Supporting Online Material for*To whom correspondence should be addressed. E-mail:...

44
www.sciencemag.org/cgi/content/full/327/5963/348/DC1 Supporting Online Material for Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier* *To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.) Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090 This PDF file includes: Materials and Methods SOM Text Figs. S1 to S18 Table S1 References

Transcript of Supporting Online Material for*To whom correspondence should be addressed. E-mail:...

Page 1: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

www.sciencemag.org/cgi/content/full/327/5963/348/DC1

Supporting Online Material for

Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake

Regulation

Jason Rihel,* David A. Prober, Anthony Arvanites, Kelvin Lam, Steven Zimmerman, Sumin Jang, Stephen J. Haggarty, David Kokel, Lee L. Rubin, Randall T. Peterson, Alexander F. Schier*

*To whom correspondence should be addressed. E-mail: [email protected] (A.F.S.); [email protected] (J.R.)

Published 15 January 2010, Science 327, 348 (2010) DOI: 10.1126/science.1183090

This PDF file includes: Materials and Methods

SOM Text

Figs. S1 to S18

Table S1

References

Page 2: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

1

Supporting Online Material Table of Contents Materials and Methods, pages 2-4 Supplemental Text 1-7, pages 5-10

Text 1. Psychotropic Drug Discovery, page 5 Text 2. Dose, pages 5-6 Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors, page 6 Text 4. Polypharmacology, pages 6-7 Text 5. Pharmacological Conservation, pages 7-9 Text 6. Non-overlapping Regulation of Rest/Wake States, page 9 Text 7. High Throughput Behavioral Screening in Practice, page 10

Supplemental Figure Legends, pages 11-14 Figure S1. Expanded hierarchical clustering analysis, pages 15-18 Figure S2. Hierarchical and k-means clustering yield similar cluster architectures, page

19 Figure S3. Expanded k-means clustergram, pages 20-23 Figure S4. Behavioral fingerprints are stable across a range of doses, page 24 Figure S5. Compounds that share biological targets have highly correlated behavioral

fingerprints, page 25 Figure S6. Examples of compounds that share biological targets and/or structural

similarity that give similar behavioral profiles, page 26 Figure S7. Cluster analysis of multi-target compounds, page 27 Figure S8. Comparison of the effects of adrenergic drugs on rest/wake states in

zebrafish to the effects in mammals, page 28 Figure S9. Comparison of the effects of serotonin drugs on rest/wake states in

zebrafish to the effects in mammals, page 29 Figure S10. Comparison of the effects of dopamine drugs on rest/wake states in

zebrafish to the effects in mammals, page 30 Figure S11. Comparison of the effects of GABAergic drugs on rest/wake states in

zebrafish to the effects in mammals, page 31 Figure S12. Comparison of the effects of melatonin drugs on rest/wake states in

zebrafish to the effects in mammals, page 32 Figure S13. Comparison of the effects of histamine drugs on rest/wake states in

zebrafish to the effects in mammals, page 33 Figure S14. Comparison of the effects of adenosine drugs on rest/wake states in

zebrafish to the effects in mammals, page 34 Figure S15. Comparison of the effects of glutamate drugs on rest/wake states in

zebrafish to the effects in mammals, page 35 Figure S16. The L-type calcium channel inhibitor, YS-035, dose dependently increases

rest with minimal effects on waking activity, page 36 Figure S17. Examples of immunomodulators that co-cluster as daytime-waking activity

enhancers, page 37 Figure S18. ERG inhibitors, but not non-ERG blocking anti-histamine analogs, dose

Page 3: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

2

dependently increase waking activity at night, page 38 Table S1. Summary of dose response experiments for selected compounds indicates

fingerprints are stable across several concentrations, page 39 Supplemental References, pages 40-43.

Materials and Methods

Small molecule exposure. Larval zebrafish were raised on a 14 hour/10 hour light/dark cycle at 28.5oC. At four days post fertilization (dpf), a single larva was pipetted into each of 80 wells of a 96-well plate (7701-1651; Whatman, Clifton, NJ) containing 650 µL of standard embryo water (0.3 g/L Instant Ocean, 1 mg/L methylene blue, pH 7.0). Larvae were then exposed to small molecules beginning at ~96 hours post fertilization (hpf) by directly pipetting a 10 mM stock solution (in DMSO) into each well (10 animals per compound) for a final chemical concentration of ~10-30 μM and no more than 0.3% DMSO. This concentration of DMSO has no effect on behavior. Small molecules were obtained from the following libraries and screened at the following final concentrations: 1) Spectrum library from Microsource Discovery at ~30 µM (Gaylordsville, CT); 2) Prestwick library from Prestwick Chemical at ~15 µM (Illkirch, France); 3) neurotransmitter (cat#2810), ion channel (cat#2805), and orphan ligand libraries (cat#2825) from Biomol International at ~15 µM (now Enzo Life Sciences, International; Plymouth Meeting, PA); 4) Sigma LOPAC library at ~10 μM (Sigma-Aldrich, St. Louis, MO). Behavioral recording began at 11 PM, approximately 110 hpf. Locomotor activity analysis. The behavioral assay is adapted from (S1). Locomotor activity was monitored for 60 hours using an automated video tracking system (Videotrack; Viewpoint Life Sciences, Montreal, Quebec, Canada) with a Dinion one-third inch Monochrome camera (model LTC0385; Bosch, Fairpoint, NY) fitted with a fixed-angle megapixel lens (M5018-MP; Computar) and infrared filter. The movement of each larva was recorded using the Videotrack quantization mode, and data from two cameras were collected in alternating minutes by one computer. The 96-well plate and camera were housed inside a custom-modified Zebrabox (Viewpoint, LifeSciences) that was continuously illuminated with infrared lights and illuminated with white lights from 9 AM to 11 PM. The 96-well plate was housed in a chamber filled with circulating water to maintain a constant temperature of 28.5oC. The Videotrack threshold parameters for detection used were: detection threshold, 40; burst, 25; freeze, 4; bin size, 60 seconds. Data analysis. The data was processed using custom PERL, Visual Basic Macros for Microsoft (Seattle, WA) Excel, and Matlab (version R2007a; The Mathworks, Inc). Any one minute bin with less than 0.1 second of total movement was defined as one minute of rest; a rest bout was defined as a continuous string of rest minutes (S1). Rest latency was defined as the length of time from lights on or off to the start of the first rest bout. Total activity was defined as the average amount of detected activity in seconds, including all rest bouts. Waking activity was defined as the total amount of detected activity, excluding all one minute periods of rest. These parameters were calculated for each experimental day and night, standardized to camera-matched DMSO controls, and

Page 4: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

3

expressed as +/- standard deviations from controls for hierarchical clustering (see below). We calculated the inter-assay variability as a coefficient of variation (standard deviation of all DMSO controls/mean of DMSO controls*100) for each measurement. For non-normal distributions, including rest length, rest latency, and wakingactivity, the coefficient of variation was calculated following a Box-Cox transformation to a normal distribution. The coefficient of variations (expressed as a %) are as follows: total rest, day 1, 42.3%, day 2, 42.1%, night 1, 24.4%, night 2, 19.9%; rest bouts, day 1, 27.3%, day 2, 21.9%, night 1, 16.7%, night 2, 11.3%; rest bout length, day 1, 14.6%, day 2, 12.9%, night 1, 15.6%, night 2, 11.3%; rest latency, day 1, 35.7%, day 2, 45.8%, night 1, 13.2%, night 2, 20.0%; total activity, day 1, 35.5%, day 2, 28.1%, night 1, 36.3%, night 2, 29.9%; waking activity, day 1, 15.5%, day 2, 17.9%, night 1, 18.9%, night 2, 15.6%. Much of the variability is due normal inter-individual variation. To generate time series data for average rest per 10 minutes and average waking activity per 10 minutes (red traces, e.g. Figure 2B-F), these two parameters were averaged across all 10 replicate animals in 10 minute intervals and then normalized to camera matched controls by dividing each 10 minute rest and 10 minute waking activity measure by the mean daytime rest and activity for camera matched controls, respectively. For comparison, 10 representative sets of DMSO controls (10 larvae each set; e.g. blue traces in Figure 2B-F) are plotted in each time series. The same DMSO controls are shown in all graphs for clarity. To identify compounds that significantly altered behavior, each parameter was compared to camera-matched DMSO controls by Student‟s t-test. Compounds were chosen for further analysis if either: 1) the compound altered the same parameter in the same direction at a p value < 10-5 for two consecutive days or nights, 2) the compound affected a behavioral parameter at p<10-10 within the first 24 experimental hours, or 3) the compound altered rest latency at p<0.001 for two consecutive days or nights but had little effect on other parameters. These parameters were chosen to select the largest manageable set of small molecules with the strongest and most consistent effects on behavior while minimizing false positives and compounds with spurious short-term behavioral alterations. Biological targets were assigned to compounds based on annotations in the Pharmaprojects, Drugbank, Drugs@FDA, and Leadscope Marketed Drugs databases, as well as information supplied by the library vendors and detailed manual literature searches for each compound. Hierarchical and k-means clustering analysis. Clustering analysis was performed with Cluster 3.0 (adapted by Michiel de Hoon from Cluster, written by Michael Eisen, (S2)) and visualized using TreeView (written by Michael Eisen, (S2)). Hierarchical clustering was performed using Pearson uncentered correlation and average linkage. The parameters were weighted as follows: total rest, 1.0; rest bouts, 0.8; rest bout length 0.3, rest latency, 1.0; total activity and waking activity, 1.0. K-means clustering was performed using k=24 and Euclidean distance. To determine the relative position of the k-clusters, the average vector for each cluster was calculated, and these 24 vectors were hierarchically clustered using Euclidean distance.

Page 5: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

4

Correlation Analysis: All correlation analysis was performed in Matlab (version R2007a; The Mathworks, Inc). The weighted, uncentered Pearson‟s correlation coefficients were calculated for all compound pairs. Compounds were assigned to pharmacological classes as described above. Compounds were considered to share targets if both their target assignment and activity (i.e. agonist or antagonist) overlapped for at least one target. Rank Correlation Analysis: To perform rank correlation analysis for adrenergic antagonists and ERG blocking drugs, the average weighted uncentered Pearson‟s correlation coefficient between each compound of the identified cluster and every other small molecule was calculated. Each small molecule was then assigned a rank based on their mean correlation, with rank 1 being the highest mean correlation. Compounds that showed ERG or adrenergic antagonist activity were identified by their pharmacological assignments, and the Kolmogorov-Smirnov statistic was used to assign the p value for whether ERG or adrenergic antagonist compounds were enriched among the higher ranking compounds. The rank correlations were graphically represented in Treeview (S2). Dose Correlation Analysis. Compounds were ordered from Sigma-Aldrich (St. Louis, MO), dissolved in DMSO to a stock concentration of 30 or 45 mM and tested in the locomotor activity assay at final concentrations of 0.15, 0.45, 1.5, 4.5, 15, and 45 µM, or 0.1, 0.3, 1.0, 10, and 30 µM (0.3% DMSO final concentration). Each concentration was tested on 10-20 larvae. To generate the fingerprint for each concentration, the behavioral parameter measurements were standardized to camera-matched DMSO controls and expressed as +/- standard deviations from controls. Two-tailed t-test assessments (Bonferroni corrected for multiple comparisons) determined statistically significant differences of each measurement relative to camera-matched controls. The correlation matrices were generated by calculating the weighted, uncentered Pearson‟s correlation coefficient between the fingerprints for all concentration pairs. The fingerprint, significance, and correlation matrix heat maps were generated using Matlab (version R2007a; The Mathworks, Inc.). MAO inhibitor assay. MAO-B activity was assayed as described (S3).

Page 6: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

5

Supplemental Texts 1-7 Supplemental Text 1. Psychotropic Drug Discovery The limitations of in vitro drug screening are particularly acute for the development of drugs that modulate the central nervous system (CNS). Surveys of drug discovery success show that CNS drugs take longer to develop (12.6 years versus 6.3 years for cardiovascular drugs) and fail to reach the market more often (7% success rate versus 15%) than other therapeutic indications (S4). The CNS poses a particular challenge to drug discovery because the brain cannot be modeled in vitro. Indeed, most modern psychotropic drugs were first developed for non-psychotropic uses and serendipitously discovered to have behavior-altering side effects (e.g. the MAO inhibitor, iproniazid, was developed to treat tuberculosis and found to alter mood, and the tricyclic antidepressant imipramine was first used as an anti-histamine, (S5)). Furthermore, CNS drugs tend to produce undesirable side effects, including dizziness, tremors, lethargy, and seizures, which are difficult to predict at early stages of the drug discovery pipeline. Also, the mechanism of action for many CNS drugs, including bipolar medications, antidepressants, and antipsychotics, is poorly understood and in many cases may depend on a compound‟s complex poly-pharmacological actions across multiple neurotransmitter systems (S6-7). Indeed, efforts to increase efficacy and reduce side effects through the development of newer generations of drugs with more selective target profiles has to date achieved only limited success (S8-9). Alternatives or complements to in vitro target-based screens include phenotype-based, whole organism screens. Such screens have several advantages. First, whole-organism screens need not be limited to single, well-validated targets. In fact, whole organism screens can identify efficacious compounds with complex mechanisms of action. Second, unwanted side effects, an obstacle in any drug discovery pipeline, can be detected at earlier stages, even during the primary screening process. Third, compounds that produce a behavioral effect are bio-available, another major stumbling block to in vitro based drug discovery pipelines. In principle, whole organism phenotypic screening could replace serendipity, but the requirement for large numbers of phenotyped animals is usually cost and time prohibitive. Behavioral screening in zebrafish larvae offers a cost-effective model system for psychotropic drug characterization and discovery. Supplemental Text 2. Dose Choosing the compound concentration is a challenge for any large-scale small molecule screen. Effective doses can vary among compounds, but it is impractical in most cases to screen at multiple concentrations. The decision to perform our screen in the 10-30 µM range was based on the following considerations. First, we were guided by several previous studies. Developmental screens in zebrafish used concentrations of 10-50 µM (S10-12), single compound behavioral studies in zebrafish were done at 1-100 µM (S13-19), and the connectivity map cell-based screen was performed at 10 µM (S20, 21). Second, we performed a pilot screen of 96 compounds and found that only 10% of

Page 7: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

6

the compounds were overtly toxic at the 30 μM range, a percentage deemed acceptable for screening. Third, dose response curves on selected compounds indicated that a concentration of 10-30 µM was an effective range with consistent behavioral effects for most compounds (Table S1 and Fig. S4). Specifically, we found that fingerprints for the same compound were strongly correlated (25/29 cases) across the statistically effective concentration range (Fig. S4). These results show that the behavioral fingerprints are broadly stable across multiple doses. Supplemental Text 3. Therapeutic Classes of Drugs Induce Correlated Behaviors To test the potential of the clustering analysis, we determined whether compounds that share targets are more likely to produce similar phenotypes (Fig. S5A-B). Expanding this correlation analysis to 50 categories of drugs, we found, with few exceptions, that the correlations among related classes of compounds were much larger than chance (Fig. S5C). In many cases, every intra-class pair-wise correlation was larger than the zero target correlation (see Figure Legend S5 for definitions of category abbreviations; + indicates agonist, - indicates antagonist), including the ADR-A2+ (median correlation = 0.853; range = 0.352-0.974), SNRI (median = 0.775; range = 0.453-0.956), 5HT-1A+ (median = 0.791; range = 0.463-0.958), NEURO- (median = 0.759; range = 0.587-0.894), DOPA-D1+ (median = 0.885; range = 0.766-0.927), and CHA-NA+ (median = 0.833; range = 0.519-0.985) classes (Fig S5C). In other examples, intra-class pair-wise correlations were much larger except for a few outliers, including the SSRI (median = 0.767 ; range = 0.262-0.963), 5HT-1A- (median = 0.769; range = -0.02-0.930 ), 5HT-2- (median = 0.698; range = 0.187-0.977), DOPA-D2+ (median = 0.727; range = 0.072-0.982), GABA- (median = 0.722; range = -0.05-0.972), HIST-H1-(ERG) (median = 0.722; range = 0.229-0.911), and NMDA- (median = 0.651; range = -0.419-0.971) classes (Fig. S5C). Not all classes had higher correlations than the no target class, including the adrenergic reuptake class (ADR-U; median = 0.257; range = -0.50-0.959) and the sodium channel antagonist class (CHA-NA-; median = -0.031; range = -0.513 – 0.913). This may reflect the heterogeneity of secondary targets for the compounds of these classes. Supplemental Text 4. Polypharmacology. Many compounds have multiple, potentially non-overlapping targets. In such cases, one would expect that not all compounds that share targets produce similar phenotypes (Fig. S5A-C). For example, outliers of the correlation analysis might reflect the difficulty in assigning compounds to single classes when in fact they have multiple targets. This observation can be used to identify potential polypharmacological effects (Figs. S5C and S7). For example, NMDA antagonist (NMDA-) outliers included compounds that also bind to σ-opioid receptors (e.g. 3-methoxymorphinan), the GABA antagonist (GABA-) outlier tert-butyl-bicyclophosphorothionate (TBPS) also potently blocks chloride channels, the serotonin receptor 1A antagonist (5HT-1A-) outlier S(-)UH-301 is also a dopamine D2/3 receptor agonist, and the dopamine D2 receptor agonist (DOPA-D2+) outlier pergolide is also a serotonin receptor agonist (Fig S5C). Our correlation analysis can also uncover higher order associations among drugs with multiple targets, such as the high correlation between drugs that share dopamine reuptake inhibition and acetylcholine antagonism (Figure S7A-B). Furthermore, the clustering analysis can

Page 8: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

7

reveal unexpected associations between annotated drug classes. For example, a cluster of known α1-adrenergic receptor antagonists (ifenprodil, terazosin, and 5-methyl-urapidil) also cluster with several serotonin receptor modulators, including NAN-190, RU-24969, WAY-100635, spirotraxine, and buspirone (Fig. S7C-D). Intriguingly, buspirone and spirotraxine do not strongly bind to α1-adrenergic receptors in vitro yet can show in vivo adrenergic activity in specific pharmacological contexts (22). These results show that behavioral profiling can uncover associations between multi-target drugs whose properties are not fully predicted by in vitro studies. Supplemental Text 5. Pharmacological Conservation (Figs. S8-15). We systematically compared the behavioral effects of agonists and antagonists of the major neurotransmitter systems between zebrafish and mammals. In most cases, confidence in the conservation between zebrafish and mammals is enhanced when multiple compounds known to affect the same target elicit similar phenotypes and when agonist/antagonist pairs elicit opposing phenotypes. We discuss each class in more detail below. Adrenaline (Fig. S8). In zebrafish, α2-adrenergic agonists decreased wakefulness with little effect on rest, while activation of β-adrenergic receptors selectively reduced total rest at night. Conversely, β-adrenergic receptor antagonists increased total rest. α1-adrenergic antagonists gave a “mixed” phenotype of increased waking activity but also increased rest. These effects are broadly consistent with those observed in mammals (S23-35). Serotonin (Fig. S9). The analysis of serotonin-regulating drugs is complicated because most, if not all, serotonin-modulating drugs have considerable affinity for non-serotonin receptors, especially dopaminergic and adrenergic receptors. Thus, the drugs chosen for the table in Figure S9 combine serotonin-signaling selectivity, consistency of phenotype, and reproducibility (i.e. multiple hits within the screen of the same or similar compounds). As often as possible, the drugs shown have known mammalian phenotypes (S36-55). The complexity of the phenotypes we observed with serotonergic agonists and antagonists is similar to the controversial and contradictory nature of the mammalian literature pertaining to these drugs. This may reflect the difficulty in isolating the drugs‟ effects on serotonin signaling from other secondary effects, differences between short-term and long-term exposure, or complex signaling interactions among different populations of serotonergic neurons in the brain. For example, in mammals agonists and antagonists of serotonin receptor 1A both cause short-term reduction of sleep and increase in wakefulness followed by longer-term increases in sleep and reduced activity (S36-40, S45-47). In long-term experiments, both classes of drugs increased rest in zebrafish. Only buspirone had an observed short-term increase in waking during the first night of the experiment (black arrow in Fig. S9). Serotonin receptor 2/3 antagonists have paradoxical effects in mammals, increasing both exploratory behavior and sleep (S38, S44, S49-52). Similarly, both waking activity and total rest were increased in zebrafish. Finally, SSRIs consistently decreased waking activity and increased rest in zebrafish; in human patients, SSRIs

Page 9: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

8

often improve insomnia in depressed patients but can have biphasic effects on sleep, with long-term decreases in sleep in some mammalian models (S53-55). Dopamine (Fig. S10). With one notable exception, dopamine receptor agonists and antagonists produce similar phenotypes in mammals and zebrafish (S56-67). For example, the D2-receptor agonists consistently reduced waking activity and increased rest in zebrafish, as they do at low concentrations in mammals (S60-63). This effect was receptor subtype selective, as the D2/D3 receptor agonists quinelorane and quinpirole only reduced waking activity (S64, S65). As another example of conservation, D2-receptor antagonists, several of which are used as anti-psychotics, increase waking activity and rest in zebrafish and mammals (S57, S62, S67). Previous work indicated that antipsychotics produce locomotor defects in zebrafish larvae (S15-16). The only clear examples of non-conserved pharmacology in our study were the dopamine D1 agonists (Fig. S10, marked in gray), all of which had little effect on waking activity but greatly increased total rest in zebrafish. In all mammalian species tested, dopamine D1 agonists increased waking (S56-59). This could indicate a distinct role for the zebrafish orthologs of D1 receptors in the control of behavior or that these dopamine D1 agonist drugs have altered target selectivity in zebrafish. GABA (Fig. S11). While many of the GABA-regulating benzodiazepine drugs were toxic at the concentrations used in our screen, the GABA-A agonists GBLD-345 and avermectin B1 increased total rest and had only a small effect on waking activity (S68). Although only represented by a single hit in the screen, the GABA-B agonist CGP-13501 (Fig. S11, marked in gray) slightly increased waking activity at night with very modest increases in rest during the day, even though this drug is hypnotic in mammals (S69). In contrast, many GABA-A antagonists dramatically increased waking activity, possibly reflecting pro-convulsant effects of these drugs on zebrafish larvae, which is consistent with the mammalian literature (S70-72) and with previous work in zebrafish (S13, S17, S19). Tracazolate, an anxiolytic acting as an allosteric modulator of GABA-A receptors, modestly increased waking activity in zebrafish; in mammals, tracazolate can both increase or decrease locomotor activity (S73, S74). Intriguingly, the neuroactive steroid GABA agonists allopregnanolone, pregnanolone, and alfadolone increased both total rest and waking activity specifically at night (S75-77). As neuroactive steroids have additional functions in mammalian brains, including modulation of NMDA receptors (S75), this mixed phenotype may reflect the polypharmacology of these compounds. Melatonin (Fig. S12). Although only a few examples were present in our screen, melatonin-modulating drugs gave results that are consistent with those observed in mammals (S78-82) and previous work in zebrafish (S14). Melatonin slightly increased rest in our long-term experiments. In addition, the melatonin agonist 8-methoxy-1-propionamidotetralin decreased waking activity and increased rest. An exception was the agonist IIK7 (S78), which slightly increased waking activity at night and had small effects on rest.

Page 10: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

9

Histamine (Fig. S13). Histamine antagonists identified in our screen tended to increase rest, decrease waking activity, or both. This increased rest in zebrafish is consistent with the mammalian literature, although it should be noted that anti-histamine drugs that do not cross the blood-brain barrier in humans, such as loratadine, tend to be less sedating than the older generation of drugs that do cross the blood-brain barrier (S83-87). Our work is also consistent with previous work on anti-histamines in zebrafish larvae (S13, S18). Notably, the anti-histamine diphenylpyraline increased waking activity, consistent with reports of psychostimulatory effects in rodents (S87). Also, as noted in the main text and Figures 4C-D and S18, anti-histamines that block the human ether-a-go-go related potassium channel (ERG) consistently increased waking activity at night, with modest effects on rest in zebrafish larvae. Adenosine (Fig. S14). Consistent with mammals, adenosine receptor agonists increased rest in zebrafish larvae, while adenosine receptor A1 antagonists increased waking activity and reduced rest (S88-93). Although behavioral effects of the adenosine A3 antagonist MRS-1220 are unknown in mammals, it decreased waking activity and increased rest in zebrafish. This phenotype is consistent with its inhibitory effects on MAO (Figure 3D). Glutamate (Fig. S15). All NMDA receptor antagonists identified in the screen dramatically increased waking activity during the day and night, consistent with the effects observed in mammals (S94, S95). Muscarinic glutamate receptor 5 (mGluR5) antagonists selectively increased rest, with little effect on waking activity. Antagonists of mGluR5 can block drug-induced hyperlocomotion, down-regulate bursting of prefrontal cortical neurons in awake rats, and have anxiolytic properties in rodents (S96, S97). Supplemental Text 6. Non-overlapping Regulation of Rest/Wake States. Many pharmacological agents selectively altered waking activity, rest latency, or total rest. For example, verapamil related L-type calcium channel inhibitors increased rest with no effect on waking activity (Fig. S16), while β-adrenergic agonists, including clenbuterol and fenoterol, decreased rest only (Fig. S8). Non-competitive NMDA receptor antagonists, including the psychotomimetics dizocilpine (MK-801) and L-701324, predominantly increased waking activity with minimal effects on total rest (Figs. 2C and S15), the D2/D3 agonist, ropinirole, predominantly decreased waking activity only (Fig. S10), and podocarpatrien-3-one analogs predominantly altered only rest latency (Fig. 4A). These single parameter effects can also be selective for day versus night. For example, many anti-inflammatory compounds only increased waking activity during the day (Figs. 2B, 4B and S17), while ERG-blocking drugs increased waking activity at night (Figs. 2E, 4C-D, S18). Finally, some compounds can affect waking activity and total rest in opposite directions (e.g. increase both waking activity and total rest). For example, the α1-adrenergic antagonists ifenprodil, the antimalarial quinacrine, and the steroidal GABA agonist alfadolone, increased both waking activity and total rest (Figs S7C, S11). These observations suggest that the behavioral parameters of waking activity, total rest, and rest latency during the day and the night can be under the control of distinct pharmacological mechanisms.

Page 11: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

10

Supplemental Text 7. High Throughput Behavioral Screening in Practice Behavioral profiling in zebrafish is highly efficient. Our current zebrafish behavior room (~200 sq. ft.) has 16 cameras that can each observe 80 wells of a 96-well plate, for a total of 1280 larvae. Using our original screening method of 10 larvae per compound and including 10 control wells for each camera, we can screen 112 compounds (16 cameras x 7 drugs per camera) every three days, or 224 compounds per week. Using the latest videotracking software, which can track all 96 wells of the plate, and cutting the number of larvae per drug to eight expands our capacity to 352 compounds per week (16 cameras X 11 drugs per camera X 2 runs per week). A single technician can set up the entire behavioral room in less than 4 hours, including fish husbandry, larval pipetting, drug dispensing, and software setup (an 8 hour commitment per week). Expanding the screen to 115 cameras and 5 technicians (a total commitment of 40 hours per week) would increase the throughput to more than 10,000 compounds per month and more than 100,000 per year.

Page 12: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

11

Supplemental Figure and Table Legends Figure S1. Expanded hierarchical clustering analysis. This is an expanded version of Figure 2A in which the name of each chemical in the clustergram can be seen. Each row represents a different chemical, and each column represents a behavioral measurement. From left to right, these measurements are: the rest total, the number of rest bouts, the rest bout length, the rest latency, the total activity, and the waking activity. The black bars indicate night measurements; the white bars indicate day measurements. Yellow indicates that the value is increased relative to controls; blue indicates that the value is decreased, as in Figure 2A. The measurements are normalized as standard deviations from control values. Figure S2. Hierarchical and k-means clustering yield similar cluster architectures. Each row represents a different chemical, and each column represents a behavioral measurement. From left to right, these measurements are: the rest total, the number of rest bouts, the rest bout length, the rest latency, the total activity, and the waking activity. The black bars indicate night measurements; the white bars indicate day measurements. Yellow indicates that the value is increased relative to controls; blue indicates that the value is decreased, as in Figure 2A. The measurements are normalized as standard deviations from control values. Figure S3. Expanded k-means clustergram. This is an expanded version of Figure S2 in which the name of each chemical in the clustergram can be seen. Each row represents a different chemical, and each column represents a behavioral measurement. From left to right, these measurements are: the rest total, the number of rest bouts, the rest bout length, the rest latency, the total activity, and the waking activity. The black bars indicate night measurements; the white bars indicate day measurements. Yellow indicates that the value is increased relative to controls; blue indicates that the value is decreased, as in Figure 2A. The measurements are normalized as standard deviations from control values. Figure S4. Behavioral fingerprints are stable across a range of doses. Select compounds were tested for behavioral effects at multiple concentrations (see Table S1 for additional examples and summary data). First, the fingerprints for each dose were calculated as standard deviations from DMSO controls („Fingerprint‟, left panels). In general, these fingerprints are stable across multiple concentrations until the dose is too low to elicit a phenotype. To assess the stability of single drug fingerprints over multiple concentrations, the Pearson uncentered correlation coefficient was calculated pairwise between each dose („correlation matrix‟, right panels). With the exception of pergolide and several other ergoline derivatives, which have distinct fingerprints at high versus low concentrations, these examples have relatively stable fingerprints from the highest dose tested (45 μM) to the lowest effective doses (150 nM for NAN-190 and

Page 13: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

12

betamethasone, 450 nM for ropinirole, 1.5 µM for clonidine and buspirone), as indicated by the high correlations (red boxes). See Materials and Methods for additional information. Figure S5. Compounds that share biological targets have highly correlated behavioral fingerprints. (A) The distribution of all pair-wise correlation coefficients (Pearson weighted, uncentered; see Materials and Methods) for compounds that share at least 1 target (blue) is shifted to higher values compared to compounds that share 0 targets (magenta). This skewing is strong despite the fact that these compounds can have many divergent targets in addition to the shared target. Each pair of compounds is represented once, even if they share multiple targets. (B) Box-whisker plot comparing correlations between compounds with 0 shared targets, compounds with at least 1 shared target, and repeats of the same compound from different chemical libraries. For each measure, the blue box represents the interquartile range between the 25th and 75th

percentiles; the red line marks the sample median; the whiskers extend from the box ends to values within 1.5 times the interquartile distance; red crosses mark outlier values beyond the 1.5 interquartile distance from the box ends. (C) Box-whisker plots of correlation coefficients within biologically related classes of compounds. For comparison, the mean correlation of compounds that share 0 targets is plotted as a green line (correlation = 0.266). The number of compounds used for comparisons within each class is indicated (N). See supplemental text 3 for a detailed discussion of specific classes. For all classes, a (-) sign indicates an inhibitor/antagonist and a (+) sign indicates an agonist. The classes are: α-adrenergic-receptor 1, ADR-A1; α-adrenergic receptor-2, ADR-A2; β-adrenergic, ADR-B; noradrenaline reuptake inhibitor, ADR-U-; serotonin/noradrenaline reuptake inhibitor, SNRI; selective serotonin reuptake inhibitor, SSRI; serotonin receptor-1A, 5HT-1A; serotonin receptor-1D, 5HT-1D; serotonin receptor-2, 5HT-2; serotonin receptor-2/3, 5HT-2/3; serotonin receptor 4, 5HT-4; monoamine oxidase inhibitor, MAO-; neurotransmitter inhibitor (reserpine class), NEURO-; dopamine receptor, DOPA; dopamine D1 receptor, DOPA-D1; dopamine D2 receptor, DOPA-D2; dopamine D2/3 receptor, DOPA-D2/3; dopamine D3 receptor, DOPA-D3; dopamine D4 receptor, DOPA-D4; γ-butyric acid receptor, GABA; histamine H1 receptor, HIST-H1; ether-a-go-go-related potassium channel, ERG; adenosine signaling, ADS; metabotropic glutamate receptor 5, mGLUR5; N-methyl-D-aspartic acid receptor, NMDA; acetylcholinesterase inhibitor, ACH-ES- IRev, irreversible; Rev, reversible; muscarinic acetylcholine receptor; ACH-M; nicotinic acetylcholine receptor, ACH-N; acetylcholine synthesis, ACH-SY; L-type calcium channel; CHA-CA-L; sodium channel, CHA-NA; peroxisome proliferator-activated receptor, alpha, PPAR-A. Figure S6. Examples of compounds that share biological targets and/or structural similarity that give similar behavioral profiles. (A) Structurally divergent selective serotonin reuptake inhibitors (SSRIs) similarly decrease waking activity and increase rest. (B) Structurally related insecticides dramatically increase waking activity independent of the time of day. The graphs represent the normalized waking activity and total rest for behavior-altering compounds (red trace; average of 10 larvae) and representative controls (10 blue traces; average of 10 larvae each).

Page 14: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

13

Figure S7. Cluster analysis of multi-target compounds. A dopamine reuptake inhibitor (DOPA-U) with muscarinic acetylcholine antagonist (ACH-M-) activity does not correlate well with (A) compounds with only DOPA-U activity or (B) compounds with only ACH-M- activity. It does, however, show high correlation with other compounds known to share both properties (B). (C) α1-adrenergic receptor antagonists (marked in blue) form a large cluster with serotonin modulators (marked in green) that are known to also have α1- adrenergic receptor antagonist activity in vivo. (D) Rank-correlations of compounds across the entire dataset compared to the α1-adrenergic receptor antagonist cluster of ifenprodil, terazosin, and 5-methyl-urapidil enriches for compounds with α1-adrenergic receptor antagonism. In the rank-graph, the black lines indicate compounds with known α1-adrenergic antagonism; red indicates high correlation, green indicates low correlation. Compounds with α1-adrenergic antagonism are highly enriched in the top ranks (p < 10-23; see Materials and Methods). Figure S8-15. Comparison of the effects of neuroactive drugs on rest/wake states in zebrafish to the effects in mammals. The graphs represent the waking activity and rest for representative agonists and antagonists of each class (red trace; average of 10 larvae) and DMSO controls (10 blue traces; average of 10 larvae each). Each plotted example is typical for the entire class of compounds. The tables provide a more comprehensive list of agonists and antagonists of each receptor subtype. The tables summarize the overall direction and magnitude of the observed effects of the drugs on zebrafish wake and rest behavior (up arrow, increased; down arrow, decreased; a dashed line indicates no change; a small arrow indicates a smaller relative effect, while a large arrow indicates a larger relative effect). See supplemental text 5 for a more detailed discussion of each phenotype. Figure S16. The L-type calcium channel inhibitor, YS-035, dose dependently increases rest with minimal effects on waking activity. (A) Waking activity and rest graphs are shown for three structurally related L-type calcium channel inhibitors (red trace = average of 10 larvae) and representative DMSO controls (10 blue traces = average of 10 larvae). (B) YS-035 increases the time spent at rest during both the day (red) and night (blue) in a dose dependent fashion. Each point indicates the average minutes of rest per hour for 10 larvae at each YS-035 concentration. The error bars represent +/- SEM. (C) YS-035 has little or no effect on waking activity at all concentrations tested, suggesting that muscle function is not dramatically perturbed. Each point indicates the average seconds of waking activity every 10 minutes during the day (red) or night (blue) for 10 larvae at each YS-035 concentration. Error bars represent +/- SEM (B, C). Figure S17. Examples of immunomodulators that co-cluster as daytime-waking activity enhancers. (A) The table lists anti-inflammatory agents that selectively increased daytime waking activity (expanded examples from Figure 4B). (B) Waking activity and rest graphs are shown for compounds from each major class (red trace = average of 10 larvae) and representative controls (10 blue traces = average of 10 larvae). Figure S18. ERG inhibitors, but not non-ERG blocking anti-histamine analogs, dose dependently increase waking activity at night. (A) Waking activity and rest graphs are

Page 15: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

14

shown for two ERG-blocking compounds (red trace = average of 10 larvae) and representative controls (10 blue traces = average of 10 larvae). Both compounds increased waking activity at night without affecting rest. Psora-4, which blocks Kv1.3 shaker channels, increased nighttime waking activity and also strongly decreased rest, a phenotype distinct from ERG blockers. Thus, the ERG phenotype is not the result of general potassium channel misregulation. (B) Dose response curves for ERG blocking and ERG non-blocking analogs are shown. Each point indicates the waking activity at night (seconds per minute) averaged for 10 larvae. Cisapride and dofetilide, which have ERG blocking activity, dose-dependently increased nighttime wakefulness, while the non-ERG blocking histamine H1 receptor antagonists fexofenadine and cetirizine had no effect on wakefulness. Another non-ERG blocking anti-histamine, loratadine, reduced waking activity. Error bars represent +/- SEM. The 0 M concentration is a DMSO control.

Table S1. Summary of dose response experiments for selected compounds indicates fingerprints are stable across several concentrations. This table is an expansion of the dose response fingerprints shown in Fig. S4. Note that only ergoline-derived compounds (bottom of table) have complex dose dependent effects (i.e. different nontoxic fingerprints at high versus low concentrations). This complex dose dependence is likely due to the high affinity that many ergoline drugs have for multiple receptor families and sub-types, including dopamine, serotonin, and adrenergic receptors (for example, see (S98)).

Page 16: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Figure S1

NAME Activity 1 Activity 2 Activity3 Activity 4

# R

es

t

Bo

uts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

Senecrassidol 6-Acetate

Glycine NMDA+

MG-624 ACH-N-Physcion BACT-

Budesonide ARACH- LIPCOR+

Diclofenac Sodium ARACH-

14-Methoxy-4,4-Bisnor-8,11,13-Podocarpatrien-3-one5-beta-12-Methoxy-4,4-Bisnor-8,11,13-Podocarpatrien-3-oneEnoxolone

11-alpha-Acetoxykhivorin

Dinitolmide

Chlorthalidone DIUR+

3-beta-AcetoxydeoxodihydrogeduninKynurenine

Estrone Acetate ESTR+

Betamethasone ARACH- LIPCOR+ IM- GluR+

Clenbuterol Hydrochloride ADR-B-2+

Telmisartan ANG-2-1- PPAR-G+SB 206553 Hydrochloride 5HT-2-B/C-

Psora-4 CHA-K-

Fenoterol Hydrobromide ADR-B+

Ornithine alpha-Ketoglutarate

Chlorophyllide Cu Complex Sodium SaltOxiconazole Nitrate FUNG-

Sulfaguanidine BACT-

Benzyl Penicillin Potassium BACT-

Retinoic Acid p-Hydroxyanilide APOP+

Pimozide DOPA-D-2- 5HT-2-A- ADR-A-1- DOPA-U-

Chlorpromazine Hydrochloride DOPA-D-2- DOPA-D-1- 5HT1-2- HIST-H-1-Mitotane ESTR- CHA-NA?

SB 228357 5HT-2-B/C-

Maprotiline Hydrochloride ADR-U- 5HT-U-(weak)

Amitryptiline Hydrochloride ADR-U- 5HT-U- CHA-K-

R(-)-Isoproterenol (+)-Bitartrate ADR-B-2+ ADR-B-1+Maprotiline Hydrochloride ADR-U- 5HT-U-(weak)

Carbenoxolone Sodium

I-OMe-Tyrphostin AG 538 KI-IGF-1-

(-)-Eseroline Fumarate OPI-M+ ACH-(weak)

Bacitracin BACT-Leflunomide DH-HYO- KI-GFPL- ALOX5-

Meclizine Hydrochloride HIST- ACH-

Pancuronium Bromide ACH-N-

Fenoldopam DOPA-D-1-A+ ADR-A-2+

Chloroethylclonidine Dihydrochloide ADR-A-1- ADR-A-2+Mecamylamine Hydrochloride ACH-N-

1-Benzyl-1-Methyl-4-Cyclopentylmethoxycarbonylpiperidinium Bromide ACH-T-

Tegaserod Maleate 5HT-4+ 5HT-2-B-

Austricine LP-P-A-2-

AzobenzeneDiflunisal SY-PG- COX-Piroxicam SY-PG- COX-

Flecanide CHA-NA-

Flunisolide ARACH- LIPCOR+ IM- GluR+

Atrazine HERB-Capsazepine VAN- CHA-Na+

Cyclosporin A IM-

2-Cyclooctyl-2-Hydroxyethylamine Hydrochloride NEURT- PNMT-

OxethazaineSpectinomycin Hydrochloide BACT-

TetrahydrotrimethylhispidinTheaflavin Digallate Nf-kB-?

Equilin ESTR+

SKF 94836 ES-P-C-3-

Aminophenazone

Diplosalsalate ES-P-C-?Fosfosal ES-P-C-

Clobetasol Propionate ARACH- LIPCOR+ IM- GluR+

Fenoprofen SY-PG- COX-

Nicotine Ditartrate ACH-N+

(-)-Nicotine ACH-N+Fenoprofen Calcium Salt Dihydrate SY-PG- COX-

5-Aminopentanoic Acid Hydrochloride

Catechin Tetramethylether

Pentamidine Isethionate DNA-

Valproate Sodium HDAC- GABA+

15

Betamethasone ARACH- LIPCOR+ IM- GluR+

Mefloquine Hydrochloride CALM-

Clobetasol Propionate ARACH- LIPCOR+ IM- GluR+Flumethasone ARACH- LIPCOR+ IM- GluR+

Desoxycorticosterone Acetate COR-M+ MR+

Ethylene Glycol-Bis(2-Aminoethylether)-N,N,N,N-Tetraacetic Acid ACE-2- CHEL+

Dexamethasone ARACH- LIPCOR+ IM- GluR+

Propentofylline ES-P-C- ADS-/+Bopindolol Malonate ADR-B-1-

Betamethasone Valerate ARACH- LIPCOR+ IM- GluR+

Bretylium Tosylate ADR-B- NA/K-ATPase-

Pancuronium Bromide ACH-N-

Cepharanthine APOP- NF-KB- IM-Ursolic Acid ARACH- LIPCOR+ IM- GluR+

Benzamil Hydrochloride CHA-NA-Ca-

Cefoxitin Sodium Salt SY-CW- BACT-

Papaverine Hydrochloride ES-P-C-4-

Medrysone ARACH- LIPCOR+ IM- GluR+6-alpha-Methylprednisolone ARACH- LIPCOR+ IM- GluR+

6,7-Dichloroquinoxaline-2,3-dione EAA-G- NMDA-

L-689560 EAA-G- NMDA-

7-Chlorokynurenic Acid EAA-G- NMDA-

SDZ 220-581 EAA-G- NMDA-IEM-1460 EAA-G- AMPA-R- NMDA-

Finasteride RED-5A-

Bufexamac SY-PG- COX- OX-C-

Ro 20-1724 ES-P-C-4-

Cisapride 5HT-4+ ACH+(indirect) CHA-K-

(+)-Tubocurarine Chloide ACH-N- ACH+ 5HT-3-Hydrocortisone ARACH- LIPCOR+ IM- GluR+

L-701324 EAA-G- NMDA-

L-701324 EAA-G- NMDA-

L-701324 EAA-G- NMDA-

Sinapic Acid Methyl EtherDizocilpine Maleate EAA-G- NMDA-

(-)-MK-801 Hydrogen Maleate EAA-G- NMDA-

(+)-MK-801 EAA-G- NMDA-

Allopregnanolone GABA-A+ CHA-CA-Tetrandrine CHA-CA- CHA-K-(Ca+)Diphenylpyraline Hydrochloride HIST-H-1-

Spiperone DOPA-D-2- 5HT-1-A- 5HT-2-A-

TG003 KI-CLK-Hexylresorcinol

Monobenzone SY-PG-2,4-Dihydroxychalcone 4-GlucosideAstemizole HIST-1- CHA-K-

3-(1H-Imidazol-4-yl)Propyl Di(p-Fluorophenyl)Methyl Ether Hydrochloride HIST-H3-/+

Dichlorodiphenyltrichloroethane CHA-NA+ INSECT-

Tracazolate Hydrochloride GABA-A- GABA-A+1,4-PBIT Dihydrobromide NO-S-

Menadione VITA+

(-)-Mk-801 Hydrogen Maleate EAA-G- NMDA-

S,S,S,-Tributylphosphorotrithioate ACH-

Endosulfan GABA-A-Coumaphos ACH-

Amoxapine ADR-U- 5HT-U-

Megestrol Acetate ESTR+ PROG+

L-701252 EAA-G- NMDA-

Finasteride RED-5A- ANDR-

Rutilantinone BACT-Terfenadine HIST-1- CHA-K-

N-Desmethylclozapine 5HT-2-C- ACH-M1+

Mianserin Hydrochloride ADR-U- ADR-A-2- HIST- 5HT-2-A/2-C-

ODQ CYC-GU-

Clorgyline Hydrochloride MAO-A-Amoxapine ADR-U- 5HT-U-

Page 17: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Figure S1(Cont)NAME Activity 1 Activity 2 Activity3 Activity 4

16

Loxapine Succinate DOPA-D-1- DOPA-D-2- 5HT-2- (indirect?)

Propazine HERB-

Bepridil Hydrochloride CHA-CA- CHA-NA- CHA-K-1S,9R-Hydrastine GABA-A-

Dacthal HERB-

Chlordane GABA-A- INSECT- ATPP-Ca/Mg-ATPP-Na/K-

7-Oxocallitrisic Acid, Methyl Ester

Ibudilast ES-P-C-4-Roxithromycin PRT-50S- NF-kB-

LY-367265 5HT-2-A- 5HT-U-

Naftopidil Dihydrochloride ADR-A-1- ADR-U-? 5HT-2-?

Clozapine 5HT-2- DOPA-D-2- ADR- HIST-H-1-

Halofantrine Hydrochloride CHA-K-Amperozide Hydrochloride 5HT-2- DOPA-D-2-

Haloperidol DOPA-D-1-2- NMDA- CHA-K-

Terfenadine HIST-1- CHA-K-

Fiduxosin Hydrochloride ADR-A-1-

Strobane CHA-NA+ INSECT-Oxatomide HIST-1-

3-alpha-Bis-(4-Fluorophenyl)Methoxytropane DOPA-U- ACH-M-

Dihydroergotamine Mesylate 5HT-1-D+ 5HT-1-A+ ADR-A-2-ADOPA-D-2/D-3

Methiothepin Maleate 5HT-1-2- DOPA-D-2-

Mianserin ADR-U- ADR-A-2- HIST- 5HT-2-A/2-C-Methoxychlor CHA-NA+ INSECT-

Toxaphene CHA-NA+ INSECT-

Heptachlor GABA-A- INSECT- ATPP-Ca/Mg-ATPP-Na/K-

Aldrin GABA-A- INSECT- ATPP-Ca/Mg-ATPP-Na/K-

Bromo-3-Hydroxy-4-(Succin-2-yl)-Caryolane gamma-Lactone

Cyproterone Acetate ANDR-Promethazine Hydrochloride HIST-1- ACH-M- 5HT-2- calmodulin-

Tyrphostin AG 494 KI-GFEP-

8-Cyclopentyl-1,3-Dipropylxanthine ADS-A-1-

Flutamide ANDR-

DerrusninPregnenolone GABA-A-

Deptropine Citrate HIST- ACH-M-

Clemastine HIST-1- ACH-M-?

Spermine Tetrahydrochloride EAA-G- EAA-G+ NMDA-

HomopterocarpinAconitine CHA-NA+

Cinnarazine CHA-CA- HIST-H-1- DOPA-D-2-ACH-M-

Verapamil Hydrochloride CHA-CA-

Benztropine ACH-M- DOPA-U- HIST-

(1S,9R)-Beta-Hydrastine GABA-A-Disulfoton ACH- INSECT-

Naltriben Methanesulfonate OPI-D-

Benzanthrone

Vinpocetine CHA-NA- ES-P-C-1-

Oxymetazoline Hydrochloride ADR-A-1+ ADR-A-2+3-Isobutyl-1-Methylxanthine ES-P-C- ADS-

2-[[B-(4-Hydroxyphenol)Ethyl]Aminoethyl]-1-Tetralone ADR-A-1-

Niloticin

Meclozine Dihydrochloride HIST- ACH-

CGP-13501 GABA-B+Mesulergine Hydrochloride DOPA-D-2+ 5HT-2-C-

Thioridazine Hydrochloride DOPA-D-2- 5HT-2- ADR- CHA-K-

Hydroxyprogesterone Caproate ESTR+ ESTR+ PR+

Nicolsamide KI-TYR-

2-Methoxyestradiol HIF-1-

Tolnaftate FUNG-Danazol LHRH- ESTR-

(1-[(4-Chlorophenyl)phenyl-methyl]-4-methylpiperazine) HIST-

Beclomethasone Dipropionate ARACH- LIPCOR+ IM- GluR+

Astemizole HIST-1- CHA-K-

Icilin TRP-M8+Oxaprozin SY-PG- COX-

Ro 25-6981 hydrochloride EAA-G- NMDA-NR2-B-

Droperidol DOPA-D-2- CHA-K-

Ethynodiol Diacetate PROG+ ESTR+

Bromocryptine Mesylate DOPA-D-2+ CREB+ SSTATINAndrosterone Acetate ANDR+ CHA-CA-?

3,4-Dimethoxyflavone AHR-

Trihexyphenidyl Hydrochloride ACH-M-1-

Vincamine ADR-A-1- CHA-NA-

Cephaeline Dihydrochloride Heptahydrate 5HT-4+?LY-53857 5HT-2-

Amodiaquine Dihydrochloride

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-Doxazosin Mesylate ADR-A-1-

Alcuronium Chloride ACH-M-

L-765314 ADR-A-1-

Prazosin ADR-A-1-

Benperidol DOPA-D-2- CHA-K-Saquinavir Mesylate PROT- TNF-alpha+ PROL-

Butylparaben ESTR?

Ketanserin Tartrate 5HT-2- DOPA?

Papaverine Hydrochloride ES-P-C-4-

Nomegestrol Acetate PROG+ ANDR-PD 168077 DOPA-D-4+

Quinacrine Hydrochloride ACH-M+ Lipase-A-2- OX-LP-5-

Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

Phenamil CHA-NA-

Epiandrosterone ESTR- CHA-CA- GABA-A+Loperamide OPI+

L-701252 EAA-G- NMDA-

BWB-70C OX-LP-5-

Strophanthidinic Acid Lactone Acetate ATPP-Na/K-

Domperidone DOPA-D-2-Spiperone DOPA-D-2- 5HT-1-A- 5HT-2-A-

Spiperone Hydrochloride DOPA-D-2- 5HT-1-A- 5HT-2-A-

Pancuronium Bromide ACH-N-

Amsacrine Hydrochloride TO-2-

Dihydroergotamine Methanesulfonate 5HT-1-D+ 5HT-1-A+ ADR-A-2-ADOPA-D-2/D-3

Medroxyprogesterone Acetate DEC-OR- ANDR- ESTR+ PR+WB 4101 Hydrochloride ADR-A-1-

3-Methoxymorphinan Hydrochloride EAA-G- NMDA- OPI-S+ DOPA-U-?

L-741626 DOPA-D-2-

AMI-193 5HT-2- DOPA-D-2-

Spiroxatrine 5HT-1-A- DOPA-D-2- ADR-A-2-AMI-193 5HT-2- DOPA-D-2-

trans-Dehydroandrosterone ESTR+ ANDR+ GABA-A-

DO 897/99 DOPA-D-2/D-3-DOPA-D-3+ 5-HA-1-A ADR-A-1

Triptophenolide

Azaperone DOPA- HIST- ACH-WB 4101 Hydrochloride ADR-A-1-

R(+)-Terguride 5HT-2-B- DOPA+/partial

Azaperone DOPA- HIST- ACH-

SB 205384 GABA-A+

Alfadolone Acetate GABA-A+3-Methyl-6-(3-[Trifluoromethyl]Phenyl)-1,2,4-Triazolo[4,3-B]Pyridazine GABA-A+

S(-)-Lisuride DOPA-D-2+ 5HT-2-B-

Dihydroergocristine DOPA-D-2+ ADR-A+/- 5HT-2-

4-Androstene-3,17-dione ESTR- ANDR+

Pirenperone 5HT-2- DOPA-D-2-?Ketanserin Tartrate 5HT-2- DOPA?

LY-165163 5HT-1-A+ DOPA-D-2-

Astemizole HIST-1- CHA-K-

Chlormadinone Acetate ANDR- ESTR+ PR+

Totarol BACT-Metergoline Phenylmethyl Ester 5HT-1-D- 5HT-2- DOPA+

Acetopromazine Maleate Salt DOPA-

Metergoline 5HT-1-D- 5HT-2- DOPA+

BP554 5HT-1-A+

R-(-)-Fluoxetine Hydrochloride 5HT-U-

Methapyrilene Hydrochloride HIST-1-Paroxetine Hydrochloride Hemihydrate 5HT-U-

GR 4661 5HT-1-D+

Doxazosin Mesylate ADR-A-1-

TCPOBOP CAR+

Page 18: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Figure S1(Cont) NAME Activity 1 Activity 2 Activity3 Activity 4

Prednicarbate ARACH- LIPCOR+ IM- GluR+

CNS-1102 EAA-G- NMDA-

Yohimbine Hydrochloride ADR-A-2-Opipramol Dihydrochloride 5HT-2- OPI-S+ HIST-H-1- DOPA-D-2-

DCEBIO CHA-K+

Cefamandole Sodium SY-CW- BACT-

(+)-Hydrastine GABA-A-

Fusaric Acid DOPA-BH-MRS-1220 ADS-A3-

Phenelzine Sulfate MAO-

R(+)-UH-301 Hydrochloride 5HT-1-A+

Phenelzine Sulfate MAO-

Tranylcypromine Hydrochloride MAO- DOPA-D-2? 5HT-2-A?L-750667 DOPA-D-4-

Dl-p-Chlorophenylalanine Methyl Ester Hydrochloride 5HT-SY-

(+/-)-Vesamicol Hydrochloride ACH-SY-

Loratadine HIST-1- CHA-K(A5)-

1-(3-Chlorophenyl)Piperazine Dihydrochloride 5HT-1-2+ 5HT-3-Gedunol

1,3-Diethyl-8-Phenylxanthine ADS-A-1- ES-P-C-IV- Nf-kB

Zardaverine ES-P-C-3-

Dioxybenzone UV-

Ciclopirox Olamine PERM- ATPP-Na/K-L-703606 Oxalate NK-1-

Oxibendazole NEMO- MICROTUBE-

Papaverine Hydrochloride ES-P-C-10

Niflumic Acid SY-PG- COX- AE2-

Cyclopiazonic Acid CHA-CA-i-

Tetradecylthioacetic Acid PPAR-A+Fenofibrate PPAR-A+

Clioquinol FUNG-

Spermine EAA-G- EAA-G+ NMDA-

Tert-Butyl-Bicyclo[2.2.2]Phosphorothionate GABA-A-

Indomethacin Morpholinylamide SY-PG- COX-1-2-Dihydrogeduninic Acid, Methyl Ester

Chol-11-Enic Acid

Diosmetin P450-

Syrosingopine NEURT-

Apomorphine Hydrochloride DOPA+ COMT- TH-6-(5H)-Phenanthridinone PARP-

Lysergol

R(-)Apomorphine Hydrochloride Hemihydrate DOPA+ COMT- TH-

Indole-3-Carbinol

Clofibrate PPAR-A+ LP-P-A-2+Avermectin B1 GABA-A+

Thioxolone ANC-2-

CGS-12066A Maleate 5HT-1-B+ 5HT-1-D+

Dihydrocapsaicin VAN+

Suprofen Methyl Ester SY-PG- COX-1- COX-2-Pramoxine Hydrochloride

Quipazine Dimaleate 5HT-2-A/3+

Pergolide Methanesulfonate DOPA-D-2+

Pergolide Methanesulfonate DOPA-D-2+

Fluspirilen DOPA-D-2-CY 208-243 DOPA-D-1+

7-Hydroxy-DPAT DOPA-D-3+ DOPA-D-1-2/4+

1-[1-(2-Benzo[B]Thienyl)Cyclohexyl)]Piperidine DOPA-U-

BRL 15572 5HT-1-D-

Mexiletine Hydrochloride CHA-NA- ADR-B-

Adenosine ADS+Gitoxin ATPP-NA/K-

1-Benzo[B]Thien-2-Yl-N-Cyclopropylmethylcyclohexanamine DOPA-U-

Tetrac THYR+

Haloperidol DOPA-D-1-2- NMDA- CHA-K-

Triflupromazine Hydrochloride DOPA-D-1/D-1-5HT-2-B- ACH-M-Metergoline 5HT-1-D- 5HT-2- DOPA+

Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

RX 821002 Hydrochloride ADR-A-2-

CV-3988 PAF-

Totarol-19-Carboxylic AcidClozapine 5HT-2- DOPA-D-2- ADR- HIST-H-1-

Amitriptyline Hydrochloride 5HT-U- ADR-U-

Norcyclobenzaprine 5HT-2-A-

Estradiol PROG+ ESTR+ SXR+

Chrysin DIUR+GW 9662 PPAR-G- IL-4-

Chrysene-1,4-Quinone BACT-

S(-)-3PPP Hydrochloride DOPA-D-2-1-(2-Methoxyphenyl)-4-(4-Succinimidobutyl)Piperazine 5HT-1-A-

WAY-100635 Maleate 5HT-1-A- DOPA-D-4+

NAN-190 Hydrobromide 5HT-1-A- ADR-A-1-Quinazolin-5(6H)-One Analog ADR-A-1-

5-Methyl-Urapidil ADR-A-1- 5HT-1-A-Terazosin Hydrochloride ADR-A-1-

Quinacrine Dihydrochloride ACH-M+ Lipase-A-2- OX-LP-5-

Quinacrine Dihydrochloride ACH-M+ Lipase-A-2- OX-LP-5-

Ajmalicine Hydrochloride SY-CW-RU 24969 5HT-1-A/2-C+Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

ODQ CYC-GU-

Quinelorane Dihydrochloride DOPA-D-2/3+

WAY-100635 Maleate Salt 5HT-1-A- DOPA-D-4+Buspirone 5HT-1-A+ DOPA-D-2-

PD 168077 Maleate DOPA-D-4+

Dihydroergocristine Methanesulfonate DOPA-D-2+ ADR-A+/- 5HT-2-

Hycanthone

H-89 KI-PKA-Nicergoline ADR-A-1-

MK-912 ADR-A-2-

Omeprazole ATPP-H/K-

(+/-)-Methoxyverapamil Hydrochloride CHA-CA-

2-Methyl-6-(Phenylethynyl)Pyridine EAA-G- mGluR5-

Spiroxatrine 5HT-1-A- DOPA-D-2- ADR-A-2-GR 103691 DOPA-D-3-

Droperidol DOPA-D-2-

LY 235959 EAA-G- NMDA-

Coralyne Chloride Hydrate DNA-

Trifluoperazine Hydrochloride DOPA-1-2- ADR-1- ATPase-K-Trifluoperazine Dihydrochloride DOPA-1-2- ADR-1- ATPase-K-

YS-035 Hydrochloride CHA-CA-

B-HT 920 DOPA-D-2+ ADR-A-2+ 5HT-3-

2,Beta-Dihydroxychalcone

Estrone ESTR+Phenazopyridine Hydrochloride

Mesoridazine DOPA-D-2- 5HT-2-A-(indirect?)ADR-(indirect?)

Reserpine NEURT-

PD 169316 KI-P38-

BMY 7378 Dihydrochloride 5HT-1-A+/- ADR-A-1-D- ADR-A-2-C-P-MPPF Dihydrochloride 5HT-1-A-

(+/-)-Verapamil Hydrochloride CHA-CA-

Rescinnamin ACE-

Verapamil CHA-CA-

Prometryn HERB-Cortexolone Maleate GlucoR-

Reserpine NEURT-

Nicergoline ADR-A-1-

Dihydroergocristine DOPA-D-2+ ADR-A+/- 5HT-2-

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-Testosterone Propionate ANDR+ ESTR+

Piribedil Maleate DOPA-D-3/D-2+5HT-2-A/C-

Lisuride DOPA-D-2+ 5HT-2-B-

Carvedilol Tartrate ADR-B- ADR-1-

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-

Phloretin CHA-CA- CHA-K-?Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

Domperidone Maleate DOPA-D-2-

17

Page 19: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Figure S1(Cont)NAME Activity 1 Activity 2 Activity3 Activity 4

MDL 72832 5HT-1-A+ ADR-A-1?

8-Methoxy-2-Propionamidotetralin ML+

Bromocriptine Mesylate DOPA-D-2+ CREB+ SSTATINN-Methylquipazine 5HT-3+

3beta-Chloroandrostanone

(-)-Quinpirole DOPA-D-2/3+

GR 127935 Hydrochloride 5HT-1-B/D- 5HT-1-D+?

Dioxybenzone UV-Clemizole Hydrochloride HIST-1-

Perphenazine DOPA-D-1-2- ADR-A-1-

Paroxetine Hydrochloride 5HT-U-

MDL 73005EF 5HT-1-A+ ADR-A-1-

p-Iodoclonidine Hydrochloride ADR-A-2+Ethynylestradiol 3-Methylether PROG+ ESTR+

Indirubin-3-Oxime KI-CD- KI-GSK-

ARC 239 Dihydrochloride ADR-A-2-B- 5HT-1-A-

Prochlorperazine Dimaleate DOPA-D-2- ADR-A-1- HIST-H-1- 5HT-2-

Trazodone Hydrochloride 5HT-1-2- ADR-A-1- 5HT-2+(high doses)5HT-U-Desipramine Hydrochloride ADR-U- 5HT-U- ACH-M- ADR-B-

Chloropyramine Hydrochloride HIST-H-1-

Prazosin Hydrochloride ADR-A-1-

Cinanserin 5HT-2-

Diphenhydramine Hydrochloride 5HT-U- HIST-H-1-Harmane Hydrochloride GABA-A 5HT-2-A+ CHA-

Trimeprazine Tartrate HIST-H-1-

N-Butyl-N-Ethyl-2-(1-Naphthyloxy)Ethanamine 5HT-1-A+

17alpha-Hydroxyprogesterone ESTR- PR+

Norethynodrel ESTR- PR+

3-HydroxyflavonePiperacetazine DOPA-D-1/D-2-?5HT-2-B-?

Zimelidine Dihydrochloride Monohydrate 5HT-U-

R(+)-6-Bromo-APB Hydrobromide DOPA-D-1+

Methoxyverapamil CHA-CA-

(+/-)-Chloro-APB Hydrobromide DOPA-D-1+Clemizole Hydrochloride HIST-1-

SIB 1757 EAA-G- mGluR5-

Benfluorex Hydrochloride RED-HMG-?

S-(-)-Eticlopride Hydrochloride DOPA-D-2/D-3-

1-[1-(2-Benzo[B]Thienyl)Cyclohexyl]Pyrrolidine DOPA-U-Ethinyl Estradiol PROG+ ESTR+ SXR+

Chlorpheniramine Maleate 5HT-U- ADR-U- HIST-H-1-

2-[(4-Phenylpiperazin-1Yl)Methyl]2,3-Dihydroimidazo[1,2C]Quinazolin-5(6H)-One ADR-A-1-

6-Nitroquipazine 5HT-U-

Scoulerine GABA-A+ ADR-A-1- ADR-A-1- 5HT-Dextromethorphan Hydrobromide Monohydrate EAA-G- NMDA- OPI-S+ DOPA-U-?

Perphenazine DOPA-D-1-2- ADR-A-1-

Verapamil Hydrochloride CHA-CA-

Vincamine ADR-A-1- CHA-NA-

Promazine Hydrochloride DOPA-1-2/4- 5HT-2-A/C- ACH-M- ADR-A-1-NAN-190 5HT-1-A- ADR-A-1-

L(-)-Vesamicol Hydrochloride ACH-SY-

(+)-Chlorpheniramine Maleate 5HT-U- ADR-U- HIST-H-1-

Fluvoxamine Maleate 5HT-U-

Zimelidine Dihydrochloride 5HT-U-(+/-)-SKF 82958 DOPA-D-1+ DOPA-D-2+

SKF 83565 Hydrobromide DOPA-D-1+

BMY 7378 Dihydrochloride 5HT-1-A+/- ADR-A-1-D- ADR-A-2-C-

S(-)-UH-301 Hydrochloride 5HT-1-A-

Prochlorperazine Dimaleate DOPA-D-2- ADR-A-1- HIST-H-1- 5HT-2-

6-Nitro-Quipazine Maleate 5HT-U-SKF 86466 ADR-A-2-

Quipazine 5HT-2-A/3+

Clovanediol Diacetate

GBLD-345 GABA-A+ BZD+

(-)-trans-(1S,2S)-U-50488 Hydrochloride OPI-K+Naftifine Hydrochloride EPOX-SQ- FUNG-

(+/-)-SKF 38393, N-Allyl-, Hydrobromide DOPA-D-1+

Dydrogesterone PROG+

Brinzolamide ANC-2-

(+/-)-Brompheniramine Maleate 5HT-U- ADR-U- HIST-H-1-Dyclonine Hydrochloride CHA-NA-

beta-Caryophyllene Alcohol

Biochanin A, Dimethyl Ether ESTR+

Picrotoxinin GABA- GLY-R-

Estradiol Cypionate ESTR+ ESTR+

18

Chlorzoxazone CHA-K-(Ca)-

Ticlopidine Hydrochloride P2Y-R-12- PLAT-AD-

BIO KI-GSK-3- KI-PDK1-Iofetamine Hydrochloride

6-Methoxy-1,2,3,4-Tetrahydro-9H-Pyrido[3,4B] Indole MAO-

Dyclonine Hydrochloride CHA-NA-SIB 1757 EAA-G- mGluR5-

Enilconazole SY-CW- FUNG-Pelletierine Hydrochloride

Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

Nefopam Hydrochloride 5HT-U- DOPA-U- ADR-U- COX-

S(-)-DS 121 Hydrochloride DOPA-D-3-Hymecromone3-[2-[4-(2-Methoxyphenyl)Piperazin-1-Yl]Ethyl]-1,5-Dimethylpyrimido[5,4-B]Indole-2,4-Dione ADR-A-1+ 5HT

Ropinirole Hydrochloride DOPA-D-3/2+

Dipropyl-6,7-ADTN DOPA-D-2+

Fluvoxamine Maleate 5HT-U-

R(-)-SCH-12679 Maleate DOPA-D-1-SCH 23390 DOPA-D-1-

Quipazine Maleate 5HT-2-A/3+

YS-035 CHA-CA-

Prazosin Hydrochloride ADR-A-1-

Clorgyline Hydrochloride MAO-A-Fluoxetine Hydrochloride 5HT-U-

Tropanyl 3,5-Dimethylbenzoate 5HT-3-

Metixene Hydrochloride ACH-M-

Oxybutynin Chloride ACH-M-

2-Chloroadenosine ADS+

Strophanthidin ATPP-Na/K-Atracurium Besylate ACH-N/M-

Guanabenz Acetate ADR-A-2+

Guanabenz Acetate ADR-A-2+

Guanabenz Acetate ADR-A-2+

Amitraz ADR-A-2+Arecaidine Propargyl Ester Hydrobromide ACH-M-2+

Methomyl ACH- INSECT-

Guanfacine Hydrochloride ADR-A-2+

Clonidine ADR-A-2+

Guanfacine Hydrochloride ADR-A-2+Guanabenz Acetate ADR-A-2+

Uk 14304 ADR-A-2+

R-(-)-Desmethyldeprenyl Hydrochloride MAO-B-

2,6-Dimethoxyquinone BACT-

Baicalein PO-RDNA-Clonidine Hydrochloride ADR-A-2+

Tranylcypromine Sulfate MAO- DOPA-D-2? 5HT-2-A?

Cinnarizine CHA-CA- HIST-H-1- DOPA-D-2-ACH-M-

Thyroxine THYR+

(-)-Huperzine A ES-ACH-Tizanidine Hydrochloride ADR-A-2+

Propachlor HERB-

Naftopidil Dihydrochloride ADR-A-1- ADR-U-? 5HT-2-?

Amoxapine ADR-U- 5HT-U-

Physostigmine Sulfate ES-ACH-SU 6656 KI-SRC-

Page 20: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

-3

-2

-1

0

1 2

3S.D.

1

2

3

4

5

6

7

8-9

10

11

12

13

14

15

16

17

18

|

24

Cluster #

Figure S2

Hierarchical Clustering K-Means Clustering (k=24)

# R

es

t B

ou

tsR

es

t B

ou

tL

en

gth

Res

tL

ate

nc

y

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

# R

es

t B

ou

tsR

es

t B

ou

tL

en

gth

Res

tL

ate

nc

y

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

19

Page 21: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

1

2

3

4

5

6

7

Figure S3

# R

es

t B

ou

ts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

NAME Activity 1 Activity 2 Activity3 Activity 4

SB 206553 Hydrochloride 5HT-2-B/C-Fenoterol Hydrobromide ADR-B+Clenbuterol Hydrochloride ADR-B-2+Maprotiline Hydrochloride ADR-U- 5HT-U-(weak)Maprotiline Hydrochloride ADR-U- 5HT-U-(weak)Retinoic Acid p-Hydroxyanilide APOP+Betamethasone ARACH- LIPCOR+ IM- GluR+Prednicarbate ARACH- LIPCOR+ IM- GluR+Budesonide ARACH- LIPCOR+Diclofenac Sodium ARACH-Monobenzone SY-PG-Spectinomycin Hydrochloride BACT-Sulfaguanidine BACT-Benzyl Penicillin Potassium BACT-Physcion BACT-Leflunomide DH-HYO- KI-GFPL- ALOX5-Estrone Acetate ESTR+I-OMe-Tyrphostin AG 538 KI-IGF-1-(-)-Eseroline Fumarate OPI-M+ ACH-(weak)KynurenineChlorophyllide Cu Complex Na SaltEnoxoloneChlorthalidone DIUR+DinitolmideSU 6656 KI-SRC-Physostigmine sulfate ES-ACH-5-beta-12-Methoxy-4,4-Bisnor-8,11,13-Podocarpatrien-3-one14-Methoxy-4,4-Bisnor-8,11,13-Podocarpatrien-3-one3-beta-Acetoxydeoxodihydrogedunin11-alpha-AcetoxykhivorinCarbenoxolone SodiumGlycine NMDA+Senecrassidol 6-Acetate

20

Cisapride 5HT-4+ ACH+(indirect) CHA-K-

Tegaserod Maleate 5HT-4+ 5HT-2-B-

Ethylene Glycol-Bis(2-Aminoethylether)-N,N,N,N-Tetraacetic Acid ACE-2- CHEL+

Benztropine ACH-M- DOPA-U- HIST-

MG-624 ACH-N-

(+)-Tubocurarine Chloride ACH-N- ACH+ 5HT-3-

Pancuronium Bromide ACH-N-

Mecamylamine Hydrochloride ACH-N-

(-)-Nicotine ACH-N+

Nicotine Ditartrate ACH-N+

1-Benzyl-1-Methyl-4-Cyclopentylmethoxycarbonylpiperidinium Br ACH-T-

Chloroethylclonidine Dihydrochloride ADR-A-1- ADR-A-2+

Bretylium Tosylate ADR-B- NA/K-ATPase-

Bopindolol Malonate ADR-B-1-

Desoxycorticosterone Acetate COR-M+ MR+

Flunisolide ARACH- LIPCOR+ IM- GluR+

Clobetasol Propionate ARACH- LIPCOR+ IM- GluR+

Hydrocortisone ARACH- LIPCOR+ IM- GluR+

6alpha-Methylprednisolone ARACH- LIPCOR+ IM- GluR+

Betamethasone Valerate ARACH- LIPCOR+ IM- GluR+

Clobetasol Propionate ARACH- LIPCOR+ IM- GluR+

Ursolic Acid ARACH- LIPCOR+ IM- GluR+

Dexamethasone ARACH- LIPCOR+ IM- GluR+

Medrysone ARACH- LIPCOR+ IM- GluR+

Betamethasone ARACH- LIPCOR+ IM- GluR+

Flumethasone ARACH- LIPCOR+ IM- GluR+

Cefoxitin Sodium Salt SY-CW- BACT-

Mefloquine Hydrochloride CALM-

Tetrandrine CHA-CA- CHA-K-(Ca+)

Flecanide CHA-NA-

Benzamil Hydrochloride CHA-NA-Ca-

Pentamidine Isethionate DNA-

Fenoldopam DOPA-D-1-A+ ADR-A-2+

Propentofylline ES-P-C- ADS-/+

Diplosalsalate ES-P-C-?

Fosfosal ES-P-C-

SKF 94836 ES-P-C-3-

Ro 20-1724 ES-P-C-4-

Papaverine Hydrochloride ES-P-C-4-

Equilin ESTR+

Allopregnanolone GABA-A+ CHA-CA-

Valproate Sodium HDAC- GABA+

Atrazine HERB-

Diphenylpyraline Hydrochloride HIST-H-1-

Cyclosporin A IM-

Austricine LP-P-A-2-

2-Cyclooctyl-2-Hydroxyethylamine Hydrochloride NEURT- PNMT-

Theaflavin Digallate Nf-kB-?

Finasteride RED-5A-

Bufexamac SY-PG- COX- OX-C-

Diflunisal SY-PG- COX-

Fenoprofen SY-PG- COX-

Fenoprofen Calcium Salt Dihydrate SY-PG- COX-

Piroxicam SY-PG- COX-

Capsazepine VAN- CHA-Na+

5-Aminopentanoic Acid HydrochlorideCatechin TetramethyletherTetrahydrotrimethylhispidinAminophenazoneOxethazaineSinapic Acid Methyl EtherIEM-1460 EAA-G- AMPA-R- NMDA-

6,7-Dichloroquinoxaline-2,3-Dione EAA-G- NMDA-

7-Chlorokynurenic Acid EAA-G- NMDA-

SDZ 220-581 EAA-G- NMDA-

L-689560 EAA-G- NMDA-

(-)-MK-801Hydrogen Maleate EAA-G- NMDA-

L-701324 EAA-G- NMDA-

L-701324 EAA-G- NMDA-

L-701324 EAA-G- NMDA-

Dizocilpine Maleate EAA-G- NMDA-

(+)-MK-801 EAA-G- NMDA-

Spiperone DOPA-D-2- 5HT-1-A- 5HT-2-A-

Azobenzene

SB 228357 5HT-2-B/C-

R(-)-Isoproterenol (+)-Bitartrate ADR-B-2+ ADR-B-1+

Amitryptiline Hydrochloride ADR-U- 5HT-U- CHA-K-

Amoxapine ADR-U- 5HT-U-

Telmisartan ANG-2-1- PPAR-G+

Cefamandole Sodium SY-CW- BACT-

TCPOBOP CAR+

Cinnarazine CHA-CA- HIST-H-1- DOPA-D-2- ACH-M-

Psora-4 CHA-K-

Pimozide DOPA-D-2- 5HT-2-A- ADR-A-1- DOPA-U-

Mitotane ESTR- CHA-NA?

Oxiconazole Nitrate FUNG-

Ornithine alpha-Ketoglutarate

N-Desmethylclozapine 5HT-2-C- ACH-M1+

Coumaphos ACH-

S,S,S,-Tributylphosphorotrithioate ACH-

Fiduxosin Hydrochloride ADR-A-1-

Mianserine Hydrochloride ADR-U- ADR-A-2- HIST- 5HT-2-A/2-C-

Bepridil Hydrochloride CHA-CA- CHA-NA- CHA-K-

Aconitine CHA-NA+

Loxapine Succinate DOPA-D-1- DOPA-D-2- 5HT-2- (indirect?)

Ibudilast ES-P-C-4-

Endosulfan GABA-A-

Clorgyline Hydrochloride MAO-A-

Amoxapine ADR-U- 5HT-U-ODQ CYC-GU-L-701252 EAA-G- NMDA-Megestrol Acetate ESTR+ PROG+1S,9R-Hydrastine GABA-A-Chlordane GABA-A- INSECT- ATPP-Ca/Mg-ATPP-Na/K-Dacthal HERB-Propazine HERB-7-Oxocallitrisic Acid, Methyl Ester

Methiothepin Maleate 5HT-1-2- DOPA-D-2-

Mianserin ADR-U- ADR-A-2- HIST- 5HT-2-A/2-C-

Cyproterone Acetate ANDR-

(1S,9R)-Beta-Hydrastine GABA-A-

Pregnenolone GABA-A-

Astemizole HIST-1- CHA-K-

Bromo-3-Hydroxy-4-(Succin-2-Yl)-Caryolane Gamma-Lactone

Page 22: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

8

9

10

11

12

13

Figure S3(Cont)

NAME Activity 1 Activity 2 Activity3 Activity 4

# R

es

t B

ou

ts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

21

Dichlorodiphenyltrichloroethane CHA-NA+ INSECT-

Methoxychlor CHA-NA+ INSECT-

Strobane CHA-NA+ INSECT-

Toxaphene CHA-NA+ INSECT-

Aldrin GABA-A- INSECT- ATPP-Ca/Mg- ATPP-Na/K-

Heptachlor GABA-A- INSECT- ATPP-Ca/Mg- ATPP-Na/K-

Disulfoton ACH- INSECT-

(+)-Hydrastine GABA-A-

Dihydroergotamine Mesylate 5HT-1-D+ 5HT-1-A+ ADR-A-2-A DOPA-D-2/D-3

Amperozide Hydrochloride 5HT-2- DOPA-D-2-

Clozapine 5HT-2- DOPA-D-2- ADR- HIST-H-1-

Cephaeline Dihydrochloride Heptahydrate 5HT-4+?

Chlormadinone Acetate ANDR- ESTR+ PR+

Flutamide ANDR-

Halofantrine Hydrochloride CHA-K-

Haloperidol DOPA-D-1-2- NMDA- CHA-K-

Chlorpromazine Hydrochloride DOPA-D-2- DOPA-D-1- 5HT1-2- HIST-H-1-

3-alpha-Bis-(4-Fluorophenyl)Methoxytropane DOPA-U- ACH-M-

(-)-MK-801 Hydrogen Maleate EAA-G- NMDA-

Spermine Tetrahydrochloride EAA-G- EAA-G+ NMDA-

Epiandrosterone ESTR- CHA-CA- GABA-A+

CGP-13501 GABA-B+

2-Methoxyestradiol HIF-1-

Deptropine Citrate HIST- ACH-M-

Astemizole HIST-1- CHA-K-

Astemizole HIST-1- CHA-K-

Clemastine HIST-1- ACH-M-?

Oxatomide HIST-1-

Promethazine Hydrochloride HIST-1- ACH-M- 5HT-2- calmodulin-

Terfenadine HIST-1- CHA-K-

3-(1H-Imidazol-4-Yl)Propyl Di(P-Fluorophenyl)Methyl Ether HIST-H3-/+

Tyrphostin AG 494 KI-GFEP-

Danazol LHRH- ESTR-

1,4-PBIT Dihydrobromide NO-S-

Roxithromycin PRT-50S- NF-kB-

Finasteride RED-5A- ANDR-

Menadione VITA+

2,4-Dihydroxychalcone 4-GlucosideBenzanthroneDerrusninHexylresorcinolHomopterocarpin

MDL 72832 5HT-1-A+ ADR-A-1?

Metergoline Phenylmethyl Ester 5HT-1-D- 5HT-2- DOPA+

Metergoline 5HT-1-D- 5HT-2- DOPA+

GR 4661 5HT-1-D+

LY-367265 5HT-2-A- 5HT-U-

R(+)-Terguride 5HT-2-B- DOPA+/partial

LY-53857 5HT-2-

Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

R-(-)-Fluoxetine Hydrochloride 5HT-U-

Naftopidil Dihydrochloride ADR-A-1- ADR-U-? 5HT-2-?

Naftopidil Dihydrochloride ADR-A-1- ADR-U-? 5HT-2-?

Vincamine ADR-A-1- CHA-NA-

Oxymetazoline Hydrochloride ADR-A-1+ ADR-A-2+

Yohimbine Hydrochloride ADR-A-2-

Beclomethasone Dipropionate ARACH- LIPCOR+ IM- GluR+

Rutilantinone BACT-

Verapamil Hydrochloride CHA-CA-

Acetopromazine Maleate Salt DOPA-

Azaperone DOPA- HIST- ACH-

Triflupromazine Hydrochloride DOPA-D-1/D-1- 5HT-2-B- ACH-M-

Haloperidol DOPA-D-1-2- NMDA- CHA-K-

L-741626 DOPA-D-2-

Thioridazine Hydrochloride DOPA-D-2- 5HT-2- ADR- CHA-K-

Mesulergine Hydrochloride DOPA-D-2+ 5HT-2-C-

CNS-1102 EAA-G- NMDA-

trans-Dehydroandrosterone ESTR+ ANDR+ GABA-A-

Tolnaftate FUNG-

SB 205384 GABA-A+

3-Methyl-6-(3-[Trifluoromethyl]Phenyl)-1,2,4-Triazolo[4,3-B]Pyridazine GABA-A+

Prometryn HERB-

Meclozine Dihydrochloride HIST- ACH-

Meclizine Hydrochloride HIST- ACH-

1-[(4-Chlorophenyl)Phenyl-Methyl]-4-Methylpiperazine HIST-

Methapyrilene Hydrochloride HIST-1-

Terfenadine HIST-1- CHA-K-

TG 003 KI-CLK-

Nicolsamide KI-TYR-

Naltriben Methanesulfonate OPI-D-

Icilin TRP-M8+

NiloticinTriptophenolide

LY-165163 5HT-1-A+ DOPA-D-2-

BP554 5HT-1-A+

Metergoline 5HT-1-D- 5HT-2- DOPA+

Dihydroergotamine Methanesulfonate 5HT-1-D+ 5HT-1-A+ ADR-A-2-A DOPA-D-2/D-3

Ketanserin Tartrate 5HT-2- DOPA?

Pirenperone 5HT-2- DOPA-D-2-?

Ketanserin Tartrate 5HT-2- DOPA?

Paroxetine Hydrochloride Hemihydrate 5HT-U-

Trihexyphenidyl Hydrochloride ACH-M-1-

Quinacrine Hydrochloride ACH-M+ Lipase-A-2- OX-LP-5-

Pancuronium Bromide ACH-N-

Doxazosin Mesylate ADR-A-1-

WB-4101 Hydrochloride ADR-A-1-

Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

Nicergoline ADR-A-1-

3,4-Dimethoxyflavone AHR-

Androsterone Acetate ANDR+ CHA-CA-?

Totarol BACT-

Phenamil CHA-NA-

Azaperone DOPA- HIST- ACH-

Spiperone Hydrochloride DOPA-D-2- 5HT-1-A- 5HT-2-A-

Benperidol DOPA-D-2- CHA-K-

Spiperone DOPA-D-2- 5HT-1-A- 5HT-2-A-

Droperidol DOPA-D-2- CHA-K-

DO 897/99 DOPA-D-2/D-3- DOPA-D-3+ 5-HA-1-A ADR-A-1

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-

S(-)-Lisuride DOPA-D-2+ 5HT-2-B-

Dihydroergocristine DOPA-D-2+ ADR-A+/- 5HT-2-

Dihydroergocristine DOPA-D-2+ ADR-A+/- 5HT-2-

Bromocriptine Mesylate DOPA-D-2+ CREB+ SSTATIN

PD 168077 DOPA-D-4+

Ro 25-6981 Hydrochloride EAA-G- NMDA-NR2-B-

Butylparaben ESTR?

Hydroxyprogesterone Caproate ESTR+ ESTR+ PR+

Alfadolone Acetate GABA-A+

Reserpine NEURT-

Saquinavir Mesylate PROT- TNF-alpha+ PROL-

Nomegestrol Acetate PROG+ ANDR-

Ethynodiol Diacetate PROG+ ESTR+

Oxaprozin SY-PG- COX-

Spiroxatrine 5HT-1-A- DOPA-D-2- ADR-A-2-

AMI-193 5HT-2- DOPA-D-2-

AMI-193 5HT-2- DOPA-D-2-

WB-4101 Hydrochloride ADR-A-1-

Amoxapine ADR-U- 5HT-U-

8-Cyclopentyl-1,3-Dipropylxanthine ADS-A-1-

Strophanthidinic Acid Lactone Acetate ATPP-Na/K-

Vinpocetine CHA-NA- ES-P-C-1-

Medroxyprogesterone Acetate DEC-OR- ANDR- ESTR+ PR+

Domperidone DOPA-D-2-

3-Methoxymorphinan Hydrochloride EAA-G- NMDA- OPI-S+ DOPA-U-?

L-701252 EAA-G- NMDA-

4-Androstene-3,17-Dione ESTR- ANDR+

Tracazolate Hydrochloride GABA-A- GABA-A+

Loperamide OPI+

BWB70C OX-LP-5-

Page 23: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

14

15

16

Figure S3(Cont)

NAME Activity 1 Activity 2 Activity3 Activity 4

# R

es

t B

ou

ts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

1-(2-Methoxyphenyl)-4-(4-Succinimidobutyl)Piperazine 5HT-1-A-

Spiroxatrine 5HT-1-A- DOPA-D-2- ADR-A-2-

WAY-100635 Maleate Salt 5HT-1-A- DOPA-D-4+

RU-24969 5HT-1-A/2-C+

CINANSERIN 5HT-2-

Opipramol Dihydrochloride 5HT-2- OPI-S+ HIST-H-1- DOPA-D-2-

Norcyclobenzaprine 5HT-2-A-

Alcuronium Chloride ACH-M-

Quinacrine Dihydrochloride ACH-M+ Lipase-A-2- OX-LP-5-

Quinacrine Dihydrochloride Dihydrate ACH-M+ Lipase-A-2- OX-LP-5-

Pancuronium Bromide ACH-N-

2-[4-(2-Methoxyphenol)Piperazin-1-Yl]Methyl-6-Methyl2,3Dihydroimidazo[1,2C]Quinazolin-5(6H)OneADR-A-1-

2-[[B-(4-Hydroxyphenol)Ethyl]Aminoethyl]-1-Tetralone ADR-A-1-

Doxazosin Mesylate ADR-A-1-

Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

Ifenprodil Tartrate ADR-A-1- EAA-G- NMDA- CHA-K(GIRK)-

L-765314 ADR-A-1-

Nicergoline ADR-A-1-

Prazosin ADR-A-1-

5-Methyl-Urapidil ADR-A-1- 5HT-1-A-

MK-912 ADR-A-2-

RX 821002 Hydrochloride ADR-A-2-

Testosterone Propionate ANDR+ ESTR+

Cepharanthine APOP- NF-KB- IM-

Omeprazole ATPP-H/K-

Gitoxin ATPP-NA/K-

(+/-)-Methoxyverapamil Hydrochloride CHA-CA-

Mexiletine Hydrochloride CHA-NA- ADR-B-

ODQ CYC-GU-

Coralyne Chloride Hydrate DNA-

Fusaric Acid DOPA-BH-

Domperidone Maleate DOPA-D-2-

Droperidol DOPA-D-2-

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-

Dihydroergocristine Methanesulfonate DOPA-D-2+ ADR-A+/- 5HT-2-

GR 103691 DOPA-D-3-

1-Benzo[B]Thien-2-Yl-N-Cyclopropylmethylcyclohexanamine DOPA-U-

2-Methyl-6-(Phenylethynyl)Pyridine EAA-G- mGluR5-

LY-235959 EAA-G- NMDA-

3-Isobutyl-1-Methylxanthine ES-P-C- ADS-

Papaverine Hydrochloride ES-P-C-4-

Ajmalicine Hydrochloride SY-CW-

Amsacrine hydrochloride TO-2-

Amodiaquine DihydrochlorideHycanthone

Trazodone Hydrochloride 5HT-1-2- ADR-A-1- 5HT-2+(high doses)5HT-U-

P-MPPF Dihydrochloride 5HT-1-A-

WAY-100635 Maleate 5HT-1-A- DOPA-D-4+

MDL-73005EF 5HT-1-A+ ADR-A-1-

BMY 7378 Dihydrochloride 5HT-1-A+/- ADR-A-1-D- ADR-A-2-C-

GR 127935 Hydrochloride 5HT-1-B/D- 5HT-1-D+?

Clozapine 5HT-2- DOPA-D-2- ADR- HIST-H-1-

N-Methylquipazine 5HT-3+

(+)-Chlorpheniramine Maleate 5HT-U- ADR-U- HIST-H-1-

Diphenhydramine Hydrochloride 5HT-U- HIST-H-1-

Fluvoxamine Maleate 5HT-U-

Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

Paroxetine Hydrochloride 5HT-U-

Zimelidine Dihydrochloride Monohydrate 5HT-U-

Prazosin Hydrochloride ADR-A-1-

Terazosin Hydrochloride ADR-A-1-

Vincamine ADR-A-1- CHA-NA-

3-[2-[4-(2-Methoxyphenyl)Piperazin-1-Yl]Ethyl]-1,5Dimethylpyrimido[5,4-B]Indole-2,4-Dione ADR-A-1+ 5HT

p-Iodoclonidine Hydrochloride ADR-A-2+

ARC 239 Dihydrochloride ADR-A-2-B- 5HT-1-A-

Carvedilol Tartrate ADR-B- ADR-1-

Desipramine Hydrochloride ADR-U- 5HT-U- ACH-M- ADR-B-

(+/-)-Verapamil Hydrochloride CHA-CA-

Methoxyverapamil CHA-CA-

Phloretin CHA-CA- CHA-K-?

Verapamil Hydrochloride CHA-CA-

YS-035 CHA-CA-

YS-035 Hydrochloride CHA-CA-

Apomorphine Hydrochloride DOPA+ COMT- TH-

Trifluoperazine Dihydrochloride DOPA-1-2- ADR-1- ATPase-K-

Trifluoperazine Hydrochloride DOPA-1-2- ADR-1- ATPase-K-

Piperacetazine DOPA-D-1/D-2-? 5HT-2-B-?

(+/-)-SKF 38393, N-Allyl-, Hydrobromide DOPA-D-1+

Perphenazine DOPA-D-1-2- ADR-A-1-

Perphenazine DOPA-D-1-2- ADR-A-1-

Mesoridazine DOPA-D-2- 5HT-2-A-(indirect?)ADR-(indirect?)

Prochlorperazine Dimaleate DOPA-D-2- ADR-A-1- HIST-H-1- 5HT-2-

Risperidone DOPA-D-2- 5HT-2- ADR-B- HIST-

Quinelorane Dihydrochloride DOPA-D-2/3+

S(-)-Lisuride DOPA-D-2+ 5HT-2-B-

B-HT 920 DOPA-D-2+ ADR-A-2+ 5HT-3-

Dipropyl-6,7-ADTN DOPA-D-2+

Piribedil Maleate DOPA-D-3/D-2+ 5HT-2-A/C-

17alpha-Hydroxyprogesterone ESTR- PR+

Norethynodrel ESTR- PR+

Estrone ESTR+

Harmane Hydrochloride GABA-A 5HT-2-A+ CHA-

Scoulerine GABA-A+ ADR-A-1- ADR-A-1- 5HT-

Cortexolone Maleate GlucoR-

Clemizole Hydrochloride HIST-1-

Chloropyramine Hydrochloride HIST-H-1-

Indirubin-3-Oxime KI-CD- KI-GSK-

PD 169316 KI-P38-

H-89 KI-PKA-

Reserpine NEURT-

Diosmetin P450-

GW 9662 PPAR-G- IL-4-

Ethynylestradiol 3-Methylether PROG+ ESTR+

Dioxybenzone UV-

2beta-Dihydroxychalcone3-HydroxyflavonePhenazopyridine HydrochlorideTotarol-19-Carboxylic Acid

1-(3-Chlorophenyl)Piperazine Dihydrochloride 5HT-1-2+ 5HT-3-

NAN-190 5HT-1-A- ADR-A-1-

S(-)-UH-301 Hydrochloride 5HT-1-A-

Buspirone 5HT-1-A+ DOPA-D-2-

R(+)-UH-301 Hydrochloride 5HT-1-A+

BMY 7378 Dihydrochloride 5HT-1-A+/- ADR-A-1-D- ADR-A-2-C-

Quipazine 5HT-2-A/3+

Quipazine Dimaleate 5HT-2-A/3+

Dl-p-Chlorophenylalanine Methyl Ester Hydrochloride 5HT-SY-

6-Nitroquipazine 5HT-U-

Chlorpheniramine Maleate 5HT-U- ADR-U- HIST-H-1-

Fluvoxamine Maleate 5HT-U-

6-Nitroquipazine Maleate 5HT-U-

Zimelidine Dihydrochloride 5HT-U-

Rescinnamin ACE-

L(-)-Vesamicol Hydrochloride ACH-SY-

2-[(4-Phenylpiperazin-1-Yl)Methyl]-2,3-Dihydroimidazo[1,2-C]Quinazolin-5(6H)-One ADR-A-1-

SKF 86466 ADR-A-2-

Verapamil CHA-CA-

Promazine Hydrochloride DOPA-1-2/4- 5HT-2-A/C- ACH-M- ADR-A-1-

(+/-)-Chloro-APB Hydrobromide DOPA-D-1+

(+/-)-SKF 82958 DOPA-D-1+ DOPA-D-2+

R(+)-6-Bromo-APB Hydrobromide DOPA-D-1+

SKF 83565 Hydrobromide DOPA-D-1+

Prochlorperazine Dimaleate DOPA-D-2- ADR-A-1- HIST-H-1- 5HT-2-

S-(-)-Eticlopride Hydrochloride DOPA-D-2/D-3-

L-750667 DOPA-D-4-

PD 168077 Maleate DOPA-D-4+

1-[1-(2-Benzo[B]Thienyl)Cyclohexyl]Pyrrolidine DOPA-U-

Dextromethorphan Hydrobromide Monohydrate EAA-G- NMDA- OPI-S+ DOPA-U-?

SIB 1757 EAA-G- mGluR5-

Syrosingopine NEURT-

6(5H)-Phenanthridinone PARP-

Ethinyl Estradiol PROG+ ESTR+ SXR+

Benfluorex Hydrochloride RED-HMG-?

Suprofen Methyl Ester SY-PG- COX-1- COX-2-

Dihydrogeduninic Acid, Methyl Ester

22

Page 24: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

17

18

19

20

21

22

23

24

Figure S3(Cont)

NAME Activity 1 Activity 2 Activity3 Activity 4

# R

es

t B

ou

ts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

NAN-190 Hydrobromide 5HT-1-A- ADR-A-1-

N-Butyl-N-Ethyl-2-(1-Naphthyloxy)Ethanamine 5HT-1-A+

CGS-12066A Maleate 5HT-1-B+ 5HT-1-D+

Quipazine Maleate 5HT-2-A/3+

Tropanyl 3,5-Dimethylbenzoate 5HT-3-

(+/-)-Brompheniramine Maleate 5HT-U- ADR-U- HIST-H-1-

Amitriptyline Hydrochloride 5HT-U- ADR-U-

Fluoxetine Hydrochloride 5HT-U-

Imipramine Hydrochloride 5HT-U- ADR-U- ADS-A-1-

Nefopam Hydrochloride 5HT-U- DOPA-U- ADR-U- COX-

Methomyl ACH- INSECT-

Metixene Hydrochloride ACH-M-

Oxybutynin Chloride ACH-M-

Arecaidine Propargyl Ester Hydrobromide ACH-M-2+

Atracurium Besylate ACH-N/M-

Prazosin Hydrochloride ADR-A-1-

Amitraz ADR-A-2+

Clonidine ADR-A-2+

Clonidine ADR-A-2+

Guanabenz Acetate ADR-A-2+

Guanabenz Acetate ADR-A-2+

Guanabenz Acetate ADR-A-2+

Guanabenz Acetate ADR-A-2+

Guanfacine Hydrochloride ADR-A-2+

Guanfacine Hydrochloride ADR-A-2+

Tizanidine Hydrochloride ADR-A-2+

UK 14304 ADR-A-2+

2-Chloroadenosine ADS+

Adenosine ADS+

MRS-1220 ADS-A3-

Brinzolamide ANC-2-

Strophanthidin ATPP-Na/K-

2,6-Dimethoxyquinone BACT-

Chrysene-1,4-Quinone BACT-

Cinnarizine CHA-CA- HIST-H-1- DOPA-D-2- ACH-M-

Chlorzoxazone CHA-K-(Ca)-

Dyclonine Hydrochloride CHA-NA-

Dyclonine Hydrochloride CHA-NA-

Chrysin DIUR+

R(-)-SCH-12679 Maleate DOPA-D-1-

SCH 23390 DOPA-D-1-

S(-)-3PPP hydrochloride DOPA-D-2-

(-)-Quinpirole DOPA-D-2/3+

Bromocriptine Mesylate DOPA-D-2+ CREB+ SSTATIN

S(-)-DS 121 Hydrochloride DOPA-D-3-

Ropinirole Hydrochloride DOPA-D-3/2+

SIB 1757 EAA-G- mGluR5-

Naftifine Hydrochloride EPOX-SQ- FUNG-

(-)-Huperzine A ES-ACH-

Biochanin A, Dimethyl Ether ESTR+

Estradiol Cypionate ESTR+ ESTR+

Picrotoxinin GABA- GLY-R-

GBLD-345 GABA-A+ BZD+

Propachlor HERB-

Clemizole Hydrochloride HIST-1-

Trimeprazine Tartrate HIST-H-1-

BIO KI-GSK-3- KI-PDK1-

6-Methoxy-1,2,3,4-Tetrahydro-9H-Pyrido[3,4B] Indole MAO-

Phenelzine sulfate MAO-

Phenelzine Sulfate MAO-

Tranylcypromine Hydrochloride MAO- DOPA-D-2? 5HT-2-A?

Tranylcypromine Sulfate MAO- DOPA-D-2? 5HT-2-A?

Clorgyline Hydrochloride MAO-A-

R-(-)-Desmethyldeprenyl Hydrochloride MAO-B-

8-Methoxy-2-Propionamidotetralin ML+

(-)-trans-(1S,2S)-U-50488 Hydrochloride OPI-K+

Ticlopidine Hydrochloride P2Y-R-12- PLAT-AD-

CY-3988 PAF-

Baicalein PO-RDNA-

Dydrogesterone PROG+

Estradiol PROG+ ESTR+ SXR+

Enilconazole SY-CW- FUNG-

Tetrac THYR+

Thyroxine THYR+

3beta-Chloroandrostanone

(+/-)-Vesamicol Hydrochloride ACH-SY-

1,3-Diethyl-8-Phenylxanthine ADS-A-1- ES-P-C-IV- Nf-kB

Ciclopirox Olamine PERM- ATPP-Na/K-

DCEBIO CHA-K+

Spermine EAA-G- EAA-G+ NMDA-

Zardaverine ES-P-C-3-

Loratadine HIST-1- CHA-K(A5)-

L-703606 Oxalate NK-1-

Fenofibrate PPAR-A+

Tetradecylthioacetic acid PPAR-A+

Niflumic Acid SY-PG- COX- AE2-

Dioxybenzone UV-

Gedunol

23

beta-Caryophyllene AlcoholClovanediol DiacetateHymecromoneIofetamine hydrochloridePelletierine HydrochloridePramoxine Hydrochloride

Fluspirilen DOPA-D-2-

Pergolide Methanesulfonate DOPA-D-2+

BRL 15572 5HT-1-D-

CY 208-243 DOPA-D-1+

Pergolide Methanesulfonate DOPA-D-2+

7-Hydroxy-DPAT DOPA-D-3+ DOPA-D-1-2/4+

1-[1-(2-Benzo[B]Thienyl)Cyclohexyl)]Piperidine DOPA-U-

Dihydrocapsaicin VAN+

Clioquinol FUNG-

Cyclopiazonic Acid CHA-CA-i-

Papaverine Hydrochloride ES-P-C-10

Tert-Butyl-Bicyclo[2.2.2]Phosphorothionate GABA-A-

Oxibendazole NEMO- MICROTUBE-

Indomethacin Morpholinylamide SY-PG- COX-1-2-

Thioxolone ANC-2-

R(-)Apomorphine Hydrochloride Hemihydrate DOPA+ COMT- TH-

Avermectin B1 GABA-A+

Clofibrate PPAR-A+ LP-P-A-2+

Indole-3-CarbinolLysergol

Chol-11-Enic Acid

Page 25: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

FingerprintCorrelation

Matrix

Clo

nid

ine

clonidine-dosestable

5 10 15 20

1

2

3

4

5

6

-3

-2

-1

0

1

2

3

clonidine correlation stablity

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

45

15

4.51.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

µM

45

15

4.5

1.5

0.45

0.15

45

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

ropinirole

5 10 15 20

1

2

3

4

5

6

-3

-2

-1

0

1

2

3

45

15

4.51.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

µM

45

15

4.5

1.5

0.45

0.1545

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

ropinirole

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

Rop

inirole

betamethasone

5 10 15 20

1

2

3

4

5

6

-3

-2

-1

0

1

2

3

45

15

4.51.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

µM

45

15

4.5

1.5

0.45

0.15

45

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

betamethasone

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

Be

tam

eth

aso

ne

NAN190

5 10 15 20

1

2

3

4

5

6

-3

-2

-1

0

1

2

3

3 S.D.

2

1

0

-1

-2

-3 S.D.

45

15

4.51.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

µM1

0.5

0

-0.5

45

15

4.5

1.5

0.45

0.15

45

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

NAN190

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

NA

N-1

90

pergolide

5 10 15 20

45

15

4.5

1.5

0.45

0.15-3

-2

-1

0

1

2

3

45

15

4.5

1.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

µM

45

15

4.5

1.5

0.45

0.15

45

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

Pe

rgo

lide

pergolide

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

buspirone

5 10 15 20

45

15

4.5

1.5

0.45

0.15-3

-2

-1

0

1

2

3

45

15

4.51.5

0.45

0.15

rest

tota

l

# r

est

bouts

rest bout

length

rest

late

ncy

activity

tota

l

wakin

g

activity

45

15

4.5

1.5

0.45

0.15

45

15

4.5

1.5

0.4

5

0.1

5

co

rre

lation

µM

Bu

sp

iro

ne

buspirone

1 2 3 4 5 6

1

2

3

4

5

6

-0.5

0

0.5

1

Figure S4

3 S.D.

2

1

0

-1

-2

-3 S.D.

3 S.D.

2

1

0

-1

-2

-3 S.D.

3 S.D.

2

1

0

-1

-2

-3 S.D.

3 S.D.

2

1

0

-1

-2

-3 S.D.

3 S.D.

2

1

0

-1

-2

-3 S.D.

1

0.5

0

-0.5

1

0.5

0

-0.5

1

0.5

0

-0.5

1

0.5

0

-0.5

1

0.5

0

-0.5

24

Page 26: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

A. B.

C.

Cor

rela

tion

-0.5

0

0.5

1

AD

R-A

1-

AD

R-A

2-

AD

R-A

2+

AD

R-B

-

AD

R-B

+

AD

R-U

-

SN

RI

SS

RI

5HT-

1A-

5HT-

1A+

5HT-

1A+/

-

5HT-

1D-

5HT-

1D+

5HT-

2-5H

T-2/

3+

5HT-

2B/C

-

5HT-

4+

MA

O-

NE

UR

O-

DO

PA

-D

OP

A+

DO

PA

-D1-

DO

PA

-D1+

DO

PA

-D2-

DO

PA

-D2/

3+

DO

PA

-D2/

3-

DO

PA

-D2+

DO

PA

-D3-

DO

PA

-D3+

DO

PA

-D4+

DO

PA

-U-

GA

BA

-

GA

BA

+

HIS

T-H

1-

HIS

T-H

1-(E

RG

)

AD

S+

AD

S-

mG

LUR

5-

NM

DA

-

AC

H-E

S-IR

ev

AC

H-E

S-R

ev

AC

H-M

-

AC

H-M

+

AC

H-N

-

AC

H-N

+

AC

H-S

Y-

CH

A-C

A-L

-

CH

A-N

A-

CH

A-N

A+

PP

AR

-A+

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

0 Targets Shared>=1 Target Shared

Correlation

Per

cent

24 4 12 3 3 10 8 10 9 7 2 4 3 13 3 2 3 8 4 3 2 8 7 24 2 2 12 2 3 2 3 9 8 8 9 2 2 3 18 3 3 7 3 7 2 2 8 6 5 3N

Cla

ss

1 2 3-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Cor

rela

tion

0 targets >=1 target repeats(2 sources)

Figure S5

25

Page 27: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

heptachlor

aldrin

endosulfan

chlordane

strobane

toxaphene

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1552,*(D)Zimelidine Dihydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1552,*(D)Zimelidine Dihydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,666,Fluvoxamine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,666,Fluvoxamine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,491,(+)-Chlorpheniramine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,491,(+)-Chlorpheniramine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3584,6-Nitroquipazine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3584,6-Nitroquipazine

SSRIs6-nitroquipazine

zimelidine

chlorpheniramine

fluvoxamine

4

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

Norm

aliz

ed

Wa

kin

g A

ctivity

Norm

aliz

ed

Rest

A.

B.

Waking Activity Rest

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4797,Heptachlor

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4804,Aldrin

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4915,*(H)Chlordane

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4783,Strobane

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

Norm

aliz

ed W

akin

g A

ctivity

Norm

aliz

ed W

akin

g A

ctivity

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4907,*(D)Toxaphene

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4782,Endosulfan

5

4

3

2

1

0

Figure S6

NN

HN

N+

O-

O

N

NCl

N

Br

N

F

F F

N

O

ONH2

Cl

Cl

ClCl

Cl

Cl

ClCl

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

Cl

S

O

O

O

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

ClCl

Cl

Cl

Cl

5

4

3

2

1

0

Time Time

Time Time

26

Page 28: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

-bis

-(4-f

luoro

phenyl)

meth

oxytr

opane

deptr

opin

e

benztr

opin

e

alc

uro

niu

m

trih

exyphenid

yl

metixene

oxybuty

nin

A. B.

C. D.

NAN-190 5-HT1A antagonist

Quinazolin-5(6h)-one alpha-1 antagonist

5-methyl-urapidil alpha-1 antagonist

Terazosin alpha-1 antagonist

Quinacrine antimalarial

Quinacrine antimalarial

Ajmalicine not annotated

RU-24969 5-HT1A agonist

Ifenprodil alpha-1 antagonist

Ifenprodil alpha-1 antagonist

ODQ guanylyl cyclase

Quinelorane dopamine agonist

WAY-100635 5-HT1A antagonist

Buspirone 5-HT1A agonist

PD 168077 dopamine agonist

Dihydroergocristine alpha-1 antagonist

Hycanthone not annotated

H-89 PKA antagonist

Nicergoline alpha1-antagonist

MK-912 alpha1-antagonist

1.

548

1 Quinacrine 0.8512 Ifenprodil 0.8483 WAY-100635 0.8484 Droperidol 0.8356 L-765314 0.8317 Ajmalicine 0.8288 MK-912 0.82610 Buspirone 0.82213 5-methyl-urapidil 0.81815 Ifenprodil 0.81716 Vincamine 0.81717 H-89 0.81318 WAY-100635 0.81320 ARC 239 0.81121 P-MPPF 0.81023 Dihydroergocristine 0.80926 NAN-190 0.80227 RU-24969 0.80230 NAN-190 0.79732 Prazosin 0.79333 M77 0.79336 Quinazolin-5(6h)-one 0.78937 Perphenazine 0.78938 Nicergoline 0.78542 BMY-7378 0.78143 Quinacrine 0.78145 Amodiaquine 0.77847 Domperidone 0.77049 Terazosin 0.76954 Spiroxatrine 0.75555 Risperidone 0.750

Rank Name Mean Correlation

Name Target/Indication

# R

es

t

Bo

uts

Res

t B

ou

tL

en

gth

Res

t

La

ten

cy

Ac

tivit

y

To

tal

Wa

kin

g

Ac

tivit

y

Res

tT

ota

l

Figure S7

1 2 3 4 5 6 7

1

2

3

4

5

6

7

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

3α-bis-(4-fluorophenyl)methoxytropane

deptropine

benztropine

alcuronium

trihexyphenidyl

metixene

oxybutynin

DO

PA

-U/

AC

H-M

-A

CH

-M-

DOPA-U/ACH-M- ACH-M-

1 2 3 4 5 6 7

1

2

3

4

5

6

7

-0.4

-0.2

0

0.2

0.4

0.6

0.8

11

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Co

rre

lati

on

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.2

0

0.2

0.4

0.6

0.8

3α-bis-(4-fluorophenyl)methoxytropane

1-benzo[B]thien-2-yl-N-cyclopropyl methyl

cyclohexanamine

1-[1-(2-benzo[B]thienyl)cyclohexyl]pyrrolidine

1-[1-(2-benzo[B]thienyl)cyclohexyl]piperidine

-bis

-(4-f

luoro

phenyl)

meth

oxytr

opane

1-b

enzo[B

]thie

n-2

-yl-

N-c

yclo

pro

pylm

eth

yl

cyclo

hexanam

ine

1-[

1-(

2-b

enzo[B

]thie

nyl)

cyclo

hexyl]pyrr

olid

ine

1-[

1-(

2-b

enzo[B

]thie

nyl)

cyclo

hexyl]pip

erid

ine

DO

PA

-U/

AC

H-M

-

DOPA-U/

ACH-M-

DO

PA

-U

DOPA-U

27

Page 29: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,4571,Carvedilol Tartrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,4571,Carvedilol Tartrate

-

-

-

Waking Activity Rest

Figure S8

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,915,Ifenprodil Tartrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,915,Ifenprodil Tartrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3739,Clonidine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,3739,Clonidine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,5356,Clenbuterol Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,5356,Clenbuterol Hydrochloride

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

β-Adrenergic agonists

(Clenbuterol)

α1 antagonists

(Ifenprodil)

β-adrenergic antagonists

(Carvedilol)

α2-adenergic agonists

(Clonidine)

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

Time Time

Adrenergic Signaling

Agonists Wake Rest

Effects in

mammals

Selected

References

Alpha2Clonidine

Guanabenz sedating, (S23-S27)

Guanfacine analgesia

Tizanidine

UK 14304

BetaR(-)-Isoproterenol stimulant, (S28-S30)

Clenbuterol insomnia

Fenoterol

Antagonists

Alpha1Nicergoline

Prazosin increased wake,

Ifenprodil mixed effects (S30-33)

5-methyl-urapidil on REM sleep

Doxazosin

L-765314

BetaBopindolol reduced activity, (S34, S35)

Carvedilol sedation

28

Page 30: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,666,Fluvoxamine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,666,Fluvoxamine Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1248,Ketanserin Tartrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Activ

ity

Average Waking Activity ,1248,Ketanserin Tartrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,2503,Metergoline Phenylmethyl Ester

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2503,Metergoline Phenylmethyl Ester

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,3727,Nan-190

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,3616,Quipazine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3616,Quipazine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,692,Dihydroergotamine Methanesulfonate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Activ

ity

Average Waking Activity ,610,Cgs-12066A Maleate

No

rma

lize

d R

est

-

-

-/

Waking Activity Rest

Figure S9

3

2

1

0

3

2

1

0

3

2

1

0

No

rma

lize

d W

akin

g A

ctivity

Time Time

Serotonin Signaling

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

-/

-

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

00 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3696,Buspirone

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,3696,Buspirone3

2

1

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,610,Cgs-12066A Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,692,Dihydroergotamine Methanesulfonate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3727,Nan-190

5HT-1A-receptor agonists

(Buspirone)

5HT1B/D agonists

(CGS-12066A)

5HT1D agonists

(Dihydroergotamine)

5HT-2/3 agonists

(Quipazine)

5HT-1A antagonists

(NAN-190)

5HT-1D antagonists

(Metergoline)

5-HT-2/3 antagonists

(Ketanserin)

Serotonin Reuptake

Inhibitors (Fluvoxamine)

Agonists Wake Rest Effects in mammalsSelected

References

5HT-1ABMY-7378

BP-554

Buspirone

PAPP

RU-24969

5HT-1B/DCGS-12066A

5HT-1DDihydroergotamine migraine treatment

GR 46611 potentiates 5HT-1A induced

locomotion in guinea pig

5HT-2/3N-methylquipazine

Quipazine

Antagonists5HT-1A

MM-77

NAN-190

P-MPPF

S(-)-UH-301 Spiroxatrine

WAY-100635

5HT-1DMetergoline short-term insomnia in cats S48

5HT-2/3Cinanserin

Ketanserin

LY-53857

Norcyclobenzaprine

Reuptake

Inhibitors6-Nitroquipazine

Fluoxetine

Fluvoxamine

Paroxetine

Zimelidine

(S41,42)

(S36-40)

(S38, S49-52)

(S36,45-47)

(S38,S44)

S43

(S53-55)improves insomnia in

patients; REM suppression;

biphasic effects on SWS in

rats/cats -- up short term,

down long term

increased sleep; increased

exploration

reduced locomotion;

initial sleep suppression

followed by long term SWS

increase

short term increases in

waking; long term increases

in SWS (humans, rats, cats)

short term increases in

waking followed by general

deactivation

short-term sleep

suppression; long term

increase in SWS

29

Page 31: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,885,S(-)-Ds 121 Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Activ

ity

Average Waking Activity ,885,S(-)-Ds 121 Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,2913,Benperidol

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2913,Benperidol

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1274,R(-)-Sch-12679 Maleate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3574,Pd 168077

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1399,Ropinirole Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,2347,R(-)Apomorphine Hydrochloride Hemihydrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2347,R(-)Apomorphine Hydrochloride Hemihydrate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1496,Skf 83565 Hydrobromide

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,1496,Skf 83565 Hydrobromide

No

rma

lize

d R

est

-

Waking Activity Rest

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

D1- agonists

(SKF-83565)

No

rma

lize

d W

akin

g A

ctivity

Dopamine Signaling

3

2

1

0

3

2

1

0

3

2

1

0

/-

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3574,Pd 168077

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1399,Ropinirole Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1274,R(-)-Sch-12679 Maleate

---

--

-

-/

-/

Figure S10

D2- agonists

(Apomorphine)

D2/3-agonists

(Ropinirole)

D4-receptor agonists

(PD-168077)

D1-antagonists

(SCH-12679)

D2-antagonists

(Benperidol)

D3 antagonists

(DS121)

Time Time

Agonists Wake Rest Effects in mammalsSelected

References

D1-ReceptorChloro-APB

CY 208-243

R(+)-6-Bromo-APB

N-Allyl-SKF-38393

SKF 83565

D2-ReceptorApomorphine

Bromocriptine

Dipropyl-6,7-ADTN

Pergolide

(-)-3PPP

D2/3-Receptor

Quinelorane

Quinpirole

Ropinirole

D4-ReceptorPD 168077

AntagonistsD1-Receptor

R(-)-SCH-12679

SCH-23390

D2-ReceptorBenperidol

Droperidol

Domperidone

L-741626

D3-ReceptorDS121

GR 103691

(S56-59,

S61,S66)

(S57,S61,

S66)

(S42,S64)

(S60-63)

(S56-59)

S65

S65

short term increase in

waking followed by long-

term increases in sleep

amount

increased waking, reduction

in sleep (rat and monkeys),

and increased grooming

biphasic; at low

concentrations, reduces

waking and locomotor

activity, and increases

sleep. At high doses, the

opposite.

reduced waking; no

significant changes in sleep

extra-pyramidal effects

(movement disorders);

increased sedation

non-stereotyped shuffling in

rats

decreased waking,

increased sleep

30

Page 32: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3384,Gbld345

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3397,Alfadolone Acetate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,3397,Alfadolone Acetate

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,410,Cgp-13501

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,410,Cgp-13501

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,3474,*(D)Tracazolate Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,4354,"*(S)1S,9R-Hydrastine"

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3384,Gbld345

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

-

Waking Activity Rest

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

GABA-A agonist

(GBLD-345)

GABAergic Signaling

3

2

1

0

/-

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

-

-

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3474,*(D)Tracazolate Hydrochloride

-0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,4354,"*(S)1S,9R-Hydrastine"

Figure S11

Time Time

3.5

3

2.5

2

1.51

0.5

0

GABA-B- agonist

(CGP-13501)

GABA-A-antagonist

(1S,9R-Hydrastine)

GABA agonist/

antagonist

(Tracazolate)

Steroidal GABA agonist

(Alfadolone)

Agonists Wake Rest Effects in mammalsSelected

References

GABA-AGBLD-345

Avermectin B1

GABA-BCGP-13501

AntagonistsGABA-A

1S,9R-Hydrastine

Endosulfan

Heptachlor

Chlordane

Heptachlor

Aldrin

Mixed (+/-) ModulatorTracazolate

Neuroactive Steroid GABA RegulatorsAllopregnanolone

Pregnanolone

Alfadolone hypnotic

S69

(S75-77)

(S73,74)

(S70-72)

S68

increased locomtor activity;

induction of fighting;

pro-convulsant

anxiolytic; dose dependant

increase or decrease in

locomotor activity

stimulant; anxiolytic; ataxic;

depressant

anxiolytic; sedative

hypnotic

31

Page 33: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,919,Iik7

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1952,8-Methoxy-2-Propionamidotetralin

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1970,DH 97

Melatonin Agonist (8-methoxy-

2-propionamidotetralin)

Melatonin Agonist

(IIK7)

Melatonin Antagonist

(DH 97)

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

Waking Activity Rest

3

2

1

0

3

2

1

0

3

2

1

0

Melatonin Signaling

/-

3.5

3

2.5

2

1.51

0.5

0

/-

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1970,DH 97

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1952,8-Methoxy-2-Propionamidotetralin

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

esSleep,919,Iik7

-

Figure S12

Time Time

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

Agonists Wake Rest Effects in mammalsSelected

References

8-methoxy-2-

propionamidotetralin

Melatonin

IIK7

AntagonistsK 185

DH 97S82

(S78-81)

increase in sleep propensity

in dirunal species; circadian

phase shifting

blocks melatonin effects on

behavior

32

Page 34: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,2615,Clemizole hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,5553,Clemastine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,5553,Clemastine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,5651,Diphenylpyraline Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,5651,Diphenylpyraline Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,2615,Clemizole hydrochloride

H1-antagonist

(psychostimulant)

(Diphenylpyraline)

H1-antagonist(+HERG)

(Clemastine)

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

-

Waking Activity Rest

3

2

1

0

3

2

1

0

3

2

1

0

H1-receptor antagonist

(Clemizole)

Histamine Signaling

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

--/

/-

Figure S13

Time Time

Antagonists Wake Rest Effects in mammalsSelected

References

H1-(no HERG

block)Chloropyramine

Clemizole

Loratadine

Trimeprazine

Diphenylpyraline psychostimulant S87

H1- (HERG Blockers)Astemizole

Clemastine

Meclizine

Oxatomide

Promethazine

Terfenadine

(S83-86)sedation (less pronounced

in loratadine)

some sedation in 1st

generation anti-histamines;

less pronounced in second

generation anti-histamines

33

Page 35: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,2210,Mrs 1220

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,2210,Mrs 1220

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,599,"8-Cyclopentyl-1,3-Dipropylxanthine"

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,2146,2-Chloroadenosine

A1-antagonist

(8-cyclopentyl-1,3-

dipropylxanthine)

A3-antagonist

(MRS-1220)

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

-Waking Activity Rest

3

2

1

0

3

2

1

0

3

2

1

0

Agonist

(2-chloroadenosine)

Adenosine Signaling

3.5

3

2.5

2

1.51

0.5

0

-/

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,599,"8-Cyclopentyl-1,3-Dipropylxanthine"

Figure S14

Time Time

3.5

3

2.5

2

1.51

0.5

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,2146,2-Chloroadenosine

3.5

3

2.5

2

1.51

0.5

0

Agonists Wake Rest Effects in mammalsSelected

References

Adenosine

2-chloroadenosine

AntagonistsA1

1,3-diethyl-8-

phenylxanthine

8-cyclopentyl-1,3-

dipropylxanthine

A3MRS-1220

(S88-92)

(S88,93)

increased sleep; decreased

locomotor activity

unknown behavioral effects

locomotor stimulant

34

Page 36: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,1990,2-Methyl-6-(phenylethynyl)pyridine

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,3659,"L-701,252"

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,3659,"L-701,252"

mGluR 5 antagonist

(MPEP)

No

rma

lize

d W

akin

g A

ctivity

No

rma

lize

d R

est

Waking Activity Rest

3

2

1

0

3

2

1

0

NMDA antagonist

(L-701252)

Glutamate Signaling

3.5

3

2.5

2

1.51

0.5

0

3.5

3

2.5

2

1.51

0.5

0

-/

-/0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,1990,2-Methyl-6-(phenylethynyl)pyridine

Figure S15

Time Time

Antagonists Wake Rest Effects in mammalsSelected

References

NMDA

DCQX

7-chlorokynurenic acid

CNS-1102

IEM 1460

L-689560

L-701252

L-701324

MK-801

SDZ 220-581

mGluR5MPEP

SIB 1757

(S94,95)

(S96,97)anxiolytic; can block drug

induced hyperlocomotion

anxiolytic; hyperlocomotion;

anti-convulsant

35

Page 37: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

0

1

2

3

4

5

6

0uM 100nM 300nM 1uM 3uM 10uM 30uM

6

5

4

3

2

1

00 1x10-7 3x10-7 1x10-6 3x10-6 1x10-5 3x10-5

Ave

rag

e W

akin

g A

ctivity

(se

co

nds/m

inu

te)

Concentration (Molar)

60

50

40

30

20

10

0

min

ute

s r

est per

hour

YS-035

0

10

20

30

40

50

60

0uM 100nM 300nM 1uM 3uM 10uM 30uM

Concentration (Molar)

0

1

2

3

4

5

6

0uM 100nM 300nM 1uM 3uM 10uM 30uM

6

5

4

3

2

1

00 1x10-7 3x10-7 1x10-6 3x10-6 1x10-5 3x10-5

Avera

ge W

akin

g A

ctivity

(seconds/m

inute

)

Concentration (Molar)

0

10

20

30

40

50

60

0uM 100nM 300nM 1uM 3uM 10uM 30uM

Day

Night

B. YS-035 Rest C. YS-035 Waking Activity

A.

Time Time

Waking Activity Rest N

orm

aliz

ed

Wa

kin

g A

ctivity

O

O N O

NO

Norm

aliz

ed

Rest

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,83,Methoxy Verapamil

YS-035

Methoxy-verapamil

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Nor

mal

ized

Wak

ing

Act

ivity

Average Waking Activity ,1546,Ys-035 Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,1546,Ys-035 Hydrochloride

5

4

3

2

1

0

4

3

2

1

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,83,Methoxy Verapamil

5

4

3

2

1

0

4

3

2

1

0

Norm

aliz

ed R

est

O

O N

O

O

O

O N O

O

NO

Verapamil

Figure S16

36

35 40 45

YS-035

Methoxyverapamil

0 5 25 30

5

4

3

2

1

0

0 5

5

4

3

2

1

0

O

O N

O

O

O

O N O

O

N O

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2351,Verapamyl Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,2351,Verapamyl Hydrochloride

5

4

3

2

1

0

4

3

2

1

0

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2351,Verapamyl Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,2351,Verapamyl Hydrochloride

5

4

3

2

1

0

4

3

2

1

0

5

4

3

2

1

0

4

3

2

1

00 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2351,Verapamyl Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,2351,Verapamyl Hydrochloride

5

4

3

2

1

0

4

3

2

1

00 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2351,Verapamyl Hydrochloride

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,2351,Verapamyl Hydrochloride

5

4

3

2

1

0

4

3

2

1

0

Min

ute

s R

est p

er

Hou

r

Page 38: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Glucocorticoid

PDE inhibitor

NSAID

Immunomodulator

Figure S17.

Norm

aliz

ed W

akin

g A

ctivity

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,318,Betamethasone

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,2764,Cyclosporin A

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,4662,Fosfosal

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Experimental Time (Hours)

Norm

aliz

ed W

akin

g Ac

tivity

Average Waking Activity ,4460,FENOPROFEN

5

4

3

2

1

0 0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Nor

mal

ized

Sle

ep/1

0 m

inut

es

Sleep,318,Betamethasone

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,4460,FENOPROFEN

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,4662,Fosfosal

0 5 10 15 20 25 30 35 40 45 500

0.5

1

1.5

2

2.5

3

3.5

4

Experimental Time (Hours)

Norm

aliz

ed S

leep

/10

min

utes

Sleep,4664,Cyclosporine

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

Norm

aliz

ed R

est

NN

N

HN

N

OO

HO

OO

O

NH

HN

N

HN

OO

OO

N

O

O N

O

OH

O

P

O OH

O

O

O

O

OH

O

F

HO

Betamethasone

Fosfosal

Fenoprofen

Cyclosporin A

Time Time

Waking Activity Rest

A. B.

Time Time

Time Time

Time Time

37

Glucocorticoids

betamethasone

clobetasoldesoxycorticosterone

dexamethasone

flumethasoneflunisolide

hydrocortisone

medrysone6α-methylprednisolone

ursolic acid

PDE inhibitors

diplosalsalate

fosfosalpapaverine

propentofyllineRo 20-1724

SKF-94836

Non-Steroidal Anti-Inflammatory drugs (NSAIDs)

bufexamac

diflunisalfenoprofen

piroxicam

Other Anti-inflammatory agents

aminophenazone

capsazepinecatechin tetramethyl ether

cepharanthine

pentamidinetheaflavin digallate

valproate sodium5-aminopentanoic acid

Immunomodulator (NFAT signaling)

cyclosporin A

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

Page 39: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Figure S18

0

0.5

1

1.5

2

2.5

3

3.5

0 1uM 3uM 10uM 30uM

Ave

rag

e N

ight W

akin

g A

ctivity

(se

co

nds/m

inu

te)

Concentration (Molar)

3.5

3

2.5

2

1.5

1

0.5

0

0 1x10-6 3x10-6 1x10-5 3x10-5

0

0.5

1

1.5

2

2.5

3

3.5

0 1uM 3uM 10uM 30uM

Fexofenadine

Citirizine

Loratadine

Cisapride

Dofetilide

0

0.5

1

1.5

2

2.5

3

3.5

0 1uM 3uM 10uM 30uM

Fexofenadine

Citirizine

Loratadine

Cisapride

Dofetilide

ERG blockers

Non-ERG

blockers

0

0.5

1

1.5

2

2.5

3

3.5

0 1uM 3uM 10uM 30uM

Waking Activity Rest

A.

B.

38

Cetirizine

Time

Psora-45

4

3

2

1

0

Norm

aliz

ed

Wa

kin

g A

ctivity

4

3

2

1

0

Time

OOO

O

4

3

2

1

0

4

3

2

1

0

Norm

aliz

ed

Rest

Halofantrine5

4

3

2

1

0

N

OHCl

Cl

FF

F

Terfenadine5

4

3

2

1

0

OH

N

OH

Page 40: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

Table S1

39

Drug Name

Highest Non-

Toxic Dose

(30/45 µM max)

Lowest

Effective Dose Correlated Dose Range

Clonidine 45 µM 1.5 µM 1.5-45 µM

Ropinirole 45 µM 0.45 µM 0.45-45 µM

NAN-190 30 µM 0.10 µM 0.10-30 µM

MK-801 45 µM 0.45 µM 0.45-45 µM

Betamethasone 45 µM 0.15 µM 0.15-45 µM

Chloro-APB 45 µM 0.45 µM 0.45-45 µM

Buspirone 45 µM 4.5 µM 4.5-45 µM

Cyclosporin A 45 µM 2 µM 2-45 µM

Ketanserin 15 µM 0.15 µM 0.15-45 µM

Nicergoline 15 µM 1.5 µM 4.5-45 µM

Quipazine 45 µM 1.5 µM 0.15-45 µM

Warfarin 45 µM 4.5 µM 4.5-45 µM

Fluvoxamine 45 µM 1.5 µM 0.45-45 µM

Valproic Acid 45 µM 15 µM 0.45-45 µM

Carvedilol 4.5 µM 0.45 µM 0.45-4.5 µM

2-Chloroadenosine 45 µM 45 µM 0.15-45 µM

Phenelzine 45 µM 45 µM 4.5-15 µM

Trazodone 45 µM 1.5 µM 1.5-15 µM

Clozapine 15 µM 1.5 µM 1.5-15 µM

Amoxapine 30 µM 3.0 µM 1.0-10 µM

Cyclobenzaprine 15 µM 4.5 µM 1.5-15 µM

Fluoxetine 15 µM 1.5 µM 1.5-4.5 µM

Haloperidol 15 µM 1.5 µM 0.15-1.5 µM

Loxapine 15 µM 0.45 µM 0.15-4.5 µM

Papaverine 3.0 µM 1.0 µM 0.30-3.0 µM

Pergolide 45 µM 0.45 µM 4.5-45 µM; 0.15-1.5 µM

Bromocriptine 15 µM 0.15 µM 1.5-15 µM; 0.15-1.5 µM

Dihydroergotamine 45 µM 0.15 µM 4.5-45 µM; 0.15-1.5 µM

Metergoline 15 µM 15 µM 4.5-15 µM; 0.15-1.5 µM

Page 41: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

40

Supplemental References S1. D. A. Prober, J. Rihel, A. A. Onah, R. J. Sung, A. F. Schier, J Neurosci 26, 13400

(Dec 20, 2006). S2. M. B. Eisen, P. T. Spellman, P. O. Brown, D. Botstein, Proc Natl Acad Sci U S A 95, 14863 (Dec 8, 1998). S3. A. Holt, M. M. Palcic, Nat Protoc 1, 2498 (2006). S4. M. N. Pangalos, L. E. Schechter, O. Hurko, Nat Rev Drug Discov 6, 521 (Jul,

2007). S5. T. A. Ban, Dialogues Clin Neurosci 8, 335 (2006). S6. Y. Agid et al., Nat Rev Drug Discov 6, 189 (Mar, 2007). S7. A. L. Hopkins, Nat Chem Biol 4, 682 (Nov, 2008). S8. J. Geddes, N. Freemantle, P. Harrison, P. Bebbington, Bmj 321, 1371 (Dec 2,

2000). S9. D. Fischer-Barnicol et al., Neuropsychobiology 57, 80 (2008). S10. T. E. North et al., Nature 447, 1007 (Jun 21, 2007). S11. T. E. North et al., Cell 137, 736 (May 15, 2009). S12. C. K. Kaufman, R. M. White, L. Zon, Nat Protoc 4, 1422 (2009). S13. C. Renier et al., Pharmacogenet Genomics 17, 237 (Apr, 2007). S14. I. V. Zhdanova, S. Y. Wang, O. U. Leclair, N. P. Danilova, Brain Res 903, 263

(Jun 8, 2001). S15. N. J. Giacomini, B. Rose, K. Kobayashi, S. Guo, Neurotoxicol Teratol 28, 245

(Mar-Apr, 2006). S16. W. Boehmler et al., Genes Brain Behav 6, 155 (Mar, 2007). S17. S. C. Baraban, M. R. Taylor, P. A. Castro, H. Baier, Neuroscience 131, 759

(2005). S18. N. Peitsaro, M. Sundvik, O. V. Anichtchik, J. Kaslin, P. Panula, Biochem

Pharmacol 73, 1205 (Apr 15, 2007). S19. S. Berghmans, J. Hunt, A. Roach, P. Goldsmith, Epilepsy Res 75, 18 (Jun,

2007). S20. J. Lamb et al., Science 313, 1929 (Sep 29, 2006). S21. J. Lamb, Nat Rev Cancer 7, 54 (Jan, 2007). S22. D. Centurion et al., Eur J Pharmacol 535, 234 (Mar 27, 2006). S23. D. W. Gil et al., Anesthesiology 110, 401 (Feb, 2009). S24. J. P. Makela, I. T. Hilakivi, Med Biol 64, 355 (1986). S25. D. Rotiroti, R. Silvestri, G. B. de Sarro, G. Bagetta, G. Nistico, J Psychiatr Res

17, 231 (1982). S26. A. G. Hayes, M. Skingle, M. B. Tyers, Neuropharmacology 25, 391 (Apr, 1986). S27. P. A. Van Zwieten, Am J Cardiol 61, 6D (Feb 24, 1988). S28. C. W. Berridge, R. L. Stellick, B. E. Schmeichel, Behav Neurosci 119, 743 (Jun,

2005). S29. C. W. Berridge, S. O. Isaac, R. A. Espana, Behav Neurosci 117, 350 (Apr, 2003). S30. L. Leinonen, D. Stenberg, Physiol Behav 37, 199 (1986).

Page 42: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

41

S31. I. Hilakivi, A. Leppavuori, P. T. Putkonen, Eur J Pharmacol 65, 417 (Aug 8, 1980).

S32. J. P. Makela, I. T. Hilakivi, Pharmacol Biochem Behav 24, 613 (Mar, 1986). S33. R. Vetrivelan, H. N. Mallick, V. M. Kumar, Neuroscience 139, 1141 (2006). S34. E. S. Paykel, R. Fleminger, J. P. Watson, J Clin Psychopharmacol 2, 14 (Feb,

1982). S35. M. Hirohashi et al., Arzneimittelforschung 40, 735 (Jul, 1990). S36. A. A. Bjorkum, R. Ursin, Brain Res Bull 39, 373 (1996). S37. J. A. Lerman, K. I. Kaitin, W. C. Dement, S. J. Peroutka, Neurosci Lett 72, 64

(Dec 3, 1986). S38. J. B. Lucot, L. S. Seiden, Pharmacol Biochem Behav 24, 537 (Mar, 1986). S39. F. Marrosu, C. A. Fornal, C. W. Metzler, B. L. Jacobs, Brain Res 739, 192 (Nov

11, 1996). S40. J. L. Evenden, Br J Pharmacol 112, 861 (Jul, 1994). S41. B. Bjorvatn, R. Ursin, J Sleep Res 3, 97 (Jun, 1994). S42. J. M. Monti, H. Jantos, Prog Brain Res 172, 625 (2008). S43. M. F. O'Neill, G. J. Sanger, Eur J Pharmacol 370, 85 (Apr 9, 1999). S44. S. P. Bailey, J. M. Davis, E. N. Ahlborn, Int J Sports Med 14, 330 (Aug, 1993). S45. I. Belcheva, S. Belcheva, V. V. Petkov, C. Hadjiivanova, V. D. Petkov, Gen

Pharmacol 28, 435 (Mar, 1997). S46. J. M. Monti, H. Jantos, Behav Brain Res 151, 159 (May 5, 2004). S47. G. Griebel, R. J. Rodgers, G. Perrault, D. J. Sanger, Psychopharmacology (Berl)

144, 121 (May, 1999). S48. M. Sallanon, C. Buda, M. Janin, M. Jouvet, Eur J Pharmacol 82, 29 (Aug 13,

1982). S49. P. Bo, M. Patrucco, F. Savoldi, Farmaco [Sci] 42, 91 (Feb, 1987). S50. R. Kirov, S. Moyanova, Int J Neurosci 93, 257 (Apr, 1998). S51. S. D. Gleason, H. E. Shannon, Eur J Pharmacol 341, 135 (Jan 12, 1998). S52. C. Dugovic, A. Wauquier, J. E. Leysen, R. Marrannes, P. A. Janssen,

Psychopharmacology (Berl) 97, 436 (1989). S53. R. H. Pastel, J. D. Fernstrom, Brain Res 436, 92 (Dec 8, 1987). S54. L. Sommerfelt, R. Ursin, Behav Brain Res 45, 105 (Nov 26, 1991). S55. M. Weber et al., Psychopharmacology (Berl) 203, 753 (May, 2009). S56. E. Ongini, M. G. Caporali, M. Massotti, Life Sci 37, 2327 (Dec 16, 1985). S57. P. Bo, E. Ongini, A. Giorgetti, F. Savoldi, Neuropharmacology 27, 799 (Aug,

1988). S58. J. M. Monti, M. Fernandez, H. Jantos, Neuropsychopharmacology 3, 153 (Jun,

1990). S59. M. Trampus, N. Ferri, M. Adami, E. Ongini, Eur J Pharmacol 235, 83 (Apr 22,

1993). S60. J. M. Monti, M. Hawkins, H. Jantos, L. D'Angelo, M. Fernandez,

Psychopharmacology (Berl) 95, 395 (1988). S61. G. Bagetta, M. T. Corasaniti, M. C. Strongoli, S. Sakurada, G. Nistico,

Neuropharmacology 26, 1047 (Aug, 1987). S62. W. Kropf, K. Kuschinsky, Neuropharmacology 30, 953 (Sep, 1991). S63. J. Micallef et al., Br J Clin Pharmacol (Feb 9, 2009).

Page 43: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

42

S64. J. M. Monti, H. Jantos, M. Fernandez, Eur J Pharmacol 169, 61 (Oct 4, 1989). S65. J. J. Clifford, J. L. Waddington, Neuropsychopharmacology 22, 538 (May, 2000). S66. D. E. Casey, Psychopharmacology (Berl) 107, 18 (1992). S67. M. F. Olive, W. F. Seidel, D. M. Edgar, J Pharmacol Exp Ther 285, 1073 (Jun,

1998). S68. S. Spinosa Hde, S. R. Stilck, M. M. Bernardi, Vet Res Commun 26, 309 (Jun,

2002). S69. D. Wirtshafter, T. R. Stratford, M. R. Pitzer, Behav Brain Res 59, 83 (Dec 31,

1993). S70. S. Jamaluddin, M. K. Poddar, Pol J Pharmacol 53, 21 (Jan-Feb, 2001). S71. S. K. Jamaluddin, M. K. Poddar, Neurochem Res 26, 439 (Apr, 2001). S72. M. Anand, S. Mehrotra, K. Gopal, R. N. Sur, S. V. Chandra, Toxicol Lett 24, 79

(Jan, 1985). S73. S. Pellow, S. E. File, Behav Brain Res 23, 159 (Feb, 1987). S74. J. B. Patel, J. B. Malick, Eur J Pharmacol 78, 323 (Mar 12, 1982). S75. R. P. Irwin et al., Neurosci Lett 141, 30 (Jul 6, 1992). S76. M. Lancel et al., J Pharmacol Exp Ther 282, 1213 (Sep, 1997). S77. A. A. Palmer, M. N. Miller, C. S. McKinnon, T. J. Phillips, Behav Neurosci 116,

126 (Feb, 2002). S78. S. P. Fisher, D. Sugden, Neurosci Lett 457, 93 (Jun 26, 2009). S79. D. A. Golombek, E. Escolar, D. P. Cardinali, Physiol Behav 49, 1091 (Jun, 1991). S80. A. Cagnacci, J. A. Elliott, S. S. Yen, J Clin Endocrinol Metab 75, 447 (Aug, 1992). S81. F. Wang et al., Pharmacol Biochem Behav 74, 573 (Feb, 2003). S82. B. Guardiola-Lemaitre, Ann Pharm Fr 63, 385 (Nov, 2005). S83. M. Haria, A. Fitton, D. H. Peters, Drugs 48, 617 (Oct, 1994). S84. B. G. Bender, S. Berning, R. Dudden, H. Milgrom, Z. V. Tran, J Allergy Clin

Immunol 111, 770 (Apr, 2003). S85. S. M. Stahl, CNS Spectr 13, 1027 (Dec, 2008). S86. H. L. Haas, O. A. Sergeeva, O. Selbach, Physiol Rev 88, 1183 (Jul, 2008). S87. G. B. Lapa, T. A. Mathews, J. Harp, E. A. Budygin, S. R. Jones, Eur J Pharmacol

506, 237 (Jan 4, 2005). S88. H. M. Marston et al., J Pharmacol Exp Ther 285, 1023 (Jun, 1998). S89. R. A. Barraco, V. L. Coffin, H. J. Altman, J. W. Phillis, Brain Res 272, 392 (Aug 8,

1983). S90. R. W. McCarley, Sleep Med 8, 302 (Jun, 2007). S91. J. M. Krueger, Curr Pharm Des 14, 3408 (2008). S92. R. Szymusiak, I. Gvilia, D. McGinty, Sleep Med 8, 291 (Jun, 2007). S93. R. F. Bruns, J. J. Katims, Z. Annau, S. H. Snyder, J. W. Daly,

Neuropharmacology 22, 1523 (Dec, 1983). S94. W. Adriani et al., Exp Brain Res 123, 52 (Nov, 1998). S95. J. Kotlinska, S. Liljequist, Psychopharmacology (Berl) 135, 175 (Jan, 1998). S96. H. Homayoun, B. Moghaddam, Cereb Cortex 16, 93 (Jan, 2006). S97. M. Pietraszek, Z. Rogoz, S. Wolfarth, K. Ossowska, J Physiol Pharmacol 55, 587

(Sep, 2004). S98. T. Kvernmo, J. Houben, I. Sylte, Curr Top Med Chem 8, 1049 (2008).

Page 44: Supporting Online Material for*To whom correspondence should be addressed. E-mail: schier@fas.harvard.edu (A.F.S.); rihel@fas.harvard.edu (J.R.) Published 15 January 2010, Science

43

Supporting Online Material www.sciencemag.org Table of Contents Materials and Methods Figs. S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18 Table S1