Supporting Material - University of Cambridge

8
Supporting Material Understanding the sortable silt flow speed proxy in marine systems with varying supply The sortable silt proxy is predicated upon the premise that the grain-size of deposited sediment at a point is primarily controlled by the short term (a few tens of years) time history of flow speeds at that point acting on a broad spectrum of fine sediment sizes delivered along the transport path. Control of deposition is expressed in the classical Krone equation (Einstein and Krone, 1962; Krone, 1962) for the selective deposition of fine suspended material. The amount deposited is given by: ΣR i t C i w si (1-τ o /τ di ) t where R i is the rate of deposition (dimensions mass/area.time; ML -2 T -1 ), thus ΣR i t is (ML -2 ), to be summed over i size fractions. The controls are; settling velocity w si , critical depositional stress τ di , boundary shear stress τ o and the concentration C i for each fraction according to the size distribution supplied in suspension from upstream. This has been set out extensively in the publications of McCave, 2008, 2007; McCave et al., 1995; McCave and Hall, 2006. All the material that is considered in the analysis of the proxy is derived from terrestrial sources because care is taken to remove biogenic components (carbonate and silica) of marine origin. These sediments are delivered to the ocean beyond the shelf via a variety of routes, primarily by gravity flows (turbidity currents and debris flows) and shelf-edge resuspension/ spill- over, but also in a number of cases by aeolian fallout and via ice rafting in polar areas. Direct fluvial supply is rare, particularly at present under high sea-level stand. Even under glacially lowered sea- levels many deltas did not reach the shelf edge and many others debouched directly into the heads of submarine canyons, feeding turbidity currents which led into the deep sea (see reviews by e.g. McCave, 2002; Thomsen et al., 2002). A test of whether sediments are current sorted or not is derived from cross-plots of against SS%. Under a current sorted regime, correlates positively with SS%, whereas unsorted sediments show no correlation. The latter case is evident in a fluvially-supplied lake (Gammon et al., 2017) or in the sediments from the Mississippi delta top (Xu et al., 2016) (Figure S5). In contrast, the marine sediment cores in the Drake Passage in Lamy et al., (2015) show a high degree of sediment sorting (Lamy et al., (2015), their Figure S3). Similarly, GC528 (presented in this study) shows a strong correlation between and SS% (Figure S2a) suggesting that the sediment has been current sorted. Furthermore, even though there are high IRD concentrations in some intervals, there is no correlation between IRD concentration and (Figure S2b) and the samples containing IRD do not deviate from the -SS% trend (Figure S2a).

Transcript of Supporting Material - University of Cambridge

SupportingMaterial

Understandingthesortablesiltflowspeedproxyinmarinesystemswithvaryingsupply

Thesortablesiltproxyispredicateduponthepremisethatthegrain-sizeofdepositedsedimentata

pointisprimarilycontrolledbytheshortterm(afewtensofyears)timehistoryofflowspeedsatthat

pointactingonabroadspectrumoffinesedimentsizesdeliveredalongthetransportpath.Controlof

depositionisexpressedintheclassicalKroneequation(EinsteinandKrone,1962;Krone,1962)forthe

selectivedepositionoffinesuspendedmaterial.Theamountdepositedisgivenby:

ΣRit=ΣCiwsi(1-τo/τdi)t

whereRiistherateofdeposition(dimensionsmass/area.time;ML-2T-1),thusΣRitis(ML-2),tobe

summedoverisizefractions.Thecontrolsare;settlingvelocitywsi,criticaldepositionalstressτdi,

boundaryshearstressτoandtheconcentrationCiforeachfractionaccordingtothesizedistribution

suppliedinsuspensionfromupstream.

ThishasbeensetoutextensivelyinthepublicationsofMcCave,2008,2007;McCaveetal.,1995;

McCaveandHall,2006.Allthematerialthatisconsideredintheanalysisoftheproxyisderivedfrom

terrestrialsourcesbecausecareistakentoremovebiogeniccomponents(carbonateandsilica)of

marineorigin.Thesesedimentsaredeliveredtotheoceanbeyondtheshelfviaavarietyofroutes,

primarilybygravityflows(turbiditycurrentsanddebrisflows)andshelf-edgeresuspension/spill-

over,butalsoinanumberofcasesbyaeolianfalloutandviaiceraftinginpolarareas.Directfluvial

supplyisrare,particularlyatpresentunderhighsea-levelstand.Evenunderglaciallyloweredsea-

levelsmanydeltasdidnotreachtheshelfedgeandmanyothersdeboucheddirectlyintotheheads

ofsubmarinecanyons,feedingturbiditycurrentswhichledintothedeepsea(seereviewsbye.g.

McCave,2002;Thomsenetal.,2002).

Atestofwhethersedimentsarecurrentsortedornotisderivedfromcross-plotsof𝑆𝑆againstSS%.

Underacurrentsortedregime,𝑆𝑆correlatespositivelywithSS%,whereasunsortedsedimentsshow

nocorrelation.Thelattercaseisevidentinafluvially-suppliedlake(Gammonetal.,2017)orinthe

sedimentsfromtheMississippideltatop(Xuetal.,2016)(FigureS5).Incontrast,themarine

sedimentcoresintheDrakePassageinLamyetal.,(2015)showahighdegreeofsedimentsorting

(Lamyetal.,(2015),theirFigureS3).Similarly,GC528(presentedinthisstudy)showsastrong

correlationbetween𝑆𝑆 andSS%(FigureS2a)suggestingthatthesedimenthasbeencurrentsorted.

Furthermore,eventhoughtherearehighIRDconcentrationsinsomeintervals,thereisno

correlationbetweenIRDconcentrationand𝑆𝑆(FigureS2b)andthesamplescontainingIRDdonot

deviatefromthe𝑆𝑆-SS%trend(FigureS2a).

SupplementaryFigures

FigureS1:Assessingtheimpactofchangesinsealevelonthepatternsofsedimentation.(Left)Map

showingthepositionofthecoastlineatvariousintervalsduringthelastdeglaciation(seeinsetbox)

basedonbathymetry.(Right)(A)Globalrelativesealevelchangeoverthelastdeglaciation(Lambeck

etal.,2014);(B)MassaccumulationrateatsiteGC528;(C)SedimentationrateatsiteMR806-PC9

(Lamyetal.,2015).

0 5 0 0

0

1000

2000

3000

4000

5000

Bath

ym

etr

y /

m

Distance / km

GC528

MR806-PC9

SAF

PF

SACCF125m (LGM)110m (20-17 ka)60m (13-12 ka)0m (7-0 ka)

−150

−100

−50

0

50

RS

L (m

)

(A)

0.000.020.040.060.080.100.12

MA

R (g

/cm

2 /yr)

(B)

01020304050607080

Sed

. rat

e (c

m/k

yr) (C)

0 5 10 15 20 25Age (ka)

FigureS2:AssessingthecurrentsortingincoreGC528.(A)Cross-plotofweightpercentagesortable

siltfraction(10-63μm)versusthemeansortablesiltgrainsize.Samplesthatcontainsignificant

quantitiesofIRD(grains>300μm)areshowninorange.(B)Cross-plotofmeansortablesiltgrainsize

versusIRD(grains>300μm)concentration.

0 20 40 60 80 10010

15

20

25

30

35

40SS

(µm

)

SS %

R2= 0.84

(A)

●● ●●●● ●● ●● ●●●●● ●●● ●● ●●●●●●● ●● ●●● ●● ●●● ●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●●

●● ●● ●●●● ●● ●●

●● ●●

●●

●●

● ●

15 20 25 30 350

20

40

60

80

(A) GC528

R2= 0.06

SS (µm)

> 3

00µ

m (#

/g)

(B)

FigureS3:ComparisonoftheIRDrecordsfromtheSouthwestAtlantic(GC528)andtheScotiaSea

(Weberetal.,2014).(A)GC528IRDconcentration;(B)GC528IRDflux(basedonmass

accumulationrates);(C)ScotiaSeaIRDflux.GreybarsshowtheAntarcticIcesheetDischarge

events(AIDS;Weberetal.,2014)

0

20

40

60

80

IRD

(gra

ins/

g)

GC528 IRD concentration

0.0

0.5

1.0

1.5

2.0

2.5

IRD

(gra

ins/

cm

2 /yr)

GC528 IRD flux

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IRD

(gra

ins/

cm

2 /yr)

Scotia Sea IRD flux

0 5 10 15 20 25Age (ka)

FigureS4:AssessingthepotentialforreworkedalkenoneshavingaffectedtheLGMalkenone-SST

record.(A)Alkenone-derivedSSTrecordsfromdownstream(GC528-black)oftheDrakePassage;(B)

TotalorganiccarbonconcentrationinGC528;(C)TotalalkenoneconcentrationinGC528;(D)

PlanktonicforaminiferaNeogloboquadrinapacherma(sinistral)δ18OfromGC528.

024681012

Alke

none−S

ST (o C

)

(A)

0.6

0.8

1.0

1.2

[TO

C] (

%) (B)

0

1

2

3

4

5

[C37

] (µ

g/g)

(C)

5

4

3

2

1

0 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25

δ18O

Nps

(‰)

(D)

Age (ka)

FigureS5:Unsortedsedimentcross-plotsfromthefluviallydominatedAlbertaLake(left;Gammonetal.,2017)andtheMississippideltatop(right;Xuetal.,2016)

References

Einstein,H.A.,Krone,R.B.,1962.Experimentstodeterminemodesofcohesivesedimenttransportin

saltwater.J.Geophys.Res.67,1451–1461.

Gammon,P.R.,Neville,L.A.,Patterson,R.T.,Savard,M.M.,Swindles,G.T.,2017.Alog-normal

spectralanalysisofinorganicgrain-sizedistributionsfromaCanadianboreallakecore:Towards

refiningdepositionalprocessproxydatafromhighlatitudelakes.Sedimentology64,609–630.

doi:10.1111/sed.12281

Krone,R.B.,1962.Flumestudiesofthetransportofsedimentinestuarialshoalingprocesses,Final

Report,HydraulicEngineeringLaboratoryandSanitaryEngineeringResearchLaboratory,

UniversityofCalifornia.

Lambeck,K.,Rouby,H.,Purcell,A.,Sun,Y.,Sambridge,M.,2014.Sealevelandglobalicevolumes

fromtheLastGlacialMaximumtotheHolocene.Proc.Natl.Acad.Sci.U.S.A.111,15296–

15303.doi:10.1073/pnas.1411762111

Lamy,F.,Arz,H.W.,Kilian,R.,Lange,C.B.,Lembke-Jene,L.,Wengler,M.,Kaiser,J.,Baeza-Urrea,O.,

Hall,I.R.,Harada,N.,Tiedemann,R.,2015.Glacialreductionandmillennial-scalevariationsin

DrakePassagethroughflow.Proc.Natl.Acad.Sci.U.S.A.112,13496–501.

doi:10.1073/pnas.1509203112

McCave,I.N.,2008.SizeSortingDuringTransportandDepositionofFineSediments.SortableSiltand

FlowSpeed,in:Rebesco,M.,Camerlenghi,A.(Eds.),DevelopmentsinSedimentology.Elsevier,

Amsterdam,pp.121–142.doi:10.1016/S0070-4571(08)10008-5

McCave,I.N.,2007.Deep-SeaSedimentDepositsandPropertiesControlledbyCurrents,in:Hillaire-

Marcel,C.,deVernal,A.(Eds.),ProxiesinLateCenozoicPaleoceanography.Elsevier,

Amsterdam,pp.19–62.doi:10.1016/S1572-5480(07)01006-8

McCave,I.N.,2002.SedimentarySettingsonContinentalMargins-anOverview,in:Wefer,G.,Billet,

D.,Hebbeln,D.,Jorgensen,B.B.,Schlüter,M.,vanWeering,T.C.E.(Eds.),OceanMarginSystems.

SpringerBerlinHeidelberg,Berlin,Heidelberg,pp.1–14.doi:10.1007/978-3-662-05127-6_1

McCave,I.N.,Hall,I.R.,2006.Sizesortinginmarinemuds:Processes,pitfalls,andprospectsfor

paleoflow-speedproxies.Geochemistry,Geophys.Geosystems7,n/a-n/a.

doi:10.1029/2006GC001284

McCave,I.N.,Manighetti,B.,Robinson,S.G.,1995.Sortablesiltandfinesedimentsize/composition

slicing:Parametersforpalaeocurrentspeedandpalaeoceanography.Paleoceanography10,

593–610.doi:10.1029/94PA03039

Thomsen,L.,Weering,T.van,Blondel,P.,Lampitt,R.,Lamy,F.,McCave,N.,McPhail,S.,Mienert,J.,

Neves,R.,D’Ozouville,L.,Ristow,D.,Waldmann,C.,Wollast,R.,2002.MarginBuilding-

RegulatingProcesses,in:Wefer,G.,Billet,D.,Hebbeln,D.,Jorgensen,B.B.,Schlüter,M.,van

Weering,T.C.E.(Eds.),OceanMarginSystems.Springer,Berlin,Heidelberg,pp.195–203.

doi:10.1007/978-3-662-05127-6_12

Weber,M.E.,Clark,P.U.,Kuhn,G.,Timmermann,A.,Sprenk,D.,Gladstone,R.,Zhang,X.,Lohmann,

G.,Menviel,L.,Chikamoto,M.O.,Friedrich,T.,Ohlwein,C.,2014.Millennial-scalevariabilityin

Antarcticice-sheetdischargeduringthelastdeglaciation.Nature510,134–8.

doi:10.1038/nature13397

Xu,K.,Bentley,S.,Robichaux,P.,Sha,X.,Yang,H.,2016.ImplicationsofTextureandErodibilityfor

SedimentRetentioninReceivingBasinsofCoastalLouisianaDiversions.Water8,26.

doi:10.3390/w8010026