Surface Engineering PJM1

6
Surface Engineering with Ion Beams and Plasma Jets Plasma Source Optic Axel Schindler and Thomas Arnold Leibniz Institute of Surface Modification, Leipzig, Germany www.iom-leipzig.de Leibniz-Institut für Oberflächenmodifizierung Manufacturing Technologies to Support Large Science Projects Paris, France 25th - 26th November 2010 1 Leibniz-Institute for Surface Modification - IOM - Field of work: Non–ThermalModificationof Surfaces and Thin Films and Thin Film Deposition With the help of Electron-, Ion-, Plasma- andUV-Photon-Beams Staff:48 permanent ~ 90 in projects (2..3 y.) ~ 140 employees in total Annual budget: ~6 Mio. Basic Financing + ~ 3...5 Mio. Projects + Orders ~ 9...11 Mio. in total ße 1 5 Permoserstra 04303 Leipzig; Germany Tel:+49 341 235 2308 Fax:+49 341 235 2313 e-mail: bernd.rauschenbach@iom- leipzig.de Internet: - http://www.iomleipzig.de Board of Directors: Prof. Dr. B. Rauschenbach NN Leibniz-Institut für Oberflächenmodifizierung Manufacturing Technologies to Support Large Science Projects Paris, France 25th - 26th November 2010 2 Chemical Department Physical Department ~ 50 % Scientists bersichtOutline News on Ion Beam FiguringIBF Other ion beam surface processing techniques Atmospheric Plasma Jet MachiningPJM 3 Leibniz-Institut für Oberflächenmodifizierung Manufacturing Technologies to Support Large Science Projects Paris, France 25th - 26th November 2010 i Expert i se of IOM i i n l-i ultra-precision surface processing ...applied to optics Ion Beam Figuring IonBeam Planarization Ion Beam Smoothing Ion Beam Patterning Ion Beam Proportional Transfer IOM‘s R&D activities in Ion Beam and Plasma Jet Surface Processing more than 35 years experience in (R)IBE - PT since 1986 in IBF for optics fabrication Since 1993 in PACE and PJM for optics fabrication Leibniz-Institut für Oberflächenmodifizierung Manufacturing Technologies to Support Large Science Projects Paris, France 25th - 26th November 2010 Ion Beam Assisted Deposition Low Energy Ion Implantation Plasma Jet CNC machining – etching and deposition OpticIon Source PlasmaSource Optic 4 Expertise of IOM in ultra- precision surface processing Basic Research and Development of: - Processing - Software - Components - Systems References: ... and others 5 Effective wavelength range Spatial wavelength size of surface features [m] 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -7 10 -8 Ion beam and Plasma jet deterministic figuring Ion beam nano structuring/ smoothing Surface topology Mid Spatial Frequency Roughness MSFR High Spatial Frequency RoughnessHSFR μm 100mm 160μm 1μm Optical / tactile profiler Interferometry Leibniz-Institut für Oberflächenmodifizierung White light and Micro-interferometer Manufacturing Technologies to Support Large Science Projects Paris, France 25th - 26th November 2010 AFM SEM 6

description

hhh

Transcript of Surface Engineering PJM1

  • Surface Engineeringwith Ion Beams and Plasma Jets

    Plasma Source

    Optic

    Axel Schindler and Thomas ArnoldLeibniz Institute of Surface Modification, Leipzig, Germany www.iom-leipzig.de

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 1

    Leibniz-Institute for Surface Modification - IOM -

    Field of work:

    NonThermalModificationofSurfacesand Thin Films andThin Film DepositionWith the help ofElectron-, Ion-, Plasma- and UV-Photon-Beams

    Staff:48 permanent~ 90 in projects (2..3 y.)

    ~ 140 employees in total

    Annualbudget:~ 6 Mio. Basic Financing

    + ~ 3...5 Mio. Projects + Orders~ 9...11 Mio. in total

    e 1 5Permoserstra04303Leipzig;Germany

    Tel:+49 341 235 2308Fax:+49 341 235 2313e-mail:[email protected]: -

    http://www.iomleipzig.de

    Board of Directors:Prof.Dr.B. RauschenbachNN

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 2

    Chemical Department

    Physical Department

    ~ 50 %Scientists

    bersichtOutline

    News on Ion Beam Figuring - IBFOther ion beam surface processing techniquesAtmospheric Plasma Jet Machining - PJM

    3Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    iE x p e r t i s e o f I O M i i n l - i

    ultra-precision surface processing

    ...applied to optics

    > Ion Beam Figuring>IonBeam

    Planarization

    > Ion Beam Smoothing> Ion Beam Patterning

    > Ion Beam ProportionalTransfer

    IOMs R&D activities inIon Beam and Plasma Jet Surface Processingmore than 35 years experience in (R)IBE - PT since 1986 in IBF for optics fabricationSince 1993 in PACE and PJM for optics fabrication

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    > Ion BeamAssisted Deposition

    > Low EnergyIon Implantation

    > Plasma Jet CNCmachining etching anddeposition

    OpticIon Source

    PlasmaSource

    Optic

    4

    Expertise of IOM in ultra-precision surface processing

    > Basic Research and Development of: -Processing

    - Software

    - Components- Systems

    References:

    ... and others

    5

    Effective wavelength range

    Spatial wavelength size of surface features [m]

    10-110-210-310-410-510-610-710-8

    Ion beam and Plasma jetdeterministic figuring

    ?

    Ion beamnano structuring/

    smoothing

    Surface topology Mid Spatial Frequency Roughness -MSFR HighSpatialFrequencyRoughnessHSFRm

    100mm 160m 1m

    Optical / tactileprofilerInterferometry

    Leibniz-Institutfr Oberflchenmodifizierung

    White light andMicro-interferometer

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    AFMSEM

    6

  • Space Optics ion beam finished by IOMSOFIA Secondary mirror IBF in IOM 2001: 352 mm SiC, 39 nm rms

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 7

    Ion beam-figuring of synchrotron-optics

    Plano-Elliptical Focusing Mirror250

    > 40 mm Kaufman-Source> Hot Filament-Neutralisation> 800 V / 20mA

    100

    50

    0

    200

    Profi

    lhohe

    mnrn/

    150

    Ausgangsflche1.Bearbeitung3.Bearbeitung2.Bearbeitung

    0 50 100 150 200

    mm

    42m

    SR beam spotsand horizontalIntensity profiles

    SR Spot size(FWHM)

    17mSurface status

    RMS(arcsec]

    PV(arcsec]

    RMS(nm]

    PV(nm]

    FWHM(mm]

    initial state 1.49 5.02 47.3 191.1

    1 st run 0.44 2.43 13.3 58.1 4

    2 nd run

    3 rd run (finalstate)

    0.26 1.51 2.9 14.3 4

    0.1380138 0.85 1.4 8.8 2

    1,49 arcsecbefore

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 8

    110100908070605040302010

    Synchrotron beam line grating by large area uniform dwell time etching

    X-ray grating specification

    Pitch = pDuty cycle = t/pEtching depth =h

    pt

    Si-Si-subsratesubstrate

    h

    190mm

    Parameter type 1 type 5Substrate size 90mm x 30mm - 40mm thick 200mm x 30mm - 30mm thickLine Density 700 l/mm 700 l/mm 1400 mm-1 1400 mm-1

    track 1 track 2 track 1 track 2Energy range 10 - 20 eV 15 - 25 eV 150-400 eV 600-1600 eVGroove depth 10% 900 A 800 A 130 to 140 A 55 to 60 ADuty cycle (groove/period) 0.55 0.55 0.55 to 0.6 0.55Useful area 80 x 10mm2 80 x 10mm2 110 10 mm2 190 10 mm2

    9Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    New ideas for improving ion beam figuring performances

    Disadvantages of standard dwell time ion beam figuring usingcw ion beam:

    1. Fixed beam size constrains effectivefiguring to spatial wavelength equal orlarger then about the beam size,

    1. CW ion beam current regime togetherwith the maximum motion velocityand upper limits of the dynamics

    (accell. + decell.) of the mechanicalmotion system cause inefficiency withrespect to local depth resolution (steep

    surface gradients) and the waste materialremoval at the zero surface errorposition,

    1. Only sequential processing of surfacesby raster scan and no parallel processing.

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 10

    Ion source technology = key for UPSPBase source: 40 mm RF Source, Hidden Hot Filament Neutralisation

    100mm

    2mm 1mm 0.5mm

    Working distance [mm]: 55 15 10 6

    Removal spotFWHM [mm]: 8 2.1 1.10.6

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 11

    Motion ControlAxes-controller,-amplifier(Aerotech)

    New!IBF using motion synchronized PWM ion beam control

    Initial and FinalSurface Data tmech , tpwm

    CNanotec

    Parameter

    DtCalc

    CAM-Table

    Beam Profile Data

    Beam on /off

    PWM (EIA485) Uacc

    Beam switching-Parameters:f = 10 kHz;

    tpuls = 2 ... 98 s-* PWM = 2 ... 98%

    3-(5-)Axes-

    Beam switching unit

    UbeamIon source

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    PC I/O: Firewire

    Leibniz-InstitutfrOberflchenmodifizierung

    3-(5-)Axes-Motion System

    12

  • Improved ion beam figuring using PWM of a RF-ion sourceParametersofaxis-system:

    Max. axis velocity vmax : 40 mm/sMin.dwell time tmin : 2 ms5 nmRange for PWM = 2...98%

    Max.accelerationamax :0.5 m/s2Assumed time for5 nmacceleration ta: 2 ms

    Ar ion beam:hRemoval rate r: 2 nm/sFWHM:1.5mmhVolume removal rate: 3,06*10-4mm3/min

    Results:Principlevmaxv* max= >90vmax

    I = f(TV) Base removal dwell time+PWM: 0,02 IEIR-19Dcessing time-dwell timPtiM:= 10% 50% 90% 3:46 Processing time dwell time+PWM: 2:25

    IBF-Simulation for dwell time scanning + synchronized PWM[nm][nm]InitialAfter IBF

    StandardIBF+ PWM

    4 Reduction of the Base removal to 2 %4 Reduction of the Processing time to 64%

    5V:motion synchronized, PiAlivisbeam control enables:

    At = 100s=const. Base removal dwell time: 1,27

    I = const

    Standard IBF

    Local distribution of the PWM- dwell timesLocal distribution of the mechanical dwell times

    Leibniz-InstitutManufacturingTechnologiestoSupportLargeScienceProjectsfr OberflchenmodifizierungParis,France25th-26thNovember2010

    minimal material removal[ms]

    in certain cases strong reduction of the processing time low acceleration /deceleration precision figuring of partial areas of the surface

    of the axes system

    [ms]

    Effective dwell time distribution

    13

    New! Segmented grid linear ion source with PWL controlled ion beam

    PWM = 0.02 ... 0.98 %tpulse= 0.05 ... 0.2 msf = 0.5 ... 20 kHz

    Scholze et al. Rev.Sci.Instrum.77, 03C107 (2006)

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 14

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    Ion beam profile shaping of a linear ion source by PWM

    400 600 800 1000 1200 1400 1600

    1/m

    A

    600

    400

    200

    800

    0

    'Beam'Accj

    2,8

    2,6

    2,4

    2,2

    2,0

    1,8

    1,6

    1,4

    mA/cm

    2

    UBeam / V

    Total ion current 'Beam, ion current density at the maximum of the beam crosssection jand the ion current measured on the accelerator grid 'Acc in dependence of thebeam votage UBeam of the linear ion source.

    Different beam profiles along the segmented ion source axis by PWMof every segment measure by a Faraday-cupline arraywith30 cups,distance200mm.

    1.000.750.500.25

    0.000200 400 600Length[mm]

    1.20.90.60.3

    0.00200 400 600

    Length [mm]

    0.600.450.300.15

    0.000200 400 600Length [mm]

    Ion

    curr

    ent

    dens

    ity[m

    A/cm

    2 ]

    15

    Modular2.45Ghzdrivenionsourcewithsegmentedgridsystemfor ion beam PWM control of each single gridsegment.

    Efficient IBF of systematic surface shape distortions

    Y [mm] (distance from the edge of the lens)

    Optimizedparameterof linear ionbeamsource(e.g. length 1m):

    Ion source position: parallel to the edge of an optic withsystematic edge contour error

    Systematic edge error = 3.6 m PVIon beam FWHM = 9.9 -11.9 mmRemoval rate at 1 mAcm-2 = 1 nm/s (=3.6 m/h)Resulting etching time 1hResidual error (rms) = 250 nm

    X [mm] (parallel to the edge)

    Part of the systematic edge figure error

    - In situ PWM ion beam shaping of a linearsegmented grid ion source enables:

    - efficient surface figuring of large optics esp. forsystematic surface errors

    - after continuing development probably efficientfiguring arbitary shaped surfaces

    mean edge cross sectionoptimized gassian ion beam profileresidual error of the edge cross section

    2500

    2000

    1500

    1000

    500

    0

    profile

    heigh

    t[nm]

    0 5 10 15 20

    A

    Simulation study

    [nm]4500

    4000

    3500

    3000

    2500

    profi

    leheig

    ht[nm

    ]2000

    -60 -40 -20B 0 20 40 60

    4500

    4000

    3500

    3000

    2500

    2000

    1500

    1000

    500

    0

    edge error profile parallel to the edge

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 16

    Ion beam smoothing of ion beam etched ZerodurMulti step process with Si coating step (patented by Schott)

    Zerodur surface after IBFcoated with Si thin filmafter smoothing

    10-410-310-210-1

    105

    Rq = 0.142 0.007 nm3nm

    0nm

    10-1

    250nm

    104

    103

    102

    101

    pow

    ersp

    ectra

    lden

    sity

    PSD

    [nli

    100

    -1]spatial frequency f [nm

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 17

    Leibniz-Institutfr Oberflchenmodifizierung

    Ion beam smoothing of a SiC surfaceIon beam direct smoothing - IBS Ion beam planarization - IBP(a): Rq = 2.15 nm

    (c): Rq = 0.54 nm

    750 nm

    750 nm

    (b): Rq = 0.81 nm

    750 nm

    8 nm

    0 nm

    (a): Rq = 4.16 nm

    2000 nm 2000 nm

    (b): Rq = 0.88 nm10 nm

    0 nm

    106

    1st step: photo resist layer 5080nm spray coating105

    2ndstep Ark, 700eV, 200mAcm-2, iia 30

    10-110-310-210-1

    104

    103

    102

    PSD

    [nm

    4]

    101

    100

    (d)

    SiC as polishedIBS step#1IBS step#2

    spatial frequency f [nm-1]

    Ark, Eion =800eV, jion =250 mAcm2, simultaneous sample rotation, a) beforeIBS, b) 1st step iia 70, c) 2nd step iia 0

    Leibniz-InstitutManufacturing Technologies to Support Large Science ProjectsfrOberflchenmodifizierungParis, France 25th - 26th November 2010

    18

  • Nano optics made by nature... and ... by ion beamInP-surfacestructure after ion beam bombardment

    500 nm500 m

    Faceteye of a moth

    10 m

    Facets

    1 m

    Structuredfacet surface

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 19

    Self-assembling nanostructures by ion beam bombardment

    Eion = 2000 eV, Xe+ Si

    500 nm

    ion = 25 ion = 26

    Ion beam direction

    F. Frost, ... Appl. Phys. Lett. 92, 063102 (2008); Appl. Phys. Lett. 88, 173115 (2006)

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 20

    21Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    Anti reflecting surface by self assembling nano-structures

    IBE-nano structureson GaSb surface,Au-coated

    Reflectivity Measurement: Dr. M. Schubert, Uni Leipzig

    Ar+-Ion Beam(500 eV)

    GaSb

    z=100nm

    1000nm 125nm

    Refle

    ctivit

    y[%]

    100

    40

    20

    80

    60

    200 300 400 500 600 700 800 900 1000

    GaSb IBE nano structured + AuGaSbpolished + Au

    Wavelength [nm]

    polished

    ~ 5 cm

    nano-structured

    Precision Atmospheric Plasma Jet Machining (PJM)

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 22

    Introduction - Plasma Jet Machining (PJM)PJM a fast and highly efficient technology for surface figuring(100-1000 faster than ion beam figuring)

    Reactive plasma jet etching / deposition / surface modification Deep asphere fabrication, figure error correction Process in ambient air, normal pressure No mechanical forces applied to surface Sub-surface damage free Capability of sub-surface damage removal

    Lithography Telescopes Space Optics Synchrotron Radiation

    23Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    Plasma Jet Machining (PJM) - PrincipleCentral gas inlet

    (e.g. Ar + CF4 )

    -Chemical reaction onsurface:

    Si + 4F SiF4

    Plasma jet source

    Plasma jet

    Lens

    Chemical material removal Gaussian jet tool function Process in normal environment (air) No vacuum

    Materials: silicon, fused silica, SiC,ULE, (Zerodur)

    G. Boehm, W. Frank, A. Schindler, et al. , Plasma jet chemical etching - a tool for the figuring of optical precision aspheres, PrecisionScience and Technology for Perfect Surfaces, eds. Y.Furukawa, Y. Mori & T. Kataoka , The Japan Society for Precision Engineering, Tokyo(1999) 231-236 (Proc. of the 9th ICPE, Osaka/Japan, 29.08.-01.09.1999)

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 24

    Shieldgas (e.g.N2)

    Grounded shieldHF

    Pipe electrode

    Extended shield

    Plasma jet(ions + electrons + neutrals)

    Radical jet(e.g.Atomic fluorine F)

    F

    Substrate

  • 2.45 GHz Plasma jet sources of IOM

    High-power source Compact source Mini source

    Mass ca. [kg]: 15 2 0.1

    Power max [W] :

  • PJM - high rate removal on workpiece edges

    Simulation studyProblem: reduced removal on workpiece edges at mechanical sub-aperture techniques

    X[mm]

    Sim strategy: Approximation of edge cross section profile by discrete Gaussian grooves

    Parameters: Horizontal position of groove, scan velocity

    Constraints: Velocity (temperature) dependent FWHM and removal rate

    Plasma jet edge machining

    Heigh

    t[pm

    ]

    2.5

    0.5

    1.5

    2

    00 2 4 6 8 10 12 14 16

    1

    Typical edge cross section

    31Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    PJM - high rate removal on workpiece edgesResults

    Velocity [mm/s] Grooveposition[mm]

    6.5049 -1.000

    9.2770 0.9020

    7.9587 2.6521

    8.8137 4.9964

    12.1257 7.4343

    19.3919 9.9505

    X [mm]

    00

    0-0 Re

    sidua

    lerro

    r[pm

    ]I

    -_

    --

    He

    ig

    ht

    [p

    m]

    -0.02

    -0.030 2 4 6 8 10 12 14 16

    2.5

    0.5

    .03

    .02

    .01

    .01

    1.5

    2

    00 2 4 6 8 10 12 14 16

    0

    1

    Theoretical residual error

    RMS: 0.009 m

    X [mm]

    edge profile

    grooves

    Assumed material: fused silica

    - Volume removal rate: 2.5 mm3/min

    - Effective correction rate: 1.6 mm/s- Plasma jet machining is a potential technology

    for effective treatment of edges

    32Leibniz-Institut Manufacturing Technologies to Support Large Science ProjectsfrOberflchenmodifizierungParis, France 25th - 26th November 2010

    Nanometer PJM shape correction with sub-mm spatial resolution

    Fused Silica Concave Asphere, 134 mm

    Processing Parameter: Plasmajet Gaussian fit FWHM 0.67 mm Removal Rate 0.0014 mm3/min Pixel size 146 m Average Scan Velocity 6 mm/s Overall Machining time 4h 10 min

    Base Removal 8.1 nm 5-Axes-CNC-Plasma-Jet-Figuring

    35 nm 35 nm

    0nm 0 nm

    Before PJMRMS 2.81 nm, PV 32.77nm

    After PJM CorrectionRMS 1.20 nm, PV 17.71 nm

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 33

    Summary - PJM

    PJM is very efficient for deterministic surface shaping with nanometric

    accuracy andhigh spatial resolution

    PJM works at atmospheric pressure

    PJM requires less polishing afterwards because no SSD occur

    PJM covers a wide range of applications like- Fabrication of aspheres and free forms with lateral dimensions from 5 to 500 mm and machining

    depths up to some millimeters

    - Reduction of figure and/or mid spatial errors (> 0.5 mm) -Damage layer removal and surface preparation

    PJM works currently on Fused Silica, ULE, Silicon, Silicon Carbide, and Zerodur

    34Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010

    AcknowledgementsT. Hnsel, A. Nickel, F. Frost, R. Fechner, G. Bhm, H. Paetzelt, F. Pietag, D. Flamm, D. Hirsch, H. Neumann, I. Herold, H.Beck, P. Hertel, G. Gleisberg, E. Salamatin, K. Ohndorf, A. Mill, T. Freyer, H. Bucsi, S. Daum, P. Seidel, M. Eichentopf,H. Neumann, F. Scholze, S. Mieler, J. Meister

    Thanks for Collaboration

    IBF and PJM device and equipmentdevelopment and manufacturing

    Financial support by:

    Project-No.:13N16011 and 13 N 7016/0 and

    + Project-No.: 5950/914

    Young Researchers Group:Ultra precision manufacturing usingatomic particle beams

    contractsFOR 365/1-1/2;SCHI 434/11-1

    is gratefully acknowledged.Leibniz-Institut Manufacturing Technologies to Support Large Science ProjectsfrOberflchenmodifizierungParis, France 25th - 26th November 2010 35

    Thank You !Major Equipment for Ion Beam Figuring and Plasma Jet Machining at IOM

    5-Axes Ion BeamFiguring Machine

    ISARA400TactileCMMavailable 2011

    Aspheric StitchingInterferometer (ASI)

    5-AxesAtmosphericPJMFiguring Machine

    Ion Source Machine1-Axis 60 cm Linear Variable Beam

    Diameter RF Ion source

    Leibniz-InstitutfrOberflchenmodifizierung

    ManufacturingTechnologies to Support Large Science ProjectsParis, France 25th - 26th November 2010 36