Supporting information - Royal Society of Chemistrysample), oxygen and silicon. Additionally, a low...

17
1 Supporting information Iodide Mediated Reductive Decomposition of Diazonium Salts: Towards Mild and Efficient Covalent Functionalization of Surface- Supported Graphene Yuanzhi Xia, a Cristina Martin, b ,c Johannes Seibel, a Samuel Eyley, c Wim Thielemans, c Mark van der Auweraer, a Kunal Mali a * and Steven De Feyter a * a Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium, b Departamento de Química Física, Facultad de Farmacia, Universidad de Castilla-La Mancha, 02071 Albacete, Spain, c Department of Chemical Engineering, Sustainable Materials Lab, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium Corresponding author: [email protected], [email protected] Contents: 1. Experimental methods. 2. A schematic showing the functionalization process (Figure S1). 3. Comparison of the efficiency of covalent grafting achieved in this work with some literature reports together with comparison of the experimental conditions (Table S1). 4. Raman spectra of functionalized SLG on different substrates (Figure S2). 5. XPS survey spectra of pristine and functionalized SLG/SiO2 (Figure S3). 6. Data derived from carbon 1s high resolution XPS spectrum of the SLG/SiO2 samples (Table S2). 7. High resolution nitrogen 1s XPS spectrum of NBD functionalized SLG/SiO2 (Figure S4). 8. Data for nitrogen 1s XPS spectrum of NBD functionalized SLG/SiO2 (Table S3). 9. AFM images showing the edge of functionalized SLG-Si and the corresponding topographical line- profiles reflecting the layer thickness of functionalization layer (Figure S5). 10. Additional AFM and STM data for the dependence of reaction time on covalent grafting (Figure S6). 11. Raman spectrum of the pristine HOPG surface prior to functionalization (Figure S7). 12. Representative AFM data showing how the average layer thickness was obtained (Figure S8). 13. Comparison of layer thickness measured across unfunctionalized and scratched areas (Figure S9). 14. AFM data for the films obtained using long reaction times (30 min) (Figure S10). 15. STM and Raman data for the spontaneous reaction of NBD with the HOPG surface (Figure S11). 16. Additional AFM data for the concentration dependence of covalent grafting (Figure S12). Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Transcript of Supporting information - Royal Society of Chemistrysample), oxygen and silicon. Additionally, a low...

  • 1

    Supportinginformation

    IodideMediatedReductiveDecompositionofDiazoniumSalts:

    TowardsMildandEfficientCovalentFunctionalizationofSurface-

    SupportedGraphene

    YuanzhiXia,aCristinaMartin,b,cJohannesSeibel,aSamuelEyley,cWimThielemans,cMarkvanderAuweraer,a

    KunalMalia*andStevenDeFeytera*

    aDepartmentofChemistry,DivisionofMolecularImagingandPhotonics,KULeuven,Celestijnenlaan200F,

    B-3001Leuven,Belgium,bDepartamentodeQuímicaFísica,FacultaddeFarmacia,UniversidaddeCastilla-La

    Mancha,02071Albacete,Spain,cDepartmentofChemicalEngineering,SustainableMaterialsLab,KULeuven,

    campusKulakKortrijk,EtienneSabbelaan53,8500Kortrijk,Belgium

    Correspondingauthor:[email protected],[email protected]

    Contents:

    1. Experimentalmethods.

    2. Aschematicshowingthefunctionalizationprocess(FigureS1).

    3. Comparisonoftheefficiencyofcovalentgraftingachievedinthisworkwithsomeliteraturereports

    togetherwithcomparisonoftheexperimentalconditions(TableS1).

    4. RamanspectraoffunctionalizedSLGondifferentsubstrates(FigureS2).

    5. XPSsurveyspectraofpristineandfunctionalizedSLG/SiO2(FigureS3).

    6. Dataderivedfromcarbon1shighresolutionXPSspectrumoftheSLG/SiO2samples(TableS2).

    7. Highresolutionnitrogen1sXPSspectrumofNBDfunctionalizedSLG/SiO2(FigureS4).

    8. Datafornitrogen1sXPSspectrumofNBDfunctionalizedSLG/SiO2(TableS3).

    9. AFMimagesshowingtheedgeoffunctionalizedSLG-Siandthecorrespondingtopographicalline-

    profilesreflectingthelayerthicknessoffunctionalizationlayer(FigureS5).

    10. AdditionalAFMandSTMdataforthedependenceofreactiontimeoncovalentgrafting(FigureS6).

    11. RamanspectrumofthepristineHOPGsurfacepriortofunctionalization(FigureS7).

    12. RepresentativeAFMdatashowinghowtheaveragelayerthicknesswasobtained(FigureS8).

    13. Comparisonoflayerthicknessmeasuredacrossunfunctionalizedandscratchedareas(FigureS9).

    14. AFMdataforthefilmsobtainedusinglongreactiontimes(30min)(FigureS10).

    15. STMandRamandataforthespontaneousreactionofNBDwiththeHOPGsurface(FigureS11).

    16. AdditionalAFMdatafortheconcentrationdependenceofcovalentgrafting(FigureS12).

    Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2020

  • 2

    17. VariationinthesurfacecoverageofthecovalentlygraftedfilmasafunctionofNBDconcentration

    obtainedfromAFMdata(FigureS13).

    18. AdditionalAFMdataforthe[KI]/[NBD]solutionmoleratiooncovalentgrafting(FigureS14).

    19. Characterizationofthereactionmixture(NBD+KI)usingUV-Visspectroscopy(FigureS15).

    20. ThetimeevolutionoftheUV-visabsorbanceofthereactionmixtureatdifferent[KI]/[NBD]ratiosin

    aqueoussolution(FigureS16).

    21. Time-dependentevolutionoftheabsorbanceofNBDinaqueoussolution(FigureS17).

    22. UV-VisabsorptionspectrumofaqueousNBDasafunctionoftime(monitoredoveraperiodof1.5

    hours)(FigureS18).

    -------------------------------------------------------------------------------------------------------------------------------------

    Experimentalsection:

    Materials.4-Nitrobenzenediazonium(NBD)tetrafluoroborate(97%)andpotassiumiodide(KI)(99.9

    %)werepurchasedfromSigma-Aldrich.Allchemicalswereusedwithoutfurtherpurification.Highpurity

    water(Milli-Q,Millipore,18.2MΩ·cm)wasusedforall theexperiments.Thehighlyorderedpyrolytic

    graphite (HOPG, gradeZYB,AdvancedCeramics Inc., Cleveland,USA) substrateswere freshy cleaved

    beforeuse.CVD-growngraphenesamples(1×1cm2)transferredtoSi++/SiO2(300nm),SLG/Auand

    SLG/CuwereobtainedfromGrapheneaandwereusedasreceived.

    Covalent functionalization experiments. Appropriate amounts of the diazonium salt and KI were

    dissolvedinMilli-Qwatertopreparethesolutionswiththedesiredmolarconcentration.Thereaction

    mixturewaspreparedpriortousebymixing100µLdiazoniumsaltsolutionwith100 µLKIsolutionin

    aglassvial.Immediatelyaftermixing,100 µLofthemixedsolutionwasdropcastedontofreshlycleaved

    HOPG/graphenesurface.Afteragiventime,thereactionwasstoppedbyrinsingwiththeHOPGsurface

    withethanolfollowedbywaterandtherinsingwasrepeatedthreetimes.TheHOPG/graphenesubstrates

    weredriedunderastreamofargon.

    AFMandSTMcharacterization.AFM imagingwasperformedwith aCypherES (AsylumResearch)

    systemat32°Cintappingmodeattheair/solidinterface.OMCL-AC160TS-R3probes(springconstant

    ∼26N/m)witharesonancefrequencyaround100kHzwereused.AllSTMexperimentswereperformed

    atroomtemperature(21–23°C)usingaPicoLE(Keysight)machineoperatinginconstant-currentmode

    STMtipswerepreparedbymechanicalcuttingofPt/Irwire(80%/20%,diameter0.25mm).Scanning

    ProbeImagingProcessor(SPIP6.3.5)softwarefromImageMetrologyApSwasusedforAFMandSTM

    imageprocessing.Theexperimentswererepeatedin2–3sessionsusingdifferenttipstocheckforre-

    producibilityandtoavoidexperimentalartefacts,ifany.

  • 3

    Ramanspectroscopy.Ramanexperimentswereperformedatroomtemperature(21−23°C)usingan

    OmegaScopeTM1000(AIST-NT).LaserlightfromaHe–Nelaser(632.8nm)wasreflectedbyadichroic

    mirror(Chroma,Z633RDC)andthenfocusedontothesamplesurfacebyusinganobjective(MITUTOYO,

    BDPlanApo100×,N.A.0.7).Theopticaldensityatthesamplesurfacewasabout800kWcm−2.Raman

    scatteringwascollectedwiththesameobjectiveanddirectedtoaRamanspectrograph(HoribaJY,iHR-

    320)equippedwithacooledcharge-coupleddevice(CCD)cameraoperatingat−100°C(Andor,DU920P)

    throughthedichroicmirror,apinholeandalongpassfilter(Chroma,HQ645LP).Accumulationtimefor

    allspectrawas6s.ForfunctionalizedHOPG/graphenesamples,pointspectrawereobtainedonatleast

    9differentlocationsthatareseparatedfromeachotherbyatleastamillimeter.

    UV/Vis spectroscopy. The UV-Vis absorption spectra were recorded using a Lambda 950

    spectrophotometerwithblockedbeamandblankcorrections.FormonitoringthereactionbetweenNBD

    andKI,300µLeachofNBDandKIsolutionsweremixedtogetheratappropriatemoleratiosandthe

    mixedsolutionwasquicklytransferredtoathinquartzcell(0.1cm×1cm×4cm).Thecellwasplaced

    intotheUV-visspectrometertomonitorthereactionbycontinuallytakinganabsorptionspectrumevery

    3minutes.

  • 4

    Fig.S1.AschematicshowingthecovalentfunctionalizationprotocolinthecaseofHOPG.Priortodrop

    castingontotheHOPGsurface,theaqueousNBDandKIsolutionswithappropriateconcentrationswere

    mixed inaglassvial.Themixedsolutionwas immediatelydropcastedon toa freshlycleavedHOPG

    surface.Afteragiven time, thereactionwasstoppedbyrinsing thesurfacewithethanol followedby

    waterandtherinsingwasrepeatedthreetimes.TheHOPG/graphenesubstratesweredriedusingargon

    andthensubjectedtofurthercharacterization.Picturesinthelowerpartofthefigureshowtheevolution

    ofnitrogengasbubblesimmediatelyafterdropcastingofthereactionmixture.Reactionconditions:10

    mM NBD + 10 mM KI, reaction time = 10 minutes. (b, c) Representative AFM images for the NBD

    functionalizedandpristineSLG/SiO2surfaces,respectively.

    NBDKI

    HOPG FunctionalizedHOPG

    Rinsing

    1. Ethanol2. H2O

    T=0sec T=10sec T=2min T=4min T=8min T=10minHOPG Dropletremoved

    Afterrinsinganddrying

    Functionalized SLG/SiO2 Pristine SLG/SiO2

    a)

    b) c)

  • 5

    TableS1.ComparisonoftheID/IGvaluesobtainedforfunctionalizedofSLG/SiO2inthisworkwiththose

    reported in the literaturetogetherwithreactionconditionsused.Seereferencesat thebottomof the

    document.

    Fig.S2.RamanspectraoffunctionalizedSLGofdifferentunderlyingsubstrates.Reactiontime=10min,

    [NBD]=[KI]=10mM.(a)RamanspectraofpristineandfunctionalizedSLG/Cu.(b)Ramanspectraof

    pristineandfunctionalizedSLG/Au.

    XPSAnalysis

    Spectra were recorded on a Kratos Axis Supra X-ray Photoelectron Spectrometer employing a

    monochromat-edAlKα(hν=1486.7eV,150W)X-raysource,hybrid(magnetic/electrostatic)opticswith

    a slot aperture, hemispherical analyser, multichannel plate and delay line detector (DLD) with an

    emissionangleof0°relativetothesamplesurfacenormal.Surveyspectrawereacquiredwithapass

    energyof160eVandhigh-resolutionspectrawith20eV.Theresultingspectrawereprocessedusing

    CasaXPSsoftware.BindingenergywasreferencedtoAg3d5/2at368.21eVmeasuredonsputtercleaned

    silver under the same analysis conditions, on the same day as the samples. Good electrical contact

    betweenthegraphenelayerandthespectrometerwasensuredbyuseofsilverpaint“track”fromthetop

    ofthesampletothesamplebar.Componentsinhighresolutionspectrawerefittedusingthe“LA(α,m)”

    lineshapeforsymmetricpeaksandthe“LF(α,β,w,m)”line-shapeforasymmetricpeakscorresponding

    ID/IG Reaction time Temperature Solvent EnviromentThis work 3 10 min RT Water Ambient conditions

    Ref. 1 2,8 1 h 30 min and 15 min RT Ethanol Glovebox ( ˂0.1 ppm O2, ˂ 0.1 ppm H2O, Ar)Ref. 2 1,4 16h 30 min 30 ℃ Water Ambient conditionsRef. 3 1,2 3 Days RT 1,2-DME Ar purging/Strict exclusion of air or moistureRef. 4 1,2 20 h 150 ℃ THF Glovebox ( ˂0.1 ppm O2, ˂ 0.1 ppm H2O, Ar)Ref. 5 0,8 20 h RT CH3CN N2-purgedRef. 6 1,1 48 h RT DME Glovebox ( ˂0.1 ppm O2, ˂ 0.1 ppm H2O, Ar)

  • 6

    toanumericalconvolutionofLorentzianfunctions(withexponentsαandβforthehighbindingenergy

    andlowbindingenergysides)withaGaussian(widthm)andinclusionoftail-damping(w)toprovide

    finiteintegrationlimits.DetailsoftheselineshapefunctionsareavailableintheCasaXPSdocumentation

    online.7

    Empirical relative sensitivity factors supplied by Kratos Analytical (Manchester, UK) were used for

    quantification. Use of these relative sensitivity factors does not account for any attenuation due to

    overlayersorothersurfacecontaminationandassumesauniformdepthdistributionofelementswithin

    theinformationdepthofthesample.Matrixeffectsarealsodiscounted.8,9Quotedstandarddeviations

    resultfromMonteCarlosimulationsoftheerrorinpeakmodellinganddiscountallother(potentially

    larger)sourcesoferror.

    Duringfittingofthecarbon1sspectrathefollowingconstraintsweremadeinordertoprovideastable

    andmeaningfulfittotheexperimentaldata:

    1. ThelineshapeusedfortheC=Cgraphenepeakwasleftunchangedbetweentheunmodified

    grapheneandNBDfunctionalizedgraphenesamples.

    2. TheFWHMwasfixedforallsymmetriccomponentpeaksascribedtospeciesassociatedwith

    thenitrophenylmoiety,oxidationorC-Cdefectsinthegraphenesubstrate.

    3. TherelativeintensityoftheC-NO2andC=C(nitrophenyl)peakswerefixedtocorrespondwith

    theratioexpectedfromthenitrophenylmoiety.

    4. TheC-C(defect)componentbindingenergywasfixedat285.0eV.

    Survey spectra of the samples (Fig. S2) revealed the expected carbon, nitrogen (for theNBDgrafted

    sample),oxygenandsilicon.Additionally,alowconcentrationofironwaspresentinboththeunmodified

    andNBDgraftedgraphenesamples.Theoriginofthisironspeciesisunknown.TheNBDgraftedgraphene

    alsoshowedalowlevelofiodinecontaminationfromthegraftingprocess.

  • 7

    Fig.S3.XPSSurveyspectraofunmodifiedSLG/SiO2(black)andNBDfunctionalizedSLG/SiO2(red).

    TableS2:Dataderivedfromcarbon1shighresolutionspectraofthegraphenesamples

    Component Bindingenergy/eV FWHM/eV Area/% St.Dev./%

    PristineSLG/SiO2

    C=Cgraphene 284.1 0.84 90.56 0.73

    C-O 286.2 0.92 0.68 0.10

    π*←π 290.2 4.66 6.43 0.44

    π*←π 294.3 3.77 2.34 0.91

    NBDfunctionalizedSLG/SiO2

    C=Cgraphene 284.2 0.80 44.92 0.46

    C=Cnitrophenyl 284.8 1.30 24.66 0.25

    C-C 285.0 1.30 4.06 0.18

    C-NO2 285.6 1.30 4.93 0.05

    C-O 286.2 1.30 8.41 0.25

    C=O/C-NH3+ 287.6 1.30 1.94 0.18

    O-C=O 288.7 1.30 1.15 0.22

    π*←π 290.5 2.89 3.94 0.23

    π*←π 292.9 4.87 6.00 0.65

  • 8

    Thenitrogen1shighresolutionspectrum(Fig.S3)oftheNBDfunctionalizedgraphenesampleshows

    significant reduction of the nitro group to amines, protonated amines and other nitrogen containing

    species. This has previously been linked to photochemical reduction of nitrobenzene by X-ray

    irradiation,10however,testsofX-rayinducedreductiononmultiplesampleareasshowthatthiswasnot

    asignificantcontributortothereducednitrogenenvironmentsinthisdataset.Thenitrogen1sdatais

    summarizedinTableS3.

    Fig.S4.Nitrogen1shighresolutionspectrumofNBDfunctionalizedSLG/SiO2.

    TableS3.Datafornitrogen1sspectrumofNBDfunctionalizedSLG/SiO2.

    Component Bindingenergy/eV FWHM/eV Area/% St.Dev./%

    -NH2 399.8 1.43 20.63 1.68

    -NH3+ 400.8 1.43 13.21 2.08

    -NO 403.0 1.43 4.70 0.89

    -NO2 405.7 1.43 61.46 2.16

  • 9

    Fig.S5.AFMimagesshowingtheedgeoffunctionalizedSLG-SiO2andthecorrespondingtopographical

    line-profilesreflectingthelayerthicknessoffunctionalizationlayer.(a)Schematicillustrationoftheedge

    of functionalizedSLG-SiO2. (b)Theedgeof functionalizedSLG-SiO2 characterizedbyAFM.Three line-

    profilesperformedbasedontheamplifiededgeoffunctionalizedSLG-SiO2.(c)Thecorrespondingline-

    profilesreflectingthelayerthicknessoffunctionalizationlayer.Theheightofthefunctionalizationlayer,

    graphene and silica substrate indicate that the bottom of the empty areas (corrals) within the

    functionalizationlayerisgraphene.

    Fig.S6.AdditionalAFM(a)andSTM(b)dataforthedependenceofreactiontimeoncovalentgraftingof

    NBD. [KI] =10mM, [NBD]=10mM. STMdata shows typical bright features that arise fromgrafted

    moleculesevenwhenthedropletofthereactionmixtureiswashedawaywithinasecondortwoseconds

    fromthesurfacehighlighting theefficiencyof the functionalizationprocess.Tunnelingparameters in

    STM:(2s)Iset=0.1nA,Vbias=-0.6V;(10s)Iset=0.07nA,Vbias=-0.5V;(1min)Iset=0.1nA,Vbias=-0.5V;(6

    min)Iset=0.05nA,Vbias=-0.82V.

  • 10

    Fig.S7.RamanspectrumofthepristineHOPGsurfacepriortofunctionalization.TheabsenceoftheD

    bandindicatesthattheintrinsicdefectdensityonunfunctionalizedHOPGsamplesislow.

    FigureS8.RepresentativeAFMdatasetshowinghowaverage topographicalheightof thecovalently

    graftedfilmswasobtained.Typically,between3to5AFMimagesobtainedondifferentpartsofsame

    samplewereconsideredforheightanalysis.Withintheseimages,heightprofilesweremeasuredacross

    threedifferentlocationsandthemeasuredvalueswereaveraged.Theaveragethicknessofthefilmfor

    thisdatasetis1.5 ±0.1nm.Reactionsconditionsforthisdataset:10mMKI,10mMNBD,reactiontime

    =10min.TheAFMdataobtainedonallothersampleswastreatedusingthesameapproach.

    ~ 1.5nm

    ~ 1.5nm

    ~ 1.4nm

    Image1

    ~ 1.5nm

    ~ 1.4nm

    ~ 1.4nm

    Image3

    1.5nm

    1.5nm

    1.6nm

    Image2

  • 11

    Fig.S9.Comparisonbetweenthelayerthicknessobtainedusingtopographicalheightmeasuredacross

    (a, b) unfunctionalized areas with no physisorbed deposits, (c, d) unfunctionalized areas with

    physisorbeddepositsand(e,f)anareaobtainedviascratchingawaythefilmusingtheAFMtipincontact

    mode(sameareaasthatinc).Reactionconditions:50mMKI,50mMNBD,reactiontime=10min.The

    unmodified areas seen in panel (c) are possibly occupied by some physisorbed material. The

    topographicalheightofthephysisorbeddepositisaround0.6nmasevidentfromheightprofileprovided

    inpanel(d).

    ~ 2.6nm

    Measuredacrossunfunctionalizedarea

    ~0.6nm

    Measuredacrossscratchedarea

    ~ 2.6nm

    ~ 2.6nm

    Measuredacrossunfunctionalizedarea

  • 12

    Fig.S10.ArepresentativeAFMimageshowingthatanincreaseinthereactiontimeto30minutesdoes

    not lead to any further increase in the layer thickness than that obtained at 10minutes. The layer

    thicknessforthissamplewasfoundtobearound1.5 ±0.1nmwhichiscomparabletothatobtained

    usingshorterreaction(10min)timesusingthesameconcentrationofreagents.

    Fig.S11.SpontaneousreactionofNBDwiththeHOPGsurface.(a)ArepresentativeSTMimageshowing

    absence of grafted film on the HOPG surface. (b). Raman spectrum of the HOPG surface allowed to

    spontaneouslyreactwithNBD(10mM)for10min.

    1.5 ± 0.1 nm

  • 13

    Fig.S12.AdditionalAFMandSTMdataforthedependenceofNBDconcentrationonthecovalentgrafting

    of NBD. [NBD]/[KI] = 1:1 and reaction time = 10 min. The STM images are provided for those

    concentrationsforwhichAFMdataisprovidedinthemaintext.

    Fig. S13. Variation in the surface coverage of the covalently grafted film as a function of NBD

    concentrationasmeasuredfromAFMimages.KIwasusedinequimolaramount.Thereactiontimewas

    keptconstantat10min.Thesurfacecoverageofthegraftedfilmswasobtainedbymeasuringtheareaof

    the emptyunfunctionalized regions. Each value for surface coveragewasobtainedby estimating the

    surfacecoverageoftheemptyareasfrom5AFMimages(2µm´2µm)andthencalculatingthesurface

    coverageofthefilm.

    AFM

    STM

  • 14

    Fig.S14.AdditionalAFMdataforthe[KI]/[NBD]solutionmoleratiooncovalentgraftingonthesurface

    ofHOPG.[NBD]=10mMandreactiontime=10min.

    Fig.S15.UV-VisspectraforNBD,KIandapotentialby-productofthereaction1-iodo-4-nitrobenzene

    (INB). The absorptionmaxima for triiodate (I3-)11 and 4,4’-dinitro-1,1’-biphenyl (DNBP)12 have been

    reportedearlier.

  • 15

    Fig.S16.ThetimeevolutionoftheUV-visabsorbanceofthereactionmixtureatdifferent[KI]/[NBD]

    ratiosinaqueoussolution.InallcasestheNBDconcentrationisfixedat1mMandKIconcentrationwas

    variedfrom0.1mM(a)to7mM(e).

    FigureS17.TimeevolutionoftheUV-visabsorbanceofNBDandKI.Thedashedlinerepresentsthebest

    fitfor1storderkinetics(A-A0=B[1-exp-kt].Inthisequationkisthereactionrateconstantforthesystem

    andBisdefinedasfunctionoftheopticalpathlength(l)andthedifferencebetweenthemolarextinction

    coefficient(B=lc0(Ɛl-Ɛf).

    200 250 300 350 4000,0

    0,5

    1,0

    1,5

    2,0

    2,5

    KI/NBD5mM / 1mM

    t0= 0 mintf= 2.3 hours

    Abs

    orba

    nce

    Wavelength / nm200 250 300 350 400

    0,00,51,01,52,02,53,03,54,04,55,05,56,06,57,0

    KI/NBD7 mM / 1mM

    t0= 0 mintf= 1.23 hours

    Abs

    orba

    nce

    Wavelength / nm

    200 250 300 350 4000,0

    0,5

    1,0

    1,5KI/NBD1mM / 1mM

    t0= 0 mintf= 4 hours

    Abs

    orba

    nce

    Wavelength / nm200 250 300 350 400

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    KI/NBD3mM / 1mM

    t0= 0 mintf= 3 hours

    Abs

    orba

    nce

    Wavelength / nm200 250 300 350 400

    0,0

    0,5

    1,0

    KI/NBD0.1 mM / 1 mM

    t0= 0 mintf= 4 hours

    Abs

    orba

    nce

    Wavelength / nm

    NBD

    I-

    0 4000 8000 12000 160000.00

    0.05

    0.10

    0.15

    a)

    A 0-A

    Time / s

    pseudo primer orderwith graphiteA0-A= B[1-exp(-kt)]k=4.23*10-4 s-1

    c2= 0.92

    0 5000 10000 150000.00

    0.02

    0.04

    0.06

    0.08

    0.10

    b)

    pseudo primer orderwithout graphiteA0-A= B[1-exp(-kt)]k=1.54*10-4 s-1

    c2= 0.98

    A 0-A

    Time / s

    0 1000 2000 3000 40000.00

    0.05

    0.10

    A 0-A

    Time / s

    pseudo primer orderwith graphiteA0-A= B[1-exp(-kt)]k=6.1*10-4 s-1

    c2= 0.98

    c)

  • 16

    Fig.S18.AbsorptionspectrumofaqueousNBDasa functionof time(monitoredoveraperiodof1.5

    hours).TheabsorbanceofaqueousNBDsolutiondoesnotchangemuchindicatingextremelyslowrate

    ofdecompositionintheabsenceofeitherKIorgraphitepowder.

    References:

    1 T.Wei,M.Kohring,M.Chen,S.Yang,H.Weber,F.Hauke,andA.Hirsch,Angew.Chem.Int.Ed.,

    2020,59,1–6.

    2 Q.Wang,Z.Jin,K.Kim,A.Hilmer,G.Paulus,C.Shih,M.Ham,J.Sanchez-Yamagishi,K.Watanabe,

    T.Taniguchi,J.Kong,P.Jarillo-HerreroandM.Strano,Nat.Chem.,2012,4,723–732.

    3 J.Englert,C.Dotzer,G.Yang,M.Schmid,C.Papp,J.Gottfried,H.Steinruck,E.Spiecker,F.Hauke

    andA.Hirsch,Nat.Chem.,2011,3,279–286.

    4 T.Wei,O.Martin,S.Yang,F.Hauke,andA.Hirsch,Angew.Chem.Int.Ed.2019,58,816–820.

    5 Z.Sun,C.Pint,D.Marcano,C.Zhang, J.Yao,G.Ruan,Z.Yan,Y.Zhu,R.Haugeand J.Tour,Nat.

    Commun.2011,2,559.

    6 G.Abellań,M.Schirowski,K.Edelthalhammer,M.Fickert,K.Werbach,H.Peterlik,F.Hauke,and

    A.Hirsch,J.Am.Chem.Soc.2017,139,5175−5182.

    7 N. Fairley, Lorentzian Asymmetric Lineshape,

    http://www.casaxps.com/help_manual/manual_updates/LA_Lineshape.pdf, (accessed 2

    September2017).

    8 D.BriggsandJ.T.Grant,Eds.,SurfaceAnalysisbyAugerandX-rayPhotoelectronSpectroscopy,

    IMPublications,Manchester,2003.

    200 250 300 350 4000,0

    0,5

    1,0

    1,5260

    NBD aqueous solutiont0= 0 mintf= 1. 5 hours

    Abs

    orba

    nce

    Wavelength / nm

  • 17

    9 S.Hofmann,Auger-andX-RayPhotoelectronSpectroscopyinMaterialsScience,SpringerBerlin

    Heidelberg,Berlin,Heidelberg,2013,vol.49.

    10 K.Roodenko,M.Gensch,J.Rappich,K.Hinrichs,N.EsserandR.Hunger,J.Phys.Chem.B,2007,

    111,7541–7549.

    11. A.E.BurgessandJ.C.Davidson.J.Chem.Edu.2012,89,814-816.

    12. Bio-RadLaboratories, Inc.SpectraBase;SpectraBaseCompoundID=639lhqsWLzpSpectraBase

    Spectrum ID=KxKsK2Msvsa http://spectrabase.com/spectrum/KxKsK2Msvsa and Dorr, F.;

    Gazis,E.,UVatlasoforganiccompounds,1966,1,D10/6.