Survey of Space Nuclear Power Options

20
Survey of Space Nuclear Power Options

description

Survey of Space Nuclear Power Options. Dr. Andrew Kadak And Peter Yarsky MIT 12.11.03. Introduction. - PowerPoint PPT Presentation

Transcript of Survey of Space Nuclear Power Options

Page 1: Survey of Space Nuclear Power Options

Survey of Space Nuclear Power Options

Page 2: Survey of Space Nuclear Power Options

Dr. Andrew KadakAnd Peter Yarsky

MIT12.11.03

Page 3: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Introduction

The goal of current work at MIT is to identify potential Power Conversion Options with use of an Ultra High Power Density Core (UHPDC) that will be scalable to achieve requirements for a plethora of exploration missions, eventually meeting the needs for a manned mission to Mars

Page 4: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

The MIT - UHPDC

•Ultra High Power Density Core– Fast spectrum– Tightly coupled / leakage controlled– Reactor Grade Plutonium (PuC)

•~60% Pu239 / ~20% Pu240– Honey Comb Fuel Nb cladding– 20 cm x 20 cm x 20 cm– 10 – 11 MWth (liquid metal)

Page 5: Survey of Space Nuclear Power Options

UHPDC Core Layout

Page 6: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Outline

•Power Conversion

–Thermophotovoltaics (st)

–Thermionics (st)

–Brayton Cycle (dy)

–Rankine Cycle (dy)

Page 7: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Thermophotovoltaics (TPV)

1. LM transfers the heat from the core to the internal radiator

2. All power is radiated towards TPV collector

3. TPV collectors generate DC from thermal radiation

4. Unconverted heat is dissipated via the external radiator

Page 8: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

TPV Challenges

•TPV efficiency decreases with higher cell temperature

•The temperature of external radiator is the coldest the TPV cells can be (900 K)

• It is unlikely that TPV Power Conversion will be scalable.

Page 9: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Thermionic Converters (TIC)

• TIC Benefits

– Single or Dual Layered Concepts

– Static and Direct

– 12-15% efficiency for TH ~1200 K

– 25% or higher efficiency for TH ~2200 K

– Temperature of heat rejection is ~ 750 K

• TIC Challenges

– Direct Contact with the Fuel

Page 10: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Conceptual Unit Cell

Page 11: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

TIC Comparison

•Low Temperature Single– 1200 K emitter / 750 K collector– 12% efficiency / 400 kWe

•High Temperature Dual– 2200 K emitter / 750 K collector– 25% efficiency / 900 kWe

•High Temperature Single– 2200 K emitter / 1200 K collector– 12% efficiency / 2500 kWe

Page 12: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Argon Brayton Cycle

Page 13: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

 Low Med High

T1 (low) 400 K 473 K 533 K

T2 665 K 780 K 890 K

T3 (high) 1200 K 1400 K 1600 K

T4 830 K 970 K 1100 K

Net Work 300 kW 560 kW 950 kW

Efficiency 0.20 0.19 0.20

Mass Flow Rate 5.5 kg/s 9.1 kg/s 13 kg/s

Reactor Power 1.5 MW 3.0 MW 4.9 MW

Pressure Ratio 3.18 3.13 3.18

Comparisons

Page 14: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Sodium Rankine Cycle

• Sodium because:

– 2100 R (1167 K) saturation temperature

at 15.4 psia (1.05 atm)

– Neutronic Inertness

– Heat Removal Properties (UHPDC)

– Saturation Curves are steep (scalability)

– Little Pumping Power Required

– Phase Transition (maximal radiator usage)

Page 15: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Results for 1200 K

Turbine Efficiency 0.95 0.9 0.85

Cycle Efficiency 11% 11% 11%

Turbine Work [MW] 1.18 MW 1.15 MW 1.14 MW

Turbine Outlet Pressure [psia]

4.0 3.7 3.2

Page 16: Survey of Space Nuclear Power Options

ComparisonsT(hot) T(rej) Work Efficiency

TIC 1 (low T) 1200 K 750 K 0.4 MW 12%2 (high T) 2200 K 750 K 0.9 MW 25%1 (high T) 2200 K 1200 K 2.5 MW 12%

Ar Brayton 1600 K 850 K 0.95 MW 20%Na Rankine low T 1200 K 1000 K 1.1 MW 11%

high T 1500 K 1300 K 3.4 MW 13%TPV (MSFR) 1400 K 900 K 4 MW 40% **

Page 17: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Conclusions

• Dynamic PCU technology is more

effective and scalable than Static

(Sodium Rankine in particular)

• Static direct energy conversion

is still attractive from a

reliability standpoint (TIC in

particular)

Page 18: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

BONUS SLIDES

•Slides in case we need clarification

Page 19: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

Single Layer Concept1. LM flows through UHPDC2. LM heats the emitter3. Electrons flow towards

collector4. Collector is in direct

contact with external radiator

Page 20: Survey of Space Nuclear Power Options

Dec 10th and 11th , 2003 MIT 22.033 / 22.902, Mission to Mars

HEU alternative

•Less Reactive Fuel– Larger Core

•More Fuel Mass•More shielding Required

•No Fertile-Fissile Species (240Pu)– Larger Reactivity Swing

•More demand on Control Devices

•Work Still in Progress on CBA