn 7→∑n

i=1 xi .

e1

e2

e3

s

���n

Σ(���n, s) =2nPn.

Eva PhilippeSweep polytopes and sweep oriented matroids

13 / 26 April 9th, 2021, Polytopics 13 / 26

The permutahedron, monotone path polytope of the cube

���n = [−1, 1]n, s : x ∈ Rn 7→∑n

i=1 xi .

e1

e2

e3

s

���n

Σ(���n, s) =2nPn.

Eva PhilippeSweep polytopes and sweep oriented matroids

14 / 26 April 9th, 2021, Polytopics 14 / 26

The sweep polytope as a monotone path polytope

ZA =∑n

i=1[−(ai , 1), (ai , 1)] ⊂ Rd+1, h : x ∈ Rd+1 7→ xd+1

b1

b2

b−1

b−2

h

Σ( n2ZA, h) = SP(A)× {0}.

Eva PhilippeSweep polytopes and sweep oriented matroids

15 / 26 April 9th, 2021, Polytopics 15 / 26

Non-coherent paths and pseudo-sweeps

b1

b2

b−1

b−2

Eva PhilippeSweep polytopes and sweep oriented matroids

16 / 26 April 9th, 2021, Polytopics 16 / 26

Non-coherent paths and pseudo-sweeps

b2

b1b1

b2

Eva PhilippeSweep polytopes and sweep oriented matroids

17 / 26 April 9th, 2021, Polytopics 17 / 26

Sweeps and pseudo-sweeps

2,1,1,2

2,1,2,1

2,1,1,2

2,1,2,1

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

2,1,2,1

2,1,1,2

2,1,2,1

2,1,1,2

2,1,12

2,11,2

21,1,2

21,2,1

2,1,12

21,1,2

21,2,1

1,2,12

1,22,1

1,2,21

12,2,1

12,1,2

1,2,12 1,22,1

1,2,21 12,2,1

12,1,2

2,1,21 2,11,2

2,1,21

21,12

12,21

12,21

21,12

Eva PhilippeSweep polytopes and sweep oriented matroids

18 / 26 April 9th, 2021, Polytopics 18 / 26

Quick introduction to oriented matroids

An oriented matroidM on ground set E can be described as a set of elements in{+,−, 0}E that satisfies certain properties.

3

2

1

+,+,+−,−,−

−,+,+

+,−,−

−,+,−

+,−,+

0,+,+

+, 0,+

+,−, 0

0,−,−

−, 0,−

−,+, 0

0, 0, 0

Eva PhilippeSweep polytopes and sweep oriented matroids

19 / 26 April 9th, 2021, Polytopics 19 / 26

Sweep oriented matroids are oriented matroids whose covectors can be associatedto ordered partitions.

Eva PhilippeSweep polytopes and sweep oriented matroids

20 / 26 April 9th, 2021, Polytopics 20 / 26

Generalized Baues problem

2,1,1,2

2,1,2,1

2,1,1,2

2,1,2,1

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

2,1,2,1

2,1,1,2

2,1,2,1

2,1,1,2

2,1,12

2,11,2

21,1,2

21,2,1

2,1,12

21,1,2

21,2,1

1,2,12

1,22,1

1,2,21

12,2,1

12,1,2

1,2,12 1,22,1

1,2,21 12,2,1

12,1,2

2,1,21 2,11,2

2,1,21

21,12

12,21

12,21

21,12

2112

Eva PhilippeSweep polytopes and sweep oriented matroids

21 / 26 April 9th, 2021, Polytopics 21 / 26

Generalized Baues problem

2,1,1,2

2,1,2,1

2,1,1,2

2,1,2,1

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

2,1,2,1

2,1,1,2

2,1,2,1

2,1,1,2

2,1,12

2,11,2

21,1,2

21,2,1

2,1,12

21,1,2

21,2,1

1,2,12

1,22,1

1,2,21

12,2,1

12,1,2

1,2,12 1,22,1

1,2,21 12,2,1

12,1,2

2,1,21 2,11,2

2,1,21

21,12

12,21

12,21

21,12

Eva PhilippeSweep polytopes and sweep oriented matroids

22 / 26 April 9th, 2021, Polytopics 22 / 26

Topology of posets

The order complex of a poset P is the simplicial complex of its chains.

O

a b c

d e f

a b

c

d

e f

O

Eva PhilippeSweep polytopes and sweep oriented matroids

23 / 26 April 9th, 2021, Polytopics 23 / 26

Generalized Baues Problem for cellular strings of a zonotope

P a d-polytope, h a linear functional in Rd

ω(P, h) := non trivial cellular strings,ωcoh(P, h) := non trivial coherentcellular strings.

Weak GBP. Is ω(P, h) homotopyequivalent to a (d − 2)-sphere ?Strong GBP. Is ωcoh(P, h) adeformation retract of ω(P, h) ?

Answer : YES(Billera-Kapranov-Sturmfels, 1992)

2,1,1,2

2,1,2,1

2,1,1,2

2,1,2,1

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

2,1,2,1

2,1,1,2

2,1,2,1

2,1,1,2

2,1,12

2,11,2

21,1,2

21,2,1

2,1,12

21,1,2

21,2,1

1,2,12

1,22,1

1,2,21

12,2,1

12,1,2

1,2,12 1,22,1

1,2,21 12,2,1

12,1,2

2,1,21 2,11,2

2,1,21

21,12

12,21

12,21

21,12

Eva PhilippeSweep polytopes and sweep oriented matroids

24 / 26 April 9th, 2021, Polytopics 24 / 26

Generalized Baues Problem for cellular strings of a zonotope

P a d-polytope, h a linear functional in Rd

ω(P, h) := non trivial cellular strings,ωcoh(P, h) := non trivial coherentcellular strings.

Weak GBP. Is ω(P, h) homotopyequivalent to a (d − 2)-sphere ?Strong GBP. Is ωcoh(P, h) adeformation retract of ω(P, h) ?

Answer : YES(Billera-Kapranov-Sturmfels, 1992)

2,1,1,2

2,1,2,1

2,1,1,2

2,1,2,1

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

1,2,1,2

1,2,2,1

1,2,2,1

1,2,1,2

2,1,2,1

2,1,1,2

2,1,2,1

2,1,1,2

2,1,12

2,11,2

21,1,2

21,2,1

2,1,12

21,1,2

21,2,1

1,2,12

1,22,1

1,2,21

12,2,1

12,1,2

1,2,12 1,22,1

1,2,21 12,2,1

12,1,2

2,1,21 2,11,2

2,1,21

21,12

12,21

12,21

21,12

Eva PhilippeSweep polytopes and sweep oriented matroids

24 / 26 April 9th, 2021, Polytopics 24 / 26

Generalized Baues Problem for cellular strings of orientedmatroids

M an oriented matroid of rank r , T one of its tope.

Weak GBP. Is ω(M,T ) homotopy equivalent to a (d − 2)-sphere ?

Answer : YES (Björner, 1992)

Strong GBP. Does ω(M,T ) retract to a subcomplex homeomorphic to a(d − 2)-sphere ?

Theorem (Padrol-P., 2021)IfM is the little oriented matroid of a sweep oriented matroidMsw. Then theposet of non-trivial sweeps ofMsw is a (r − 2)-sphere and a strong deformationretract of ω(M,+).

Eva PhilippeSweep polytopes and sweep oriented matroids

25 / 26 April 9th, 2021, Polytopics 25 / 26

Generalized Baues Problem for cellular strings of orientedmatroids

M an oriented matroid of rank r , T one of its tope.

Weak GBP. Is ω(M,T ) homotopy equivalent to a (d − 2)-sphere ?Answer : YES (Björner, 1992)

Strong GBP. Does ω(M,T ) retract to a subcomplex homeomorphic to a(d − 2)-sphere ?

Theorem (Padrol-P., 2021)IfM is the little oriented matroid of a sweep oriented matroidMsw. Then theposet of non-trivial sweeps ofMsw is a (r − 2)-sphere and a strong deformationretract of ω(M,+).

Eva PhilippeSweep polytopes and sweep oriented matroids

25 / 26 April 9th, 2021, Polytopics 25 / 26

Generalized Baues Problem for cellular strings of orientedmatroids

M an oriented matroid of rank r , T one of its tope.

Weak GBP. Is ω(M,T ) homotopy equivalent to a (d − 2)-sphere ?Answer : YES (Björner, 1992)

Strong GBP. Does ω(M,T ) retract to a subcomplex homeomorphic to a(d − 2)-sphere ?

Theorem (Padrol-P., 2021)IfM is the little oriented matroid of a sweep oriented matroidMsw. Then theposet of non-trivial sweeps ofMsw is a (r − 2)-sphere and a strong deformationretract of ω(M,+).

Eva PhilippeSweep polytopes and sweep oriented matroids

25 / 26 April 9th, 2021, Polytopics 25 / 26

Thank you for your attention !

Eva PhilippeSweep polytopes and sweep oriented matroids

26 / 26 April 9th, 2021, Polytopics 26 / 26