Sustainability by usingBioclimatic tools in architecture

47
Sustainability by using Bioclimatic tools in architecture Harry Hirsch Dipl.-Ing. Arch. TUD/EPFL HarryHirsch Consult Baden-Baden/Zurich/Vancouver Jakarta, 13.02.2012

description

Harry Hirsch Dipl.-Ing. Arch. TUD/EPFL presentation at Jakarta, 13.02.2012

Transcript of Sustainability by usingBioclimatic tools in architecture

Page 1: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Sustainability by using

Bioclimatic tools in architecture

Harry Hirsch Dipl.-Ing. Arch. TUD/EPFL

HarryHirsch Consult Baden-Baden/Zurich/Vancouver

Jakarta, 13.02.2012

wA2ng
Typewritten Text
http://issuu.com/gbc_indonesia/docs/bioclimatic_tools_in_arch_by_mr_harry/1 didownload 10Sep2012
Page 2: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Harry Hirsch

≡ DU Diederichs Projektmanagement, Head Sustainability

≡ HarryHirsch Consult, Real Estate- und Portfoliomanagement,

Baden-Baden/Vancouver

≡ PricewaterhouseCoopers, Head Real Estate

≡ Prof. Mäckler Architekten, Ffm, Managing Director

≡ Federal Agency for Building and Planning, Personal Assistant to the

President

≡ Federal Chamber of Architects, Director for Architecture and Building

technology

≡ Co-Founder German Sustainable Building Council (GeSBC),

Auditor, Member of Certification Board

Dipl.-Ing. Architekt TU Darmstadt / EPF Lausanne

Page 3: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Holistic approach

6 fields of criterias

49 criterias

Page 4: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Criteria groups

Oecological

Quality

Oeconomical

Quality

Socio-cultural und

Functional Quality

22,5 % 22,5 % 22,5 %

Technical Quality 22,5 %

Process Quality 10 %

Location Quality (only documented)

Page 5: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Potentialanalyse

Page 6: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Systembewertung

DGNB - Stand Version 2009

100 %

95 %

90 %

85%

80 %

75 %

70 %

65 %

60 %

55 %

50 %

2,0

3,0

1,5Gold

Silber

Bronze

Bewertung of 49 single criterias with zugehörigen indicators in the above mentioned groups of criterias

Page 7: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

7

Improvement of the building quality over the entire lift cycle

Quantification of relevant topics with the help of a

comprehensive and expandable catalog of criteria

Development of a certification system for new and old

building

Certification according to DGNB (German Quality Seal for Sustainable Construction)

Objectives

Making Quality Measurable – Sustainability Certificates for Buildings

Page 8: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

8

Requirements

Requirements

A certificate for buildings will only be successful if

its introduction can be financed,

it can be updated easily and at low cost,

its statements are objective and understandable for end users and

the collected data do not only serve for the certificate but also support day-to-

day business

Page 9: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

9

Strategy of Sustainability

Saving Energy:

insulation of the building shell and

of the mechanical distribution

networks

efficient heating and water heating

energy-efficient components,

drives and lighting systems

Saving Operating Costs:

long-life, low-maintenance, highly

efficient mechanical services

simplification of the FM services

(cleaning and maintenance)

Sustainable Construction

Socially Cultural

EnvironmentEconomy Ecology

long-life, environmentally

compatible building materials

disposal relevance of the buildings

components

commissioning environmentally

responsible project participants

(checking the realization)

Waste concept, separation of

secondary material

attractive design

(building and outdoor facilities)

health and safety

high living and additional benefit

(balconies)

comfortability

emission protection

optimized development

(e. g. lifts)

accessability

passenger car and bike parking

lots

Page 10: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„The European needs“

Page 11: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„The European needs“

Page 12: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„First Passive House ever“

L1150249.JPG

Page 13: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„The Indonesian Way“

Page 14: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

14

Bioclamatic tools

1. Passive Strategies of sustainable building design

• Orientation

• Geometry

• Free and controlled ventilation (no AC)

• Thermical Trägheit (thermical mass)

• Transparence / Opaqueness

• Materials und involved energy

Page 15: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

15

Bioclimatic tools

2. Active Strategies of sustainable building design

• Solar Collektor2 (Warmwater, PV)

• Regainment of Energy

• New Materials (PCM - Phase Change Material, Transparent Insulation,

Low-E Glas)

Page 16: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

16

Bioclimatic tools

3. Differences and conflicts between summer- and winteroptimiziation

• Adaptivity as strategy (adaptive U-factor, adaptive ventilation, adaptive

layers)

• Being opaque or transparent

• Building mass (collectivity, Trägheit)

• Closed Elevation versus performated outer layer

• Exposition versus shadiness

Page 17: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„The Indonesian Tradition“

Page 18: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Roof Overstand

Page 19: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Wisma Dharmala Building Jakarta

Page 20: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Local Shading Solution

Page 21: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Natural Shading

Page 22: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Zero Energy House Singapore

Page 23: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Green 4 Facades

Page 24: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Green Facade Jakarta 1

Page 25: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Green Appendix Jakarta

Page 26: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Green facade Jakarta

Page 27: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Green layer with pockets

Page 28: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Shading

Page 29: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Intelligent Shading- and Reflection System

Page 30: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Balinese Solution

Page 31: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Balinese Solution

Page 32: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Light Collectors Singapore

Page 33: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Light Reflection and Diffusor

Page 34: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

your traditional waste reduction

Page 35: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

maintenance

Page 36: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

36

Health Requirements

A green building provides a healthier working environment. Improved indoor air

quality helps to reduce the health and safety risks to occupants from Sick

Building Syndrome (SBS) and Legionnaire’s Disease (Shiers, 2000). There

are estimates, that improved heating, ventilating, and air conditioning (HVAC)

systems, which limit the spread of contaminants and pathogens, could reduce

respiratory illnesses by 9%–20%. Better indoor air quality can also reduce

asthma attacks and allergies.

Health and comfort are becoming increasingly important with the growing

concern about staff welfare. Through sustainability, companies can improve

their competitive advantage in the recruitment and retention of talent.

Page 37: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Centre Jean-Marie Tjibaou at New Caledonia

Page 38: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Renzo Piano‘s answer to local needs

Page 39: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Wind grids

Page 40: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

„The Wind Gap“

Page 41: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

© S

. L

ake

nb

rin

k

Kriterien 01-05, 10,11 – Ökobilanzierung

ZIEL

Reduktion der negativen Wirkungen

von Materialeigenschaften in Bezug

auf ihr Treibhauspotenzial,

Ozonschichtabbaupotenzial,

Ozonbildungspotenzial,

Überdüngungspotenzial und

Versauerungspotenzial sowie

Berücksichtigung des Anteils

regenerativer und nicht-erneuerbarer

Energie.

Page 42: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

© S

. L

ake

nb

rin

S. L

ake

nb

rin

k

Risiken für die lokale Umwelt

ZIEL

Reduktion der Verwendung von

Stoffen und Produkten, die ein

Risikopotenzial für Grundwasser,

Oberflächenflächenwasser, Boden und

Luft enthalten.

Berücksichtigte Stoffgruppen:

Halogene, Schwermetalle, Organische

Lösemittel, Stoffe und Produkte, die

gemäß Biozid- oder REACH-Richtlinie

umweltschädigend sind.

Page 43: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

ZIEL

Ziel ist ein Ausschluss von Holz und

Holzwerkstoffen aus unkontrollierter

Gewinnung in gefährdeten tropischen,

subtropischen und borealen

Waldregionen zur Förderung des

nachhaltig gewonnenen Rohstoffes

Holz.

Subtropische und boreale Hölzer

dürfen nur dann verwendet werden,

wenn durch Vorlage eines Zertifikats

„die geregelte, nachhaltige

Bewirtschaftung des Herkunftsforstes

nachgewiesen wird.“

© S

. La

ken

bri

nk

Kriterium 08 Nachhaltige Ressourcenverwendung / Holz

Page 44: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

© S

. L

ake

nb

rin

k

Kriterium 09 Mikroklima

ZIEL

Reduzierung des Wärmeinseleffekts

durch Auswahl geeigneter Produkte

und Lösungen im Fassaden- und

Dachbereich durch Schaffung von

unversiegelten Bereichen, Begrünung

oder Verwendung von Materialien mit

geringer solarer Absorption.

Page 45: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

© S

. L

ake

nb

rin

S. L

ake

nb

rin

S. L

ake

nb

rin

k

Kriterium 14 – Trinkwasserbedarf und Abwasseraufkommen

ZIEL

Ziel ist eine Reduzierung des

täglichen Trinkwasserbedarfs und

Abwasseraufkommens durch Einbau

wassersparender Armaturen,

Nutzung von Regen- und

Brauchwasser sowie die Ableitung

von konzentriertem Schmutzwasser.

Page 46: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökologische Qualität

© S

. L

ake

nb

rin

S. L

ake

nb

rin

k

ZIEL

Ziel ist die Reduzierung des

Flächenverbrauchs und folglich die

Beendigung der Zersiedelung der

Landschaft sowie die Geringhaltung

zusätzlicher Bodenversiegelung.

© S

. L

ake

nb

rin

k

Kriterium 15 – Flächeninanspruchnahme

Page 47: Sustainability by usingBioclimatic tools in architecture

Bioclimatic Tools in Architecture

Ökonomische Qualität

© S

. L

ake

nb

rin

S. L

ake

nb

rin

S. L

ake

nb

rin

k

Kriterium 16 – Gebäudebezogene Kosten im Lebenszyklus

ZIEL

Ziel ist die Minimierung der

Lebenszykluskosten von Gebäuden

zur Kostenreduktion von Umbau- und

Erhaltungsinvestitionen.

Folgekosten finden oft nur wenig

Beachtung, heutige Einsparungen

sollen jedoch nicht auf Kosten

zukünftiger Nutzer/Besitzer

vorgenommen werden.