Surfaces from Deformation Parameters

80
Surfaces from Deformation Parameters XVII th International Conference Geometry, Integrability and Quantization Varna, Bulgaria uleyman Tek University of the Incarnate Word, San Antonio, TX, USA Metin G¨ urses Bilkent University, Ankara, Turkey June 5-10, 2015 S.Tek and M.G¨ urses Surfaces from Defor. Parameters June 5-10, 2015 1 / 49

Transcript of Surfaces from Deformation Parameters

Page 1: Surfaces from Deformation Parameters

Surfaces from Deformation ParametersXVIIth International Conference

Geometry, Integrability and QuantizationVarna, Bulgaria

Suleyman TekUniversity of the Incarnate Word, San Antonio, TX, USA

Metin GursesBilkent University, Ankara, Turkey

June 5-10, 2015

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 1 / 49

Page 2: Surfaces from Deformation Parameters

Introduction

Surface theory in R3 plays a crucial role in differential geometry,partial differential equations (PDEs), string theory, general theory ofrelativity, and biology [Parthasarthy and Viswanathan, 2001] -[Ou-Yang et. al., 1999].

Soliton equations play a crucial role for the construction of surfaces.

The theory of nonlinear soliton equations was developed in 1960s.

For details of integrable equations one may look [Drazin, 1989],[Ablowitz and Segur, 1991], and the references therein.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 2 / 49

Page 3: Surfaces from Deformation Parameters

Introduction

Lax representation of nonlinear PDEs consists of two linear equationswhich are called Lax equations

Φx = U Φ, Φt = V Φ, (1)

and their compatibility condition

Ut − Vx + [U, V ] = 0, (2)

where x and t are independent variables. Here U and V are called Laxpairs.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 3 / 49

Page 4: Surfaces from Deformation Parameters

Introduction

The relation of 2-surfaces and integrable equations is established by theuse of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by usingthe deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s resultand find more general immersion function.

Soliton surface technique is an effective method to develop surfaces inR3 and in M3.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 4 / 49

Page 5: Surfaces from Deformation Parameters

Introduction

The relation of 2-surfaces and integrable equations is established by theuse of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by usingthe deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s resultand find more general immersion function.

Soliton surface technique is an effective method to develop surfaces inR3 and in M3.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 4 / 49

Page 6: Surfaces from Deformation Parameters

Introduction

The relation of 2-surfaces and integrable equations is established by theuse of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by usingthe deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s resultand find more general immersion function.

Soliton surface technique is an effective method to develop surfaces inR3 and in M3.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 4 / 49

Page 7: Surfaces from Deformation Parameters

Introduction

The relation of 2-surfaces and integrable equations is established by theuse of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by usingthe deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s resultand find more general immersion function.

Soliton surface technique is an effective method to develop surfaces inR3 and in M3.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 4 / 49

Page 8: Surfaces from Deformation Parameters

Introduction

The relation of 2-surfaces and integrable equations is established by theuse of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by usingthe deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s resultand find more general immersion function.

Soliton surface technique is an effective method to develop surfaces inR3 and in M3.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 4 / 49

Page 9: Surfaces from Deformation Parameters

Introduction

In this method, one mainly uses the deformations of the Lax equationsof the integrable equations [Sym, 1982]-[Gurses and Tek, 2014],

Sine Gordon (SG) equation

Korteweg de Vries (KdV) equation

Modified Korteweg de Vries (mKdV) equation

Nonlinear Schrodinger (NLS) equation

There are many attempts to find new examples of two surfaces.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 5 / 49

Page 10: Surfaces from Deformation Parameters

Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach todevelop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 6 / 49

Page 11: Surfaces from Deformation Parameters

Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach todevelop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 6 / 49

Page 12: Surfaces from Deformation Parameters

Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach todevelop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 6 / 49

Page 13: Surfaces from Deformation Parameters

Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach todevelop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 6 / 49

Page 14: Surfaces from Deformation Parameters

Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach todevelop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 6 / 49

Page 15: Surfaces from Deformation Parameters

Soliton Surface Technique

First fundamental form

(dsI)2 ≡ gij dxi dxj = 〈A,A〉 dx2 + 2〈A,B〉 dx dt+ 〈B,B〉 dt2,

Second fundamental form

(dsII)2 ≡ hij dxi dxj = 〈Ax + [A,U ], C〉 dx2

+ 2〈At + [A, V ], C〉 dx dt+ 〈Bt + [B, V ], C〉 dt2,

[A,B] = AB −BA, ||A|| =√|〈A,A〉|, and C = [A,B]

||[A,B]|| .

Gaussian and mean curvatures

K = det(g−1 h) , H =1

2trace(g−1 h), g = (gij), h = (hij).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 7 / 49

Page 16: Surfaces from Deformation Parameters

Soliton Surface Technique

First fundamental form

(dsI)2 ≡ gij dxi dxj = 〈A,A〉 dx2 + 2〈A,B〉 dx dt+ 〈B,B〉 dt2,

Second fundamental form

(dsII)2 ≡ hij dxi dxj = 〈Ax + [A,U ], C〉 dx2

+ 2〈At + [A, V ], C〉 dx dt+ 〈Bt + [B, V ], C〉 dt2,

[A,B] = AB −BA, ||A|| =√|〈A,A〉|, and C = [A,B]

||[A,B]|| .

Gaussian and mean curvatures

K = det(g−1 h) , H =1

2trace(g−1 h), g = (gij), h = (hij).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 7 / 49

Page 17: Surfaces from Deformation Parameters

Soliton Surface Technique

First fundamental form

(dsI)2 ≡ gij dxi dxj = 〈A,A〉 dx2 + 2〈A,B〉 dx dt+ 〈B,B〉 dt2,

Second fundamental form

(dsII)2 ≡ hij dxi dxj = 〈Ax + [A,U ], C〉 dx2

+ 2〈At + [A, V ], C〉 dx dt+ 〈Bt + [B, V ], C〉 dt2,

[A,B] = AB −BA, ||A|| =√|〈A,A〉|, and C = [A,B]

||[A,B]|| .

Gaussian and mean curvatures

K = det(g−1 h) , H =1

2trace(g−1 h), g = (gij), h = (hij).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 7 / 49

Page 18: Surfaces from Deformation Parameters

Soliton Surface Technique

First fundamental form

(dsI)2 ≡ gij dxi dxj = 〈A,A〉 dx2 + 2〈A,B〉 dx dt+ 〈B,B〉 dt2,

Second fundamental form

(dsII)2 ≡ hij dxi dxj = 〈Ax + [A,U ], C〉 dx2

+ 2〈At + [A, V ], C〉 dx dt+ 〈Bt + [B, V ], C〉 dt2,

[A,B] = AB −BA, ||A|| =√|〈A,A〉|, and C = [A,B]

||[A,B]|| .

Gaussian and mean curvatures

K = det(g−1 h) , H =1

2trace(g−1 h), g = (gij), h = (hij).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 7 / 49

Page 19: Surfaces from Deformation Parameters

Soliton Surface Technique

Since our aim is finding a class of surfaces which correspond tointegrable equations, we need to find A and B that satisfy thefollowing equation

At −Bx + [A, V ] + [U,B] = 0. (6)

But in general, solving that equation is not simple. However there aresome deformations which provide A and B directly.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 8 / 49

Page 20: Surfaces from Deformation Parameters

Soliton Surface Technique

Since our aim is finding a class of surfaces which correspond tointegrable equations, we need to find A and B that satisfy thefollowing equation

At −Bx + [A, V ] + [U,B] = 0. (6)

But in general, solving that equation is not simple. However there aresome deformations which provide A and B directly.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 8 / 49

Page 21: Surfaces from Deformation Parameters

Soliton Surface Technique

Spectral parameter λ invariance of the equation

A = µ1∂U

∂λ, B = µ1

∂V

∂λ, F = µ1 Φ−1

∂Φ

∂λ, (7)

That kind of deformation was first used by Sym[Sym, 1982]-[Sym, 1985].

Gauge symmetries of the Lax equation

A = Mx + [M,U ], B = Mt + [M,V ], F = Φ−1MΦ, (8)

where M is any traceless 2× 2 matrix. [Fokas and Gelfand, 1996],[Fokas et. al., 2000], [Cieslinski, 1997].

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 9 / 49

Page 22: Surfaces from Deformation Parameters

Soliton Surface Technique

Spectral parameter λ invariance of the equation

A = µ1∂U

∂λ, B = µ1

∂V

∂λ, F = µ1 Φ−1

∂Φ

∂λ, (7)

That kind of deformation was first used by Sym[Sym, 1982]-[Sym, 1985].

Gauge symmetries of the Lax equation

A = Mx + [M,U ], B = Mt + [M,V ], F = Φ−1MΦ, (8)

where M is any traceless 2× 2 matrix. [Fokas and Gelfand, 1996],[Fokas et. al., 2000], [Cieslinski, 1997].

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 9 / 49

Page 23: Surfaces from Deformation Parameters

Soliton Surface Technique

Spectral parameter λ invariance of the equation

A = µ1∂U

∂λ, B = µ1

∂V

∂λ, F = µ1 Φ−1

∂Φ

∂λ, (7)

That kind of deformation was first used by Sym[Sym, 1982]-[Sym, 1985].

Gauge symmetries of the Lax equation

A = Mx + [M,U ], B = Mt + [M,V ], F = Φ−1MΦ, (8)

where M is any traceless 2× 2 matrix. [Fokas and Gelfand, 1996],[Fokas et. al., 2000], [Cieslinski, 1997].

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 9 / 49

Page 24: Surfaces from Deformation Parameters

Soliton Surface Technique

Symmetries of the (integrable) differential equations

A = δU, B = δV, F = Φ−1δΦ, (9)

where δ represents the classical Lie symmetries and (if integrable) thegeneralized symmetries of the nonlinear PDE’s[Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Deformation of parameters of solution of integrable equation

A = µ2 (∂U/∂ki) , B = µ2 (∂V/∂ki) , F = µ2Φ−1 (∂Φ/∂ki) , (10)

where i = 1, 2 and ki are parameters of the solution u(x, t, k1, k2) of thePDEs, µ2 is constant. [Gurses and Tek, 2015]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 10 / 49

Page 25: Surfaces from Deformation Parameters

Soliton Surface Technique

Symmetries of the (integrable) differential equations

A = δU, B = δV, F = Φ−1δΦ, (9)

where δ represents the classical Lie symmetries and (if integrable) thegeneralized symmetries of the nonlinear PDE’s[Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Deformation of parameters of solution of integrable equation

A = µ2 (∂U/∂ki) , B = µ2 (∂V/∂ki) , F = µ2Φ−1 (∂Φ/∂ki) , (10)

where i = 1, 2 and ki are parameters of the solution u(x, t, k1, k2) of thePDEs, µ2 is constant. [Gurses and Tek, 2015]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 10 / 49

Page 26: Surfaces from Deformation Parameters

Soliton Surface Technique

Symmetries of the (integrable) differential equations

A = δU, B = δV, F = Φ−1δΦ, (9)

where δ represents the classical Lie symmetries and (if integrable) thegeneralized symmetries of the nonlinear PDE’s[Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Deformation of parameters of solution of integrable equation

A = µ2 (∂U/∂ki) , B = µ2 (∂V/∂ki) , F = µ2Φ−1 (∂Φ/∂ki) , (10)

where i = 1, 2 and ki are parameters of the solution u(x, t, k1, k2) of thePDEs, µ2 is constant. [Gurses and Tek, 2015]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 10 / 49

Page 27: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

In this section, we obtain the immersions of 2-surfaces in R3.

For this purpose, we use Lie group SU(2) and its Lie algebra su(2) withbasis ej = −i σj , j = 1, 2, 3, where σj denote the usual Pauli sigmamatrices

σ1 =

(0 11 0

), σ2 =

(0 −ii 0

), σ3 =

(1 00 −1

). (11)

Define an inner product on su(2) as

〈X,Y 〉 = −1

2trace(XY ), (12)

where X, Y ∈su(2) valued vectors.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 11 / 49

Page 28: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

In this section, we obtain the immersions of 2-surfaces in R3.

For this purpose, we use Lie group SU(2) and its Lie algebra su(2) withbasis ej = −i σj , j = 1, 2, 3, where σj denote the usual Pauli sigmamatrices

σ1 =

(0 11 0

), σ2 =

(0 −ii 0

), σ3 =

(1 00 −1

). (11)

Define an inner product on su(2) as

〈X,Y 〉 = −1

2trace(XY ), (12)

where X, Y ∈su(2) valued vectors.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 11 / 49

Page 29: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

In [Tek, 2007], we considered spectral parameter deformation andcombination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising fromdeformations of parameters of the it’s soliton solution.Let u(x, t) satisfy the mKdV equation

ut = uxxx +3

2u2ux. (13)

Substituting the travelling wave ansatz ut − αux = 0 in Eq. (13), weget

uxx = αu− u3

2. (14)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 12 / 49

Page 30: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

In [Tek, 2007], we considered spectral parameter deformation andcombination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising fromdeformations of parameters of the it’s soliton solution.Let u(x, t) satisfy the mKdV equation

ut = uxxx +3

2u2ux. (13)

Substituting the travelling wave ansatz ut − αux = 0 in Eq. (13), weget

uxx = αu− u3

2. (14)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 12 / 49

Page 31: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

In [Tek, 2007], we considered spectral parameter deformation andcombination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising fromdeformations of parameters of the it’s soliton solution.Let u(x, t) satisfy the mKdV equation

ut = uxxx +3

2u2ux. (13)

Substituting the travelling wave ansatz ut − αux = 0 in Eq. (13), weget

uxx = αu− u3

2. (14)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 12 / 49

Page 32: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Lax pairs U and V are given as

U =i

2

(λ −u−u −λ

), (15)

V = − i2

1

2u2 − (α+ αλ+ λ2) (α+ λ)u− iux

(α+ λ)u+ iux −1

2u2 + (α+ αλ+ λ2)

,(16)

and λ is a spectral parameter.

Consider the one soliton solution of mKdV equation [Eq. (14)] as

u = k1 sech ξ1, (17)

where α = k21/4, ξ1 = k1(k21t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 13 / 49

Page 33: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Lax pairs U and V are given as

U =i

2

(λ −u−u −λ

), (15)

V = − i2

1

2u2 − (α+ αλ+ λ2) (α+ λ)u− iux

(α+ λ)u+ iux −1

2u2 + (α+ αλ+ λ2)

,(16)

and λ is a spectral parameter.

Consider the one soliton solution of mKdV equation [Eq. (14)] as

u = k1 sech ξ1, (17)

where α = k21/4, ξ1 = k1(k21t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 13 / 49

Page 34: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

First we consider mKdV surfaces arising from deformation ofparameter k0.

Proposition

Let u be a travelling wave solution of mKdV equation given by Eq.(17). The corresponding su(2) valued Lax pairs U and V of the mKdVequation are given by Eqs. (15) and (16), respectively. su(2) valuedmatrices A and B are

A = − iµ2

(0 φ0φ0 0

), (18)

B = − iµ2

(uφ0 (k21/4 + λ)φ0 − i (φ0)x

(k21/4 + λ)φ0 + i (φ0)x −uφ0

),(19)

where A = µ (∂U/∂k0) , B = µ (∂V/∂k0), φ0 = ∂ u/∂k0; k0 is aparameter of the one soliton solution u, and µ is a constant.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 14 / 49

Page 35: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

First we consider mKdV surfaces arising from deformation ofparameter k0.

Proposition

Let u be a travelling wave solution of mKdV equation given by Eq.(17). The corresponding su(2) valued Lax pairs U and V of the mKdVequation are given by Eqs. (15) and (16), respectively. su(2) valuedmatrices A and B are

A = − iµ2

(0 φ0φ0 0

), (18)

B = − iµ2

(uφ0 (k21/4 + λ)φ0 − i (φ0)x

(k21/4 + λ)φ0 + i (φ0)x −uφ0

),(19)

where A = µ (∂U/∂k0) , B = µ (∂V/∂k0), φ0 = ∂ u/∂k0; k0 is aparameter of the one soliton solution u, and µ is a constant.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 14 / 49

Page 36: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

Then the surface S, generated by U, V,A and B, has the following firstand second fundamental forms (j, k = 1, 2)

(dsI)2 ≡ gjk dxj dxk, (20)

(dsII)2 ≡ hjk dxj dxk, (21)

where

g11 =1

4µ2φ20, g12 = g21 =

1

16µ2φ20(k

21 + 4λ), (22)

g22 =1

64µ2(

16 (φ0)2x + φ20

[16u2 + (k21 + 4λ)2

] ), (23)

h11 = −16 ∆1 λuφ20, (24)

h12 = 4 ∆1φ0

(4 (φ0)x ux + uφ0

[2u2 − k21(λ+ 1)− 4λ2

] ), (25)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 15 / 49

Page 37: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

h22 = −∆1

(uφ20 (k21 + 4λ)

[2u2 + 4λ2 + k21(λ+ 1)

](26)

+ 4φ0

[4u(φ0)xt − (φ0)x

([k21 + 4λ]ux + 4ut

)](27)

+ 4u(φ0)x

[(φ0)x(k21 + 4λ)− 4(φ0)t

])∆1 =

µ

32(

(φ0)2x + u2φ20

)1/2 (28)

and the corresponding Gaussian and mean curvatures are

K =16λ2

k21µ2, H = − 4λ

k1µ, (29)

where x1 = x, x2 = t.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 16 / 49

Page 38: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

h22 = −∆1

(uφ20 (k21 + 4λ)

[2u2 + 4λ2 + k21(λ+ 1)

](26)

+ 4φ0

[4u(φ0)xt − (φ0)x

([k21 + 4λ]ux + 4ut

)](27)

+ 4u(φ0)x

[(φ0)x(k21 + 4λ)− 4(φ0)t

])∆1 =

µ

32(

(φ0)2x + u2φ20

)1/2 (28)

and the corresponding Gaussian and mean curvatures are

K =16λ2

k21µ2, H = − 4λ

k1µ, (29)

where x1 = x, x2 = t.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 16 / 49

Page 39: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Another parameter of the one soliton solution of mKdV equation is k1.Now we give mKdV surfaces arising from k1 parameter deformation.

Proposition

Let u be the soliton solution of mKdV equation and the Lax pairs Uand V are given by Eqs. (15) and (16), respectively. su(2) valuedmatrices A and B are

A = − iµ2

(0 φ1φ1 0

), (30)

B = − iµ8

(4uφ1 − 2k1(λ+ 1) τ − 4i(φ1)x

τ + 4i(φ1)x −4uφ1 + 2k1(λ+ 1)

), (31)

where A = µ (∂U/∂k1) , B = µ (∂V/∂k1), τ = 2k1u+ (k21 + 4λ)φ1 andφ1 = ∂ u/∂k1; k1 is a parameter of the one soliton solution u, and µ isa constant.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 17 / 49

Page 40: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

Then the surface S, generated by U, V,A and B, has the following firstand second fundamental forms (j, k = 1, 2)

(dsI)2 ≡ gjk dxj dxk, (32)

(dsII)2 ≡ hjk dxj dxk, (33)

where

g11 =1

4µ2φ21, g12 = g21 =

1

16µ2φ1

(2 k1 u+ φ1[k

21 + 4λ]

), (34)

g22 =1

64µ2(

4[k21 + 4φ21

]u2 + 4 k1 (k21 − 4)uφ1 + 16(φ1)

2x (35)

+ (k21 + 4λ)2φ21 + 4 k21(λ+ 1)2), (36)

h11 =1

16∆2 µ

3 λφ21

(k1[λ+ 1]− 2uφ1

), (37)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 18 / 49

Page 41: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

h12 = h21 =1

64∆2 µ

3φ21

(8 (φ1)xux

+[k1(λ+ 1)− 2uφ1

][2(2λ2 − u2) + k21(λ+ 1)

]), (38)

h22 =1

256∆2 µ

3 φ1

(8 (φ1)x

2 k1 uux + (k21 + 4λ)

[φ1 ux − u(φ1)x

]+ 4(uφ1)t

+[k1(λ+ 1)− 2uφ1

]16 (φ1)xt − 4 k1 u(u2 + 2λ)

+ φ1(k21 + 4λ)

(2[u2 + 2λ2] + k21[λ+ 1]

)). (39)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 19 / 49

Page 42: Surfaces from Deformation Parameters

mKdV Surfaces from Deformation of Parameters

Proposition

The Gaussian and mean curvatures are

K =1

µ2 η0(4 η24 + η23

)2 7∑l=1

Ql (sech ξ1)l, (40)

H =1

4µ η0(4 η24 + η23

)3/2 7∑m=0

Zm (sech ξ1)m, (41)

where η0, . . . , η4, Q1, . . . , Q7, Z1, . . . , Z6 are functions of x and t.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 20 / 49

Page 43: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

In this section, we explore the position vector

−→y = (y1(x, t), y2(x, t), y3(x, t)) , (42)

of the mKdV surfaces that we obtain using deformation of parameters.

Consider the one soliton solution of mKdV equation

u = k1 sech ξ1, (43)

where α = k21/4, ξ1 = k1(k21t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.We solve the Lax equations Φx = U Φ and Φt = V Φ using Lax pairs Uand V , and a solution of the mKdV equation.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 21 / 49

Page 44: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

In this section, we explore the position vector

−→y = (y1(x, t), y2(x, t), y3(x, t)) , (42)

of the mKdV surfaces that we obtain using deformation of parameters.Consider the one soliton solution of mKdV equation

u = k1 sech ξ1, (43)

where α = k21/4, ξ1 = k1(k21t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.

We solve the Lax equations Φx = U Φ and Φt = V Φ using Lax pairs Uand V , and a solution of the mKdV equation.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 21 / 49

Page 45: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

In this section, we explore the position vector

−→y = (y1(x, t), y2(x, t), y3(x, t)) , (42)

of the mKdV surfaces that we obtain using deformation of parameters.Consider the one soliton solution of mKdV equation

u = k1 sech ξ1, (43)

where α = k21/4, ξ1 = k1(k21t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.We solve the Lax equations Φx = U Φ and Φt = V Φ using Lax pairs Uand V , and a solution of the mKdV equation.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 21 / 49

Page 46: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

The components of the 2× 2 matrix Φ are

Φ11 = −∆4

k1

[A1(2λi− k1 tanh ξ1) · exp

(i(k21 + 4λ2)t/8

)· Ξ1

−i k21B1 sech ξ1 · exp(− i(k21 + 4λ2)t/8

)· Ξ2

], (44)

Φ12 = −∆4

k1

[A2(2λi− k1 tanh ξ1) · exp

(i(k21 + 4λ2)t/8

)· Ξ1

−i k21B2 sech ξ1 · exp(− i(k21 + 4λ2)t/8

)· Ξ2

], (45)

Φ21 = ∆4

[i A1 sech ξ1 · exp

(i(k21 + 4λ2)t/8

)· Ξ1

+B1(2λi+ k1 tanh ξ1) · exp(− i(k21 + 4λ2)t/8

)· Ξ2

], (46)

Φ22 = ∆4

[i A2 sech ξ1 · exp

(i(k21 + 4λ2)t/8

)· Ξ1

+B2(2λi+ k1 tanh ξ1) · exp(− i(k21 + 4λ2)t/8

)· Ξ2

], (47)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 22 / 49

Page 47: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

where

Ξ1 = (tanh ξ1 + 1)iλ/2k1(tanh ξ1 − 1)−iλ/2k1 , (48)

Ξ2 = (tanh ξ1 − 1)iλ/2k1(tanh ξ1 + 1)−iλ/2k1 , (49)

∆4 =√k1/(k21 + 4λ2). (50)

Here we find the determinant of the matrix Φ as

det(Φ) = (A1B2 −A2B1) 6= 0. (51)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 23 / 49

Page 48: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

where

Ξ1 = (tanh ξ1 + 1)iλ/2k1(tanh ξ1 − 1)−iλ/2k1 , (48)

Ξ2 = (tanh ξ1 − 1)iλ/2k1(tanh ξ1 + 1)−iλ/2k1 , (49)

∆4 =√k1/(k21 + 4λ2). (50)

Here we find the determinant of the matrix Φ as

det(Φ) = (A1B2 −A2B1) 6= 0. (51)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 23 / 49

Page 49: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained usingk0 deformation

We find the immersion function F of the mKdV surface obtained usingk0 deformation by using the following equation

F = ν Φ−1∂Φ

∂k0+

(r11 r12r21 r22

), (52)

from which we obtain the position vector.

Using Φ given in the previous slides and choosingA1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), r11 = r22 = 0,r12 = −r21 to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 24 / 49

Page 50: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained usingk0 deformation

We find the immersion function F of the mKdV surface obtained usingk0 deformation by using the following equation

F = ν Φ−1∂Φ

∂k0+

(r11 r12r21 r22

), (52)

from which we obtain the position vector.

Using Φ given in the previous slides and choosingA1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), r11 = r22 = 0,r12 = −r21 to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 24 / 49

Page 51: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Hence we obtain a family of surfaces parameterized by

y1 = W6 · sech2(ξ1)[W3 · cosh(ξ1) cos(Ω1)

+W4 · sinh(ξ1) sin(Ω1) + 4λW8

(2W1 cosh(2ξ1) +W7

)],(53)

y2 =1

W5sech2(ξ1)

[W10 · sinh(ξ1) cos(Ω1)

−W11 · cosh(ξ1) sin(Ω1) +W9 · cosh2(ξ1)], (54)

y3 = W6 · sech2(ξ1)[W13 · cosh(ξ1) cos(Ω1)

−W12 · sinh(ξ1) sin(Ω1) + 2λW2

(2W1 cosh(2ξ1) +W7

)],(55)

where Ω1 =(k21(λ+ 1)/4 + λ2

)t+ λx+ 2λ k0/k1,

ξ1 = k1(k21t+ 4x)/8 + k0 and W1, . . . ,W13 are constants.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 25 / 49

Page 52: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained usingk1 deformation

We find the immersion function F of the mKdV surface obtained usingk1 deformation by using the following equation

F = ν Φ−1∂Φ

∂k1+

(r11 r12r21 r22

), (56)

from which we obtain the position vector.

Here we use the solution, Φ, of Lax equations and we choose thefollowings

A1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), (57)

r11 = −r22 =ν (πλ+ k1)

(B2

2 −B21

)k21(B2

1 +B22)

, (58)

r12 = −r21 k21(B2

1 +B22) + 2νB1B2(πλ+ k1)

k21(B21 +B2

2), (59)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 26 / 49

Page 53: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained usingk1 deformation

We find the immersion function F of the mKdV surface obtained usingk1 deformation by using the following equation

F = ν Φ−1∂Φ

∂k1+

(r11 r12r21 r22

), (56)

from which we obtain the position vector.Here we use the solution, Φ, of Lax equations and we choose thefollowings

A1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), (57)

r11 = −r22 =ν (πλ+ k1)

(B2

2 −B21

)k21(B2

1 +B22)

, (58)

r12 = −r21 k21(B2

1 +B22) + 2νB1B2(πλ+ k1)

k21(B21 +B2

2), (59)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 26 / 49

Page 54: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

in order to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).

Hence we obtain a family of surfaces parameterized by

y1 = W14 · sech2(ξ1)[W15

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)sin(Ω1)

+W16 · Ω2 · cosh(ξ1) cos(Ω1)

+W8

(2Ω3 · cosh(2ξ1) + 2k21λ sinh(2ξ1) + Ω4

)], (60)

y2 = W14 · sech2(ξ1)[W17

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)cos(Ω1)

−W18 · Ω2 · cosh(ξ1) sin(Ω1) +W19

(cosh(2ξ1) + 1

)], (61)

y3 = W14 · sech2(ξ1)[W20

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)sin(Ω1)

−W21 · Ω2 · cosh(ξ1) cos(Ω1)

+ (W2/2)(

2Ω3 · cosh(2ξ1) + 2k21λ · sinh(2ξ1) + Ω4

)], (62)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 27 / 49

Page 55: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

in order to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).

Hence we obtain a family of surfaces parameterized by

y1 = W14 · sech2(ξ1)[W15

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)sin(Ω1)

+W16 · Ω2 · cosh(ξ1) cos(Ω1)

+W8

(2Ω3 · cosh(2ξ1) + 2k21λ sinh(2ξ1) + Ω4

)], (60)

y2 = W14 · sech2(ξ1)[W17

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)cos(Ω1)

−W18 · Ω2 · cosh(ξ1) sin(Ω1) +W19

(cosh(2ξ1) + 1

)], (61)

y3 = W14 · sech2(ξ1)[W20

(2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)sin(Ω1)

−W21 · Ω2 · cosh(ξ1) cos(Ω1)

+ (W2/2)(

2Ω3 · cosh(2ξ1) + 2k21λ · sinh(2ξ1) + Ω4

)], (62)

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 27 / 49

Page 56: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

whereΩ2 = t k31 + 4x k1/3, Ω3 =

(4λ2 + k21

)(k31[λ+ 1]t− 4λ k0

),

Ω4 = tk31

(4λ2[λ+ 1] + k21[7λ+ 1]

)/4 + λ

(k21[2x k1 − k0]− 4λ2 k0

)and

W14, . . . ,W21 are constants.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 28 / 49

Page 57: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces

We obtained the position vector −→y = (y1(x, t), y2(x, t), y3(x, t)) , of themKdV surfaces arising from deformation of parameters.

We plot some of these mKdV surfaces for some special values of theconstants.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 29 / 49

Page 58: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces from k0deformationExample:Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 1.5, k1 = 1.3and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 1.

Figure : (x, t) ∈ [−15, 15]× [−15, 15]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 30 / 49

Page 59: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example: Taking λ = 1.2, ν = 1, B1 = 1, B2 = 1, k0 = 0.5, k1 = 1.4and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 2.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 31 / 49

Page 60: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example: Taking λ = 0.6, ν = 1, B1 = 1, B2 = 1, k2 = 0.2, k3 = 0.4and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 3.

a) b)

Figure : (a), (b) (x, t) ∈ [−10, 10]× [−10, 10]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 32 / 49

Page 61: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Taking λ = 2.7, ν = 1, B1 = 1, B2 = 1, k0 = 0.3, k1 = 1.5 and r21 = 1in Eqs. (53)-(55), we get the surface given in Figure 4.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 33 / 49

Page 62: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces from k1deformationExample: Taking λ = 0.15, ν = 1, B1 = 1, B2 = 1, k0 = 0.1,k1 = −0.5 and r21 = 1 in Eqs. (60)-(62), we get the surface given inFigure 5.

Figure : (x, t) ∈ [−200, 200]× [−200, 200]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 34 / 49

Page 63: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = 0.03, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = −0.1 and r21 = 1in Eqs. (60)-(62), we get the surface given in Figure 6.

Figure : (x, t) ∈ [−3000, 3000]× [−3000, 3000]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 35 / 49

Page 64: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = −0.2, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.7 and r21 = 1in Eqs. (60)-(62), we get the surface given in Figure 7.

Figure : (x, t) ∈ [−100, 100]× [−100, 100]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 36 / 49

Page 65: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = −1.3, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 4 and r21 = 1 inEqs. (60)-(62), we get the surface given in Figure 8.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 37 / 49

Page 66: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 0.6, k1 = 0.7 and r21 = −2in Eqs. (60)-(62), we get the surface given in Figure 9.

Figure : (x, t) ∈ [−50, 50]× [−50, 50]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 38 / 49

Page 67: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = 0, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.7 and r21 = 1 inEqs. (60)-(62), we get the surface given in Figure 10.

Figure : (x, t) ∈ [−100, 100]× [−100, 100]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 39 / 49

Page 68: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = −0.8, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = −0.2 and r21 = 1in Eqs. (60)-(62), we get the surface given in Figure 11.

Figure : (x, t) ∈ [−20, 20]× [−20, 20]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 40 / 49

Page 69: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = −0.8, ν = 1, B1 = 1, B2 = 1, k0 = 5, k1 = −0.2 and r21 = 1in Eqs. (60)-(62), we get the surface given in Figure 12.

Figure : (x, t) ∈ [−20, 20]× [−20, 20]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 41 / 49

Page 70: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = −0.1, ν = 1, B1 = 1, B2 = 1, k0 = −4, k1 = −0.2 andr21 = 1 in Eqs. (60)-(62), we get the surface given in Figure 13.

Figure : (x, t) ∈ [−500, 500]× [−500, 500]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 42 / 49

Page 71: Surfaces from Deformation Parameters

The Parameterized Form of the mKdV Surfaces

Example:Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.2 and r21 = 1 inEqs. (60)-(62), we get the surface given in Figure 14.

Figure : (x, t) ∈ [−80, 80]× [−80, 80]

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 43 / 49

Page 72: Surfaces from Deformation Parameters

Conclusion

• To develop surfaces from integrable equations we used deformation ofparameters of solution of integrable equation

A = µ∂U

∂ki, B = µ

∂V

∂ki.

• Using this method, we construct 2-surfaces from modifiedKorteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives2-surfaces on spheres and the second one gives highly complicated2-surfaces in R3.

• We also give the graph of interesting mKdV surfaces arise fromparametric deformations.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 44 / 49

Page 73: Surfaces from Deformation Parameters

Conclusion

• To develop surfaces from integrable equations we used deformation ofparameters of solution of integrable equation

A = µ∂U

∂ki, B = µ

∂V

∂ki.

• Using this method, we construct 2-surfaces from modifiedKorteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives2-surfaces on spheres and the second one gives highly complicated2-surfaces in R3.

• We also give the graph of interesting mKdV surfaces arise fromparametric deformations.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 44 / 49

Page 74: Surfaces from Deformation Parameters

Conclusion

• To develop surfaces from integrable equations we used deformation ofparameters of solution of integrable equation

A = µ∂U

∂ki, B = µ

∂V

∂ki.

• Using this method, we construct 2-surfaces from modifiedKorteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives2-surfaces on spheres and the second one gives highly complicated2-surfaces in R3.

• We also give the graph of interesting mKdV surfaces arise fromparametric deformations.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 44 / 49

Page 75: Surfaces from Deformation Parameters

Conclusion

• To develop surfaces from integrable equations we used deformation ofparameters of solution of integrable equation

A = µ∂U

∂ki, B = µ

∂V

∂ki.

• Using this method, we construct 2-surfaces from modifiedKorteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives2-surfaces on spheres and the second one gives highly complicated2-surfaces in R3.

• We also give the graph of interesting mKdV surfaces arise fromparametric deformations.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 44 / 49

Page 76: Surfaces from Deformation Parameters

Bibliography

References I

L.P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover Pub., Inc.,

New York, (1909).

L.P. Eisenhart, Riemannian Geometry, Princeton Univ. Press, (1964).

H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech. 51,477 (1972).

U. Pinkall, Hamiltonian flows on the space of star-shaped curves, Results Math. 27, 328-332 (1995).

M. Gurses, Motion of Curves on two dimensional curves surfaces and soliton equations, Phys. Lett.

241 A, 329-332 (1998).

G L Lamb, Solitons on moving space curves, J. Math. Phys., 18, 1654 (1977).

M. P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Inc., Englewood Cliffs,

NJ, (1976).

R. Parthasarthy and K. S. Viswanathan, Geometric properties of QCD string from Willmore

functional, J. Geom. Phys. 38, 207-216 (2001) .

Z. C. Ou-Yang, J. Liu and Y. Xie, Geometric Methods in the Elastic Theory of Membranes in Liquid

Crystal Phases, World Scientific, Singapore, (1999).

A. I. Bobenko, Integrable Surfaces, Funct. Anal. Prilozh. 24, 68-69 (1990).

T.J. Willmore, Total Curvature in Riemannian Geometry, John Willey and Sons, New York, (1982).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 45 / 49

Page 77: Surfaces from Deformation Parameters

Bibliography

References II

T.J. Willmore, Surfaces in Conformal Geometry, Annals of Global Analysis and Geometry 18,

255-264 (2000).

P. G. Drazin, Solitons: An Introduction, Cambridge Univ. Press, New York (1989).

M. Gurses, Inverse Scattering, Differential Geometry, Einstein-Maxwell 2N Solitons and Gravitational

One Soliton Backlund Transformations in Solutions of Einstein? Equations: Techniques and Results,Edited by C. Hoensalears and W. Ditez, Lecture Notes in Physics, No. 205, pp. 199-234, Springer,Berlin (1984).

M. J. Ablowitz and H. Segur, Solitons, Nonlinear Evolution Equations and Inverse Scattering, London

Math. Soc. Lecture Notes Series 149 (1991).

A. Sym, Soliton Surfaces, Lett. Nuovo Cimento 33, 394-400 (1982).

A. Sym, Soliton Surfaces II, Lett. Nuovo Cimento 36, 307-312 (1983).

Sym A, Soliton Surfaces and their Applications in Geometrical Aspects of the Einstein Equations and

Integrable Systems, Lecture Notes in Physics Vol. 239, ed. Martini R, Springer- Berlin, 154-231(1985).

A.S. Fokas and I.M. Gelfand, Surfaces on Lie Groups, on Lie Algebras, and Their Integrability,

Commun. Math. Phys. 177, 203-220 (1996).

A.S. Fokas, I.M. Gelfand, F. Finkel and Q.M. Liu , A Formula for Constructing Infinitely Many

Surfaces on Lie Algebras and Integrable Equations, Selecta Math., New Ser. 6, 347-375 (2000).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 46 / 49

Page 78: Surfaces from Deformation Parameters

Bibliography

References III

O. Ceyhan, A.S. Fokas, and M. Gurses, Deformations of Surfaces Associated with Integrable

Gauss-Minardi-Codazzi Equations , J. Math. Phys. 41, 2251-2270 (2000).

M. Gurses, Some Special Integrable Surfaces, J. Nonlinear Math. Phys. 9, 59-66 (2002).

S. Tek, Modified Korteweg-de Vries surfaces, J. Math. Phys. 48, 013505 (2007).

S. Tek, Soliton Surfaces and Surfaces from a Variational Principle, Ph.D. Thesis. Bilkent University,

2007.

S. Tek, Some Classes of Surfaces in R3 and M3 arising from Soliton Theory and a Variational

Principle, Discrte and Continuous Dynamical System Supplement, 761-770, 2009.

S. Tek, Using Nonlinear Schrodinger Equation to Obtain Some New Surfaces in R3, submitted, 2015.

M. Gurses and S. Tek, Korteweg de Vries Surfaces, Nonlinear Analaysis: Theory, Method and

Applications, 95, 11-22 (2014).

M. Gurses and S. Tek, Surfaces from Departmation of Parameters, under preperation.

B.G. Konopelchenko, Nets in R3, their integrable evolutions and the DS hierarchy, Phys. Lett. A 183,

153-159 (1993).

B.G. Konopelchenko and I. A. Taimanov, Generalized Weierstrass formulae, soliton equations and

Willmore surfaces. I. Tori of revolution and the mKdV equation, Report No. dg-ga/9506011.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 47 / 49

Page 79: Surfaces from Deformation Parameters

Bibliography

References IV

B.G. Konopelchenko and G. Landolfi, Induced Surfaces and Their Integrable Dynamics II. Generalized

Weierstrass Representation in 4-D Spaces and Deformations via DS Hierarchy, Studies in AppliedMathematics 104, 129-169 (2000).

B.G. Konopelchenko, Surfaces of revolution and their integrable dynamics via the Schrodinger and

KdV equations, Inverse Problems 12, L13?18 (1996).

A. I. Bobenko, Surfaces in Terms of 2 by 2 Matrices, Old and New Integrable Cases in Harmonic Maps

and Intgerable Systems, eds. Fordy A P and Wood J C, Aspects of Mathematics, E23, Friedr.Vieweg & Sohn-Braunscweig, 83-127 (1994).

M. Melko and I. Sterling, Integrable systems, harmonic maps and the classical theory of surfaces in

Harmonic maps and integrable systems, eds. A. P. Fordy and J. C. Wood , Aspects of Mathematics,E23, Friedr. Vieweg & Sohn-Braunscweig, 129-144 (1994).

M. Gurses and Y. Nutku, New Nonlinear Evolution Equations From Surface Theory , J. Math. Phys.

22,1393 (1981).

J. Cieslinski, P. Goldstein, and A. Sym, Isothermic surfaces in E3 as soliton surfaces, Phys. Lett. A

205, 37-43 (1995).

J. Cieslinski, A Generalized Formula for Integrable Classes of Surfaces in Lie Algebraas, J. Math.

Phys. 38, 4255-4272 (1997).

R. Osserman, A Survey of Minimal Surfaces, Dover Pub., Inc., New York, (1986).

Z.C. Tu and Z.C. Ou-Yang, A Geometric Theory on the Elasticity of Bio-membranes, J. Phys. A:

Math. Gen. 37, 11407-11429 (2004).

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 48 / 49

Page 80: Surfaces from Deformation Parameters

Bibliography

References V

Z.C. Tu and Z.C. Ou-Yang, Lipid Membranes with Free Edges, Phys. Rev. E 68, 061915 (2003).

Z. C. Tu and Z. C. Ou-Yang, Proceeding of the Seventh International Conference on Geometry,

Integrability and Quantization, Varna, Bulgaria, 2005, edited by I. M. Mladenov and M. de Leon,SOFTEX, Sofia, 237 (2005), Report No. math-ph/0506055.

Z. C. Ou-Yang and W. Helfrich, Instability and Deformation of a Spherical Vesicle by Pressure, Phys.

Rev. Lett. 59, 2486-2488 ( 1987).

Z. C. Ou-Yang and W. Helfrich, Bending Energy of Vesicle Membranes: General Expansion for the

First, Second, and Third Variation of the Shape Energy and Applications to Sphere and Cylinders,Phys. Rev. A 39, 5280-5288 ( 1989).

W. Helfrich, Elastic Properties of Lipid Bilayers?heory and Possible Ex-periments, Z. Naturforsch. C

28 (1973) 693-703.

I. M. Mladenov, New Solutions of the Shape Equation, Eur. Phys. J. B 29, 327-330 (2002).

Z.C. Tu, Elastic Theory of Biomembranes, Thin Solid Films 393, 19-23 (2001).

M. Blaszak, Multi-Hamilton Theory of Dynamical Systems, Springer-Verlag, Berlin, 1998.

P. J. Olver, Applications of Lie Groups to differential Equations, Springer, Berlin, 1991.

S.Tek and M.Gurses Surfaces from Defor. Parameters June 5-10, 2015 49 / 49