Supporting Information final - Ecography › sites › ecography.org › files › appendix ›...

25
History & adaptation on the CO Plateau – Massatti & Knowles 2020 1 Ecography ECOG-04840 Massatti, R. and Knowles, L. L. 2019. The historical context of contemporary climatic adaptation: a case study in the climatically dynamic and environmentally complex southwestern United States . – Ecography doi: 10.1111/ecog.04840 Appendix 1 Additional methodological details: Field sampling and data generation Processing was accomplished using STACKS version 2.2 (Catchen et al. 2013) and followed the r80 protocol detailed in Rochette & Catchen (2017). Briefly, DNA was doubly digested with EcoRI and MspI restriction enzymes, followed by the ligation of Illumina adaptor sequences and barcodes. Each individual was barcoded twice using unique combinations of forward and reverse indexes. Ligation products were pooled and amplified using 18 cycles of PCR. A Pippin Prep (Sage Science, Beverly, MA, USA) was used to size select amplicons from 400 to 600 base pairs. Multiple 192-sample libraries, with 2 barcodes for each individual (i.e., 384 unique indexes per library) were sequenced on a HiSeq 4000 (Illumina, San Diego, CA, USA) at the University of Oregon’s Genomics and Cell Characterization Core Facility to generate single-end 100 base pair reads. The process_radtags script was used to exclude raw reads containing more than four low-quality sites and adapter contamination. Parameters affecting the assembly were assessed based on how parameter combinations affected r80 loci (i.e., those found in 80% of samples or more); the optimal parameter set associated with the plateau of the number of r80 loci was selected (Paris et al. 2017; Rochette & Catchen 2017). Values used in the final assembly were: read to initiate a new putative allele (-m in ustacks) = 3; number of mismatches allowed between the two alleles of a heterozygote sample (-M in ustacks) = 5; mismatches allowed between any two alleles of the population (-n in cstacks) = 5. Results of this processing methodology are reported in Tables S1 and S2. The populations program in STACKS was executed to generate the datasets used in analyses under the settings: minimum percentage of individuals in a population required to process a locus for that population (-r) = 0.5, minimum minor allele frequency required to process a nucleotide site at a locus (--min_maf) = 0.05, maximum observed heterozygosity required to process a nucleotide site at a locus (max_obs_het) = 0.7, and the correction applied to FST values (--fst_correction) = p_value. Population structure and history

Transcript of Supporting Information final - Ecography › sites › ecography.org › files › appendix ›...

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    1

    Ecography ECOG-04840 Massatti, R. and Knowles, L. L. 2019. The historical context of contemporary climatic adaptation: a case study in the climatically dynamic and environmentally complex southwestern United States. – Ecography doi: 10.1111/ecog.04840

    Appendix 1 Additional methodological details: Field sampling and data generation Processing was accomplished using STACKS version 2.2 (Catchen et al. 2013) and followed the r80 protocol detailed in Rochette & Catchen (2017). Briefly, DNA was doubly digested with EcoRI and MspI restriction enzymes, followed by the ligation of Illumina adaptor sequences and barcodes. Each individual was barcoded twice using unique combinations of forward and reverse indexes. Ligation products were pooled and amplified using 18 cycles of PCR. A Pippin Prep (Sage Science, Beverly, MA, USA) was used to size select amplicons from 400 to 600 base pairs. Multiple 192-sample libraries, with 2 barcodes for each individual (i.e., 384 unique indexes per library) were sequenced on a HiSeq 4000 (Illumina, San Diego, CA, USA) at the University of Oregon’s Genomics and Cell Characterization Core Facility to generate single-end 100 base pair reads.

    The process_radtags script was used to exclude raw reads containing more than four low-quality sites and adapter contamination. Parameters affecting the assembly were assessed based on how parameter combinations affected r80 loci (i.e., those found in 80% of samples or more); the optimal parameter set associated with the plateau of the number of r80 loci was selected (Paris et al. 2017; Rochette & Catchen 2017). Values used in the final assembly were: read to initiate a new putative allele (-m in ustacks) = 3; number of mismatches allowed between the two alleles of a heterozygote sample (-M in ustacks) = 5; mismatches allowed between any two alleles of the population (-n in cstacks) = 5. Results of this processing methodology are reported in Tables S1 and S2. The populations program in STACKS was executed to generate the datasets used in analyses under the settings: minimum percentage of individuals in a population required to process a locus for that population (-r) = 0.5, minimum minor allele frequency required to process a nucleotide site at a locus (--min_maf) = 0.05, maximum observed heterozygosity required to process a nucleotide site at a locus (max_obs_het) = 0.7, and the correction applied to FST values (--fst_correction) = p_value. Population structure and history

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    2

    STRUCTURE was run across K-values ranging from 1 to 9 without assigning population membership a priori. Twenty independent runs per K were conducted, each with 150,000 burn-in and 500,000 Markov chain Monte Carlo iterations, using an admixture model with correlated allele frequencies. STRUCTURE HARVESTER and DISTRUCT were used to visualize results, and the most probable K was chosen based on DK (Evanno et al. 2005). For sPCA analysis, geographic locations of individuals were created by jittering the latitude/longitude of their sampling localities (factor=3), and a Delaunay triangulation graph was used to create the required connection network. estimate

    Demographic modeling to elucidate the number of refugial H. jamesii populations, the history and timing of population splits, and approximations of population sizes was conducted using the allele frequency spectrum method (Gutenkunst et al. 2009) implemented in FASTSIMCOAL2 (version 2603; Excoffier et al. 2013). This procedure uses coalescent simulations to calculate the likelihoods of observed allele frequency spectra (see Nielsen 2000) under user-specified demographic models. To improve the performance of the models by reducing the number of estimated parameters (Excoffier et al. 2013), one population parameter was calculated directly from the data. Specifically, the effective population size of the Western population (NWest) was fixed, whereas the other parameters (i.e., population divergence time, T, population sizes, Ne, and gene flow, 2Nm) were estimated based on the site frequency spectrum (see Fig. 3). The best-supported model was selected using Akaike information criterion (Akaike 1974). The effective population size of the Western population was calculated using the equation: Ne = (π/4µ), assuming a genome-wide single nucleotide polymorphism (SNP) mutation rate similar to Arabidopsis thaliana (7 × 10−9 per site per generation; Ossowski et al. 2010). Nucleotide diversity (π) was estimated from polymorphic and nonpolymorphic loci using STACKS (π =0.0063). One hundred runs per model were conducted and the global maximum likelihood solution is presented. Each run was performed with 200,000 simulations per likelihood estimation and 50 expectation-conditional maximization (ECM) cycles. Parameter confidence intervals were calculated from 100 parametric bootstrap replicates, by simulating site frequency spectra with the same number of SNPs from the maximum composite likelihood estimates and re-estimating parameters each time (Excoffier et al. 2013). Identifying putative adaptive loci Multiple LFMMs were generated using K-values (i.e., the number of latent factors) ranging from 3 to 5, which represent the most likely K genetic clusters suggested by STRUCTURE and sPCA, as well as closely related values (see Frichot & François 2015). The latent factors were implemented in LFMMs using a sparse non-negative matrix factorization algorithm, which produces results similar to those produced by STRUCTURE (Frichot et al. 2014) and were performed using snmf in LEA version 1.2.0 in R (Frichot & François 2015). Missing data were replaced by the most likely genotype using impute in LEA . For each K-value, LFMMs were generated for each of the three dominant environmental PC axes identified for the Colorado Plateau region. Models were run ten times with 30,000 iterations and a burn-in of 15,000. To assess model fit and genomic inflation (i.e., inflation of z-scores at each locus due to not sufficiently accounting for population structure or other confounding factors within the model), the median squared z-score calculated from ranked loci was divided by the median of the chi-squared distribution (Frichot & François 2015; François et al. 2016). Per locus z-scores were used to correct for inflation (Table S6), and putative adaptive loci were identified by considering

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    3

    the combination of the intersection of loci across K-values for each environmental PC axis (Table S6). References Akaike, H. (1974). A new look at the statistical model identification. In Selected Papers of

    Hirotugu Akaike (pp. 215-222). Springer, New York, NY. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an

    analysis tool set for population genomics. Molecular ecology, 22(11), 3124-3140. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals

    using the software STRUCTURE: a simulation study. Molecular ecology, 14(8), 2611-2620. Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll, M. (2013). Robust

    demographic inference from genomic and SNP data. PLoS genetics, 9(10), e1003905. François, O., Martins, H., Caye, K., & Schoville, S. D. (2016). Controlling false discoveries in

    genome scans for selection. Molecular Ecology, 25(2), 454-469. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. (2014). Fast and efficient

    estimation of individual ancestry coefficients. Genetics, 196(4), 973-983. Frichot, E., & François, O. (2015). LEA: an R package for landscape and ecological association

    studies. Methods in Ecology and Evolution, 6(8), 925-929. Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., & Bustamante, C. D. (2009). Inferring

    the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS genetics, 5(10), e1000695.

    Nielsen, R. (2000). Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics, 154(2), 931-942.

    Ossowski, S., Schneeberger, K., Lucas-Lledó, J. I., Warthmann, N., Clark, R. M., Shaw, R. G., ... & Lynch, M. (2010). The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science, 327(5961), 92-94.

    Paris, J. R., Stevens, J. R., & Catchen, J. M. (2017). Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution, 8(10), 1360-1373.

    Rochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 12(12), 2640.

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    4

    -115 -110 -105

    3436

    3840

    42

    x

    y

    Longitude

    Latit

    ude

    Eigenvalues of sPCA

    010

    2030

    4050

    Nevada

    California ArizonaNew Mexico

    Utah

    Colorado

    Wyoming

    Figure A1. Individuals colored by genetic similarity when utilizing the first three global sPCA structures (sPC1, sPC2, and sPC3). Individuals are graphed in geographic space according to their sampling localities, and they are jittered so that they do not completely overlap. More similar colors represent more similar genetic identities. The inset shows the sPCA eigenvalues, and the magnitudes of the first three axes (colored red) support interpreting the first three global (positive) structures.

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    5

    Figure A2. Distribution of putative adaptive SNPs between standard deviations (z-scores) of 2 and 3. The inset shows how SNPs align with predictor axes (‘# RDA loci’), as well as how loci are shared with LFMMs (‘Loci shared w/ LFMMs’).

    2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

    0

    20

    40

    60

    80

    100

    120

    z-score

    #pu

    tativ

    ead

    aptiv

    elo

    ci

    2.0 2.2 2.4 2.6 2.8 3.0

    120

    80

    40

    0

    Predictor # RDA loci (% total)Loci shared w/

    LFMMs (% total)PC1 (elevation) 40 (6.1) 13 (9.9)PC2 (latitude) 338 (51.8) 71 (54.2)PC3 (MDR) 273 (41.9) 47 (35.9)Total 652 131

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    6

    Table A1. Details of sampling localities, climatic data, and processing. Columns indicate: total number of individuals sampled per locality (# Ind); sampling locality coordinates (Longitude/Latitude); elevation; extracted data for sampling sites from climatic PC axes

    (PC1-3); average # reads per individual per sampling locality after data processing (Processed reads); average # reads per individual per sampling locality used to construct loci (Utilized reads). Sampling localities used in FASTSIMCOAL2 modeling are indicated using

    bold text in the sampling locality column.

    Sampling locality # Ind Longitude Latitude Elevation (m) PC1 PC2 PC3 Processed reads (± SD) Utilized reads (± SD)

    North Rim 11 -112.710 36.767 1414 0.911 -1.707 1.072 1,245,496 (101,270) 1,052,456 (102,177)

    Kaiparowits Plateau 12 -111.725 37.741 1996 -0.350 -1.228 -0.021 990,920 (55,765)

    855,800 (49,511)

    Lees Ferry 11 -111.621 36.852 1042 3.116 -3.754 -0.277 1,191,665 (142,060) 1,011,624 (125,478)

    Red Mtn 11 -111.567 35.496 1915 -0.194 0.435 1.054 1,741,374 (558,394) 1,464,503 (476,134)

    Alvey Wash 12 -111.498 37.692 1695 0.695 -2.322 -0.203 1,310,176 (179,545) 1,128,081 (156,875)

    Poison Spring 10 -110.953 39.465 2053 -2.079 -2.562 0.265 2,042,384 (273,708) 1,747,805 (244,424)

    Factory Butte 15 -110.878 38.417 1447 0.872 -3.506 -2.832 1,433,932 (118,685) 1,226,685 (112,636)

    San Rafael Swell 11 -110.708 38.837 2051 -1.226 -2.328 -0.977 982,208 (84,813) 824,946 (77,268)

    Blue Mesa 13 -109.787 35.090 1708 1.664 -0.366 -0.668 992,029 (82,857) 838,384 (73,855)

    Sevenmile Canyon 11 -109.749 38.641 1514 -0.241 -3.411 -1.140 1,850,053 (295,026) 1,601,862 (258,100)

    Needles 22 -109.726 38.182 1536 0.338 -3.198 -0.400 1,187,683 (116,470) 1,025,364 (105,854)

    Vernal 11 -109.639 40.329 1524 -1.416 -4.535 -3.670 1,488,731 (138,928) 1,293,550 (130,305)

    Combs Ridge 12 -109.606 37.293 1494 0.885 -3.034 -0.392 1,642,252 (210,874) 1,413,178 (185,278)

    Book Cliffs 12 -109.482 39.725 1935 -2.139 -3.438 -1.451 2,013,492 (200,195) 1,729,377 (183,651)

    Devil's Playground 10 -109.241 40.100 1569 -1.548 -4.301 -3.429 1,300,533 (107,935) 1,127,041 (100,973)

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    7

    Westwater 13 -109.142 39.121 1383 -0.445 -3.724 -1.615 1,036,647 (97,690) 867,980 (95,293)

    Fruita Canyon 10 -108.696 39.060 1870 -1.622 -2.835 -0.034 1,825,923 (225,069) 1,559,224 (203,415)

    Gypsum Gap 12 -108.663 38.041 1933 -1.464 -1.598 -0.201 1,276,019 (498,330) 1,084,938 (429,596)

    Kutz Canyon 12 -107.990 36.658 1683 0.722 -2.312 -0.637 1,845,934 (234,880) 1,603,655 (215,686)

    Coal Creek 24 -107.988 36.206 1921 0.382 -1.332 -0.819 1,203,728 (159,426)

    1,038,926 (148,868)

    Jesus Mesa 11 -107.671 35.380 2246 -0.460 1.119 -0.494 2,068,927 (175,901) 1,766,803 (144,279)

    Manzanares 12 -107.640 36.716 1971 -0.781 -1.274 -0.100 1,057,901 (108,100) 883,206 (93,709)

    Bear Mtns 11 -107.210 34.206 1880 1.508 2.347 -1.356 970,546 (68,974) 819,289 (62,349)

    Box Canyon 12 -107.029 34.017 1822 1.577 2.466 -1.115 1,027,207 (59,734) 858,331 (59,724)

    Hidden Mtn 10 -107.002 34.794 1546 1.885 0.168 -1.668 935,603 (51,808) 798,181 (43,525)

    Rio Grande 25 -106.887 34.354 1482 2.170 0.880 -2.081 1,221,601 (116,738) 1,061,136 (110,235)

    Black Mesa 12 -105.912 35.959 2004 -0.324 1.289 -1.250 1,408,209 (229,108) 1,219,357 (226,874)

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    8

    Table A2. Details of herbarium samples included in analyses. Columns indicate: herbarium from which specimens were loaned (RM = Rocky Mountain Herbarium, UTC = Intermountain Herbarium); the catalog number of the specimen within the herbarium (unacc =

    currently unaccessioned within the collection); specimen details, including collector(s), collection number, date, state, and location information; the “population” to which each specimen was assigned for some analyses; the number of processed reads (Processed);

    and the number of utilized reads (Utilized).

    Herbarium Catalog # Collector(s) Collection

    # Date State Longitude Latitude Population Processed Utilized

    RM 929825 Lukas 9076 6/17/09 WY -106.896 41.679 WY Basin 1,267,381 1,059,990

    RM 791212 Ward 758 6/17/96 WY -107.831 41.070 WY Basin 1,181,269 1,033,826

    RM 799451 Ward 5500 6/17/97 WY -108.287 41.041 WY Basin 996,070 831,621

    RM 791211 Ward 1799 6/28/96 WY -108.401 41.156 WY Basin 1,266,406 1,093,160

    RM 799450 Ward 6214 6/24/97 WY -109.570 41.687 WY Basin 1,388,619 1,203,256

    RM 633171 Fertig 18341 7/2/98 WY -110.050 41.672 WY Basin 1,056,775 875,823

    RM 688829 Nelson & Refsdal

    36187 7/3/95 WY -110.201 41.671 WY Basin 1,499,703 1,342,538

    RM 688830 Refsdal 5287 7/13/95 WY -109.895 41.107 WY Basin 864,847 726,545

    RM 688828 Nelson, Refsdal,

    & Welp 35473 6/20/95 WY -109.550 41.281 WY Basin 1,317,543 1,133,349

    RM 645101 Fertig 18236 6/16/98 WY -109.493 41.007 WY Basin 991,289 865,471

    RM unacc Welp 6874 7/25/95 WY -107.176 41.892 WY Basin 972,972 801,378

    RM unacc Nelson & Roderick

    40405 6/18/97 WY -107.071 41.879 WY Basin 1,100,909 937,811

    RM unacc Chumley 4667 7/15/96 CO -104.598 38.513 Plains 1,191,887 1,065,336

    RM unacc Elliot 6139 5/27/99 CO -104.561 38.311 Plains 1,142,148 985,015

    RM unacc Nelson & Kuhn 72484 6/23/07 CO -103.457 37.889 Plains 1,030,392 873,375

    RM unacc Kuhn 4683 6/4/08 CO -103.876 37.895 Plains 1,405,592 1,206,793

    RM unacc Kuhn & Rankin 3466 8/12/07 CO -103.989 37.690 Plains 1,326,933 1,109,570

    RM unacc Elliot 11779 9/20/03 CO -103.513 37.765 Plains 1,010,921 826,411

    RM unacc Kuhn &

    Hemenway 5507 6/23/08 CO -103.652 37.580 Plains 1,306,040 1,132,200

    RM 904007 Legler 11058 9/13/08 NM -104.866 36.784 Eastern Sangres 1,489,777 1,300,226

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    9

    RM 904010 Legler 7401A 8/9/07 NM -104.625 36.725 Eastern Sangres 1,516,117 1,360,183

    RM 904014 Legler 5430 7/2/07 NM -104.858 36.513 Eastern Sangres 1,735,241 1,512,337

    RM 904013 Legler 6075 7/16/07 NM -104.697 36.554 Eastern Sangres 1,545,846 1,331,481

    RM 904012 Legler & Snow 3937 6/7/07 NM -104.578 36.487 Eastern Sangres 1,509,432 1,305,446

    UTC UTC00212309 Hardy 845 5/18/93 UT -113.397 41.241 Salt Lake 1,226,130 1,045,090

    UTC UTC00196123 Gilbert s.n. 5/24/86 UT -113.640 40.900 Salt Lake 1,523,410 1,334,816

    UTC UTC00244955 Shultz, Toler,

    Ward, & Marler 17601 6/10/98 UT -113.316 40.427 Salt Lake 833,914 722,955

    UTC UTC00232651 Long 894 6/1/00 UT -112.464 40.495 Salt Lake 1,827,709 1,607,615

    UTC UTC00209030 Clark 5366 5/25/91 UT -112.942 40.116 Salt Lake 1,114,819 907,270

    UTC UTC00203343 Barksworth 4557 6/15/85 UT -113.047 39.653 Salt Lake 1,386,108 1,184,674

    UTC UTC00216399 Curto & Smith 1310 6/13/95 NV -115.091 38.437 Western Great Basin 1,199,723 1,017,342

    UTC UTC00226441 Pinzl & Work 12199 5/11/97 NV -114.323 37.860 Western Great Basin 1,072,470 945,008

    UTC UTC00275644 Gust 1863 5/16/09 NV -114.993 37.722 Western Great Basin 1,190,589 1,016,966

    UTC UTC00278019 Tiehm 16973 6/9/15 NV -118.297 39.599 Western Great Basin 1,530,955 1,328,262

    UTC UTC00275314 Tiehm 16682 5/18/14 NV -119.052 38.700 Western Great Basin 1,718,475 1,510,195

    UTC UTC00226603 Pinzl 11793 5/8/96 NV -117.870 37.821 Western Great Basin 1,242,184 1,097,859

    UTC UTC00220400 Pinzl 11348 5/11/95 NV -117.711 37.724 Western Great Basin 1,314,426 1,125,008

    UTC UTC00226912 Henderson &

    Cholewa 7303 5/26/87 CA -117.279 36.402 Western Great Basin 1,624,090 1,465,391

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    10

    Table A3. Correlation between the PC axes used in RDA and the bioclimatic variables (Fick & Hijmans, 2017), longitude, latitude, and elevation. Correlations greater than 0.7 (i.e., |r| > 0.7) are shown in bold.

    Climatic variables PC1 PC2 PC3

    Annual mean temperature (Bio1) 0.96 0.25 -0.03 Mean diurnal range (Bio2) 0.46 0.44 -0.83 Isothermality (Bio3) 0.37 0.91 -0.49 Temp. seasonality (Bio4) -0.06 -0.98 0.07 Maximum temp. warmest month (Bio5) 0.86 -0.34 0.05 Minimum temp. coldest month (Bio6) 0.72 0.55 0.28 Temp. annual range (Bio7) 0.02 -0.87 -0.27 Mean temp. wettest quarter (Bio8) 0.14 0.25 -0.31 Mean temp. driest quarter (Bio9) -0.06 0.47 0.06 Mean temp. warmest quarter (Bio10) 0.91 -0.19 0.10 Mean temp. coldest quarter (Bio11) 0.79 0.64 0.04 Annual precip. (Bio12) -0.67 0.49 0.21

    Precip. wettest month (Bio13) -0.18 0.91 -0.36 Precip. driest month (Bio14) -0.87 -0.12 0.26 Precip. seasonality (Bio15) 0.36 0.85 -0.65 Precip. wettest quarter (Bio16) -0.25 0.88 -0.33 Precip. driest quarter (Bio17) -0.83 -0.18 0.52 Precip. warmest quarter (Bio18) -0.26 0.87 -0.33 Precip. coldest quarter (Bio19) -0.54 0.10 0.68

    Monsoonal precip. 0.27 0.85 -0.57 Longitude 0.03 0.42 -0.62

    Latitude -0.45 -0.91 0.32 Elevation -0.81 0.40 0.03

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    11

    Table A4. Genetic summary statistics for the H. jamesii populations. Transitional sampling localities between the Southeastern and Northern populations are grouped separately (all

    represent a mixture of genetic clusters, with the minor cluster composing >25% of the total

    identity – see Fig. 1). Results are presented for variant nucleotide positions only and include:

    observed heterozygosity (HOBS), expected heterozygosity (HEXP), nucleotide diversity (π), and average Wright’s inbreeding coefficient (FIS).

    Population HOBS (± SD) HEXP (± SD) π (± SD) FIS (± SD) Eastern 0.103 (± 0.006) 0.157 (± 0.011) 0.168 (± 0.010 0.171 (± 0.034)

    Transitional 0.106 (± 0.003) 0.164 (± 0.009) 0.174 (± 0.010) 0.188 (± 0.021)

    Northern 0.107 (± 0.008) 0.158 (± 0.009) 0.168 (± 0.008) 0.160 (± 0.036)

    Western 0.103 (± 0.015) 0.153 (± 0.007) 0.165 (± 0.005) 0.155 (± 0.028)

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    12

    Table A5. Pairwise corrected AMOVA FST calculated between the sampling localities. All values are significant at p < 0.05. See Table S2 to determine which herbarium specimens were grouped to form sampling localities outside of the Colorado Plateau. Green cells indicate FST less than 0.030, yellow cells indicate FST between 0.030 and 0.049, and red cells indicate FST greater than 0.05.

    Kut

    z C

    anyo

    n

    Com

    bs R

    idge

    Boo

    k C

    liffs

    Box

    Can

    yon

    Coa

    l Cre

    ek

    Frui

    ta C

    anyo

    n

    Dev

    ils

    Play

    grou

    nd

    Fact

    ory

    But

    te

    Wes

    tern

    Gre

    at

    Bas

    in

    Alv

    ey W

    ash

    Gyp

    sum

    Gap

    Pois

    on S

    prin

    g

    Hid

    den

    Mtn

    Jesu

    s Mes

    a

    Kai

    paro

    wits

    Pl

    atea

    u

    Lees

    Fer

    ry

    Man

    zana

    res

    Nee

    dles

    Bla

    ck M

    esa

    Nor

    th R

    im

    Blu

    e M

    esa

    East

    ern

    Plai

    ns

    Red

    Mtn

    Salt

    Lake

    East

    ern

    Sang

    res

    San

    Raf

    ael

    Swel

    l

    Seve

    nmile

    C

    anyo

    n

    Rio

    Gra

    nde

    Ver

    nal

    Wes

    twat

    er

    WY

    Bas

    in

    Bear Mtns 0.024 0.026 0.068 0.016 0.033 0.043 0.056 0.043 0.061 0.051 0.025 0.059 0.021 0.026 0.059 0.059 0.045 0.048 0.022 0.054 0.060 0.026 0.053 0.061 0.026 0.033 0.028 0.016 0.039 0.025 0.035 Kutz Can. 0.018 0.059 0.024 0.022 0.032 0.046 0.038 0.056 0.046 0.017 0.050 0.016 0.014 0.054 0.054 0.031 0.042 0.012 0.049 0.053 0.017 0.048 0.056 0.017 0.027 0.023 0.021 0.034 0.020 0.031 Combs R. 0.050 0.025 0.028 0.026 0.038 0.029 0.040 0.028 0.012 0.041 0.020 0.020 0.035 0.035 0.035 0.035 0.018 0.034 0.036 0.021 0.029 0.039 0.020 0.020 0.016 0.024 0.026 0.015 0.023

    Book Cliffs 0.056 0.067 0.062 0.064 0.046 0.075 0.065 0.050 0.064 0.060 0.060 0.072 0.072 0.081 0.066 0.058 0.069 0.077 0.061 0.067 0.079 0.061 0.039 0.038 0.055 0.044 0.037 0.037 Box Can. 0.037 0.037 0.047 0.040 0.050 0.045 0.025 0.051 0.017 0.024 0.052 0.051 0.040 0.048 0.023 0.047 0.053 0.022 0.045 0.048 0.020 0.029 0.026 0.022 0.035 0.025 0.031

    Coal Creek 0.042 0.056 0.050 0.063 0.057 0.026 0.057 0.024 0.021 0.064 0.065 0.039 0.052 0.019 0.059 0.064 0.024 0.059 0.065 0.024 0.038 0.034 0.031 0.044 0.032 0.041 Fruita Can. 0.053 0.041 0.058 0.045 0.024 0.056 0.034 0.033 0.054 0.054 0.051 0.047 0.031 0.051 0.054 0.035 0.048 0.059 0.035 0.033 0.029 0.035 0.038 0.023 0.034

    Devils Play. 0.037 0.064 0.052 0.039 0.051 0.048 0.048 0.059 0.058 0.068 0.055 0.046 0.057 0.063 0.049 0.054 0.064 0.047 0.030 0.029 0.046 0.031 0.025 0.028 Factory 0.049 0.041 0.031 0.035 0.036 0.038 0.047 0.045 0.054 0.047 0.037 0.044 0.051 0.037 0.042 0.050 0.038 0.018 0.020 0.041 0.022 0.019 0.019 W. GB 0.035 0.044 0.065 0.056 0.057 0.037 0.035 0.078 0.061 0.054 0.030 0.046 0.060 0.034 0.015 0.057 0.041 0.038 0.052 0.046 0.037 0.042

    Alvey 0.034 0.054 0.045 0.046 0.019 0.017 0.065 0.051 0.045 0.026 0.023 0.045 0.015 0.037 0.044 0.034 0.030 0.046 0.040 0.029 0.037 Gypsum 0.042 0.018 0.018 0.042 0.041 0.034 0.036 0.016 0.040 0.041 0.019 0.035 0.046 0.019 0.023 0.018 0.023 0.027 0.015 0.025

    Poison 0.051 0.051 0.062 0.061 0.074 0.058 0.048 0.059 0.067 0.054 0.057 0.068 0.052 0.028 0.029 0.048 0.032 0.029 0.029 Hidden Mtn 0.017 0.054 0.054 0.035 0.044 0.014 0.049 0.054 0.017 0.047 0.057 0.018 0.027 0.023 0.016 0.033 0.021 0.030 Jesus Mesa 0.055 0.056 0.031 0.043 0.013 0.051 0.054 0.017 0.049 0.058 0.018 0.028 0.024 0.022 0.034 0.021 0.031

    Kaiparowits 0.020 0.074 0.058 0.053 0.026 0.029 0.055 0.020 0.039 0.053 0.039 0.037 0.053 0.046 0.036 0.042 Lees Ferry 0.074 0.056 0.054 0.026 0.027 0.055 0.016 0.037 0.054 0.039 0.035 0.053 0.045 0.035 0.042

    Manzanares 0.060 0.030 0.069 0.075 0.036 0.068 0.079 0.037 0.043 0.041 0.038 0.051 0.036 0.047 Needles 0.041 0.053 0.059 0.043 0.052 0.062 0.044 0.036 0.034 0.046 0.041 0.033 0.039

    Black Mesa 0.048 0.053 0.015 0.047 0.055 0.015 0.026 0.022 0.019 0.033 0.020 0.029 North Rim 0.036 0.049 0.027 0.032 0.050 0.035 0.034 0.048 0.042 0.033 0.039 Blue Mesa 0.055 0.021 0.046 0.053 0.044 0.040 0.053 0.051 0.038 0.046

    E. Plains 0.049 0.063 0.017 0.028 0.025 0.021 0.034 0.021 0.031 Red Mtn 0.037 0.048 0.033 0.030 0.047 0.040 0.030 0.036

    Salt Lake 0.063 0.042 0.038 0.052 0.047 0.038 0.043 E. Sangres 0.029 0.023 0.021 0.034 0.022 0.030 San Rafael 0.014 0.030 0.017 0.012 0.013 Sevenmile 0.027 0.016 0.011 0.014

    Rio Grande 0.036 0.026 0.033 Vernal 0.015 0.014

    Westwater 0.012

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    13

    Table A6. Latent factor mixed model results. For each environmental PC axis, the genomic inflation factor (GIF), number of candidate loci (# loci), and the percentage of the total loci included in the analysis (9534) is reported. Intersection refers to the number of loci in common for a PC axis across K values 3, 4, and 5.

    LFMM K PC axis LFMM GIF # loci % of total loci 3 1 1.3 231 2.4 4 1 1.15 194 2.0 5 1 1.1 213 2.2

    Intersection: 139 1.5 3 2 1.8 216 2.3 4 2 1.6 200 2.1 5 2 1.5 233 2.4

    Intersection: 164 1.7 3 3 1.8 212 2.2 4 3 1.55 213 2.2 5 3 1.45 268 2.8

    Intersection: 150 1.6 Total intersected loci (PC1+PC2+PC3): 453 4.8 Duplicate loci: 42 0.04 Total unique candidate loci: 411 4.3

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    14

    Table A7. RADseq loci that matched significantly to NCGI’s nr database (i.e., to a known graminoid sequence and with an E-value ≤1x10-3). Shown are results of the subsequent blast to the UNIPROT database.

    Locus # Sequence UNIPROT name UNIPROT identifier E-value %

    identity Proposed function GO identifier

    39572 AATTCTCCCATGGTGTATTTGAGAGCTGGCTCCATCCGTCCCAGTACCGCACTAGGCTCTGCAAGGAGG

    GAGCAGCTTGCGCCCGCCGCATCTGCTTCTTT

    Zinc finger CCCH domain-containing protein 50

    Q84SL2 6.70E-17 100 DNA/metal ion

    binding NA

    10241 AATTCCTTCTTGAGATCCTTGAGGATCTTGTTGTAGCTGAACTCTTTCTTCAGTCCCTGGACAGTAGTCA

    GACTCTTCCTGCCGTTGCGTTGCTGGATGCG

    Protein translation factor SUI1 homolog 2

    NA 3.00E-15 100 translation

    initiation factor

    activity

    NA

    34879 AATTCTCTTGCCGTCGGGCCGAACACGCGGGTATCCTTTGTGGCACACGGCTGATAGCCGAACAGCAT

    CTCGCCCTTCTTCACCTGGAACACAGCGTCGTG

    Allene oxide synthase D3K2N2 7.90E-15 93.9 oxidoreductase

    activity NA

    25038 AATTCTGTATCGTCTCCGCACGCGGCCTAGGCCGCAGATCATCACTGCTCAAACAGCAGTGGTTCTCA

    GTCGCATGGATTGATCCAAACAGCAAATACTGC

    uncharacterized protein A0A3L6FGA1 9.10E-15 87.9 NA NA

    21473 AATTCTTAAGAACATCCCATGCCTTATCCAGAAGCCATTCTGAGTCTGCATTAGGTAGCTTGCGGACA

    CCAGCTGTAGCATATAGAAAAACTGGAGTGTGT

    Putative apyrase 7 A0A3L6RB81 1.30E-14 93.9 hydrolase

    activity NA

    9358 AATTCGGAGATCTTGGCTATGTGGCACCAGAGTATGCACGCACTCTGATGGCCACGCCGAAGGGTGAT

    GTCTACAGCTTTGGTGTGGTTCTGCTTGAGATC

    Putative inactive leucine-rich repeat receptor-like

    protein kinase

    A0A1E5V3C4 1.30E-14 97 ATP binding NA

    22564

    AATTCTATCTGCATGGGGAAACTTGCAGTATGCG

    CATAGCATTGCACGGATGTGCACAATGTCAACCTTTCCAGAATGCTTGCAAGCAAGCTCATAAGCTG

    uncharacterized protein A0A0A9JBL9 1.80E-14 90.9 NA NA

    38340

    AATTCGGCACAAGACCCTTGTACAGAGCACCAAC

    ACCCTCATGACGAACAGTTTTCCTGAATGCATCGATCATACCATTGTACTGGAGCGCATCTTTGCCT

    Mitochondrial adenine

    nucleotide transporter ADNT1

    A0A3L6E8A9 2.00E-14 97 transport NA

    3428

    AATTCCCAGAGCAGGAGGAGATGGGCTTGTGCTC

    GTGCTGCTGCCGCTGCCTGGAGCTCCTGTGCTCCGTCCTCCTCCCGCCCCTAGGCGTCTGCCTCCGC

    Low temperature and salt responsive protein-like

    A0A3L6S273 2.80E-14 100 NA NA

    38100

    AATTCAAACCAGATCTCATAATGGTTAAACAGGA

    AACTATCATGAGTGTGCTTCCCTACATACTCAAGCCACAATTTCGCAAGCCGCCGTGCGCACTCATC

    uncharacterized protein A0A0A9CYF5 2.80E-14 90.9 NA NA

    29981 AATTCCTGCGTAAGGAATCCCTGGCTCGCCAGCAGCAATATCAGCAGGCCAGCATGAGCCATTATGCAAATAATGCCGTGCCTGGGGACCAGCATGGTTAT

    uncharacterized protein A0A0A9V7X2 4.10E-14 93.9 NA NA

    21649 AATTCCCAACAACTCTGTATTACATGTTCAACACGATGCTTCTCACACTATTCGTGTTCCATGTGTACTG

    GGGGAAACTCATATTTTTGATGATAAAGAAA uncharacterized protein A0A453IFS2 4.50E-14 90.9 NA NA

    50123 AATTCAAGATGTCCAGATGAAGTTGTTAGGAGAATTCGTGTGAGTGTTTCATCTTACGATCCAGTTTGG

    CAAGGAAAGCTACTGGACACTTATGACACTCA uncharacterized protein J3MFW0 7.40E-14 90.9 NA NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    15

    33684 AATTCATACAGTCAGAAGATATCCTTTACAAGATGTTGTTGCTCTTGACAGCTCAAATATCATTGGAAT

    TGAAGGTTGCAGTACCAGTGACATAAGGTCTG

    uncharacterized protein A0A0A9DWL0 1.20E-13 97 NA NA

    16768 AATTCCTTTCTCTGCCATGACGCCCACCTGTACAAATTCCATAAAAATCTTGCGTTTCTCACTTCTACTG

    TGCCAGGTCCAAACCCAATTAAAATGTCAAG

    uncharacterized protein A0A3B6HMF0 1.60E-13 84.8 NA NA

    31062

    AATTCTTGGTCAGGCTGTTTGCTGGAGTCAAGCTT

    CTTCACCGCAGACTTGTTGCCGTCTTTCAGCACACCAAAGTAGACTCTGGCGTACGACCCTTCTCC

    PTI1-like tyrosine-protein

    kinase 3 A0A1D6MSA8 1.80E-13 97

    protein

    serine/threonine-protein kinase

    NA

    31748

    AATTCCCCAAGAGCACCGTTGGACCTGGTGTGTG

    GGGAGCGCTGCTTGGTGCTTGCATGGTCCATAAGGATAGCGACCATGCGAAACTGGCATCCCAGAAG

    Pentatricopeptide repeat-

    containing protein A0A1E5V3I1 2.20E-13 93.9 zinc ion binding NA

    36632

    AATTCCTACACGAACATTACTTCCATACTCAACTG

    GTTTAAAATTTGCAGCTTTGAGTTCCTTTATAACACAGTCACCAATATGGAGGAAAGGAACCGAGC

    Asp/Glu racemase CB6TUV7 3.40E-13 87.9

    cellular amino

    acid metabolic process

    NA

    4790 AATTCGTGTGAGTGTTTCATCTTACGATCCAGTTTGGCAAGGAAAGCTACTGGACACTTATGACACTCA

    GAGTGATGTGTTCCGAATTGCACCTGCTTGCT uncharacterized protein A0A0A9CAP4 5.20E-13 87.9

    protein-N-

    terminal asparagine

    amidohydrolase

    activity

    GO:0008418

    34446

    AATTCCCGTAGAGAATATTTCACCATCTCATTGTC

    GAAATCAGCGCCACCAAGGTGAGTGTCACCAGCGACGGCCTTCACCTCGAAGACACCCATGTCAAT

    uncharacterized protein A0A0E0R547 5.60E-13 90.9 ATP binding NA

    20650

    AATTCTTGCAGATTGTGCCTGCTTTTCTAGGCGGT

    AAATGCAGCTGCTCACAATGCGAGAAGCCTCATGATAGCTCAGCAATACAGGCAGGTGAAGGGAGC

    uncharacterized protein A0A0E0D8U7 8.00E-13 87.9

    integral

    membrane protein

    GO:0016021

    36264

    AATTCAGGGGAGGTGTCTGGGACGACGGCGACGC

    TGGTGGTCATCGACGGATTCACGGTCACCGTCGCCTCGGTGGGAGACTCCCGCTGCATCCTGGACAC

    uncharacterized protein A0A453AL85 8.90E-13 93.9 catalytic

    activity GO:0003824

    26965

    AATTCACTTGAGGAACGGCTTCTTGAAAGCATGG

    CATGGGAGAAAGGCTCATCAATATATAATTCCTTGATTGTTGCTAGGCCAGCACTGTCTTCAGAAAT

    Retinoblastoma-related protein 3

    A0A1E5WFS4 1.40E-12 97 regulation of

    cell cycle NA

    46655

    AATTCAAAATAACAAACCTCAGGTATGGAGCTAA

    GTAGACGGCCGCGTAGACCAGATACCGCCGCTTCCCGCTATCGAGCCACGCAAAGATCCAGCTCTAT

    uncharacterized protein A0A1D6JBS6 1.60E-12 90.9 NA NA

    31807 AATTCTGATCTCTTCTATGCTGCACTTGGTGGTCTCGGTCAGTTCGGGATCATCACCAGAGCAAAGATT

    GCCCTTGAACCTGCTCCAAAGACGGTAAGAAA Cytokinin dehydrogenase 4 Q5JLP4 2.00E-12 93.9

    cytokinin metabolic process

    NA

    27402 AATTCTCCGCTGGCGCATCGGGTAGCTTGAACTCAGGGAAGTCATTGGATGGATTCGGTTGCTCGGAAGCTGCGACGGGCGACGATGGCAGGGCATTATCG

    uncharacterized protein A0A0D9W1J4 2.80E-12 87.9 positive

    regulation of GTPase activity

    GO:0043547

    25969 AATTCGGTTCAACAATCCATGCAATCACTACTCCAGCAACCTACACAGTCTGTTTTGAGGCAACAGCAACATCCACAGCCCATGCATCAGCAGCATTCTCT

    Uncharacterized protein J9QIL5 3.70E-12 90.9 NA NA

    31229 AATTCTGAAGGAAAGGCACTTGGTTTTACATTTTCCTTTCCCGTTAGACAAGCTTCTATATCCTCAGGGT

    CATTAATTAGGTGGACTAAAGAATTTTCAAT Phosphotransferase A0A2S3HCZ7 3.70E-12 96.8

    cellular glucose homeostasis

    NA

    4666 AATTCACAGTACAAGTCATCTTATCCAGCCAGCAGGGCAAGTGCAGATGACATTGAGCTGTATCCCCC

    S-acyltransferase A0A0D9W8N7 5.10E-12 90.9 Acyltransferase NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    16

    GACACCGAGCAGCTTCCAGAGCAACTCGCGGAC

    19396 AATTCTTGGAGCAGCCTCCTTGTGATTCTAGGACCCTGCTCATAAGCATATTTATCCCAGATTTGGGTTC

    AGATGGCATCTCCTTTGAAACTTTCCGGGAT uncharacterized protein K4A4W1 5.10E-12 87.5

    electron transport chain

    GO:0022900

    28662 AATTCAAGGAGTTCGTTGTATGTCTGTTGTAGCTTGCCACTGTTGGTATTCATCTCCAGCAACTCATGTT

    CATGCTCACCTAATTTTGCCTGGAGATCCAA

    V-type proton ATPase

    subunit a A0A446Q4H2 6.50E-12 87.5

    proton transmembrane

    transporter activity

    GO:0015078

    4693

    AATTCAGAGGAACCTTAACCTTTTTTCCATCCTGC

    TGGTTCCCCATGATGCTTGCATCAACTTCCACAGACCCGTTATTAATTTGAAGCATCTGCAAAACC

    uncharacterized protein NA 6.70E-12 96.8

    vesicle docking

    involved in exocytosis

    NA

    40735

    AATTCTTTCCTATGGCAGGGGTATGAGATTACTGT

    CATATAATACAGTTGATATCAGGCTATCTGATCACCGCCCTGTGACTGCGGTGTACATGGTCGACG

    Type 1 inositol 1,4,5-

    triphosphate 5-phosphotase 1-like isoform X1

    A0A3L6STM4 6.90E-12 87.9 hydrolase activity

    NA

    20565

    AATTCCCGGCAGAGAGATAGAACGACGGCATTGT

    ACGAGGCGCACACAGGCGGTGACACGGCCAGGACCTCCCTGGCCTCGTCCACCCTGCCAAGCTTGCA

    uncharacterized protein A0A368QBL2 6.90E-12 87.9 NA NA

    34675 AATTCTAGTTCCATCTGCACCACCAGAATCTCCCAAGTTAAAATACTTGAAGATTTCATCCCTGAAAGA

    TAGCACATGTCTTGTTACTAATGGTGTCAGCA

    RING-type E3 ubiquitin transferase

    A0A2S3I7T6 7.00E-12 87.9 protein

    ubiquitination GO:0016567

    30274 AATTCCCGGGTACAATACCATTTACCCTAAAGGGACCTTCCCAATTCGGCAACCATTTGCCGAATTTAT

    TATCTTTTCGCCCCAAAGGCAAAATCATTTTC uncharacterized protein J3NCY2 9.60E-12 72.7

    nucleic acid binding

    GO:0003676

    30940 AATTCAGAAGAACACCCACTTGGACGCCGTCTTT

    TCCTTCATGGTTTTGGAGTGGAAGAGCTCGTCGCCGTCGTCGCCGGCCTGCCGCCGCTTCTCCGCCC

    uncharacterized protein A0A3L6TFT8 1.20E-11 93.8 NA NA

    30173 AATTCAGCATTTTGAGAAGTTTGTCAAGGAGCACTTCACTTACCGCGCCCCACGCATTCTGGATGCCTG

    CGAGGCTTATCTTAGTGGTGACCTTGTTGGAC

    Putative ubiquitin-conjugating enzyme E2 24

    A0A1E5VUQ7 1.30E-11 90.6 NA NA

    3521 AATTCCTGCTCTTCTTCCTTAGATTGACCCGCGCCACCGCTACGGCCACAATTTGCATCTGTATTACGA

    CATCTGGTCCGCGAGCTCGAGCACTGAGCCCT Calmodulin-binding protein B1B5J2 1.30E-11 100 NA NA

    35565 AATTCAAGAGCGAGGAGGCGCTCATAGTCATCCATGTCGCTCTCCTATGCACGCAGGGCTCGCCTCACC

    AGCGCCCACCAATGTCCAGGGTCGTGGCGATG

    Putative LRR receptor-like serine/threonine-protein

    kinase

    A0A1E5W7S0 1.30E-11 90.9 protein

    phosphorylation GO:0006468

    11645 AATTCGTGAACATACTTGGGTCGGTGGTGGAGATGGTGGCGGCGCCATTGAAGTCGCAGGTGGCGCCT

    TTGGCCTTGTTGTTCTGGTAGTAGCTGTTGGCG

    PLASMODESMATA CALLOSE_BINDING

    PROTEIN 1-like

    A0A3L6S547 1.80E-11 93.1 NA NA

    15561

    AATTCTTGTCTCACTTTTTTGCAGGGCTGGCAGCG

    CAAATTGGATCCAGATTACAATGTTATGAAAACATTACAGACTCTACTTTTCAAAGAAGACTGGGC

    Mediator of RNA

    polymerase II transcription subunit 7

    A0A0E0KW91 2.20E-11 96.3

    regulation of transcription by

    RNA polymerase II

    NA

    35405

    AATTCGGCGGCTGCGGAGGCCGCCCCAACGCCGA

    CGAGCATGGGGTTGCGACCGCGGGAGAGGATGTCAGCGATTCGGCGGCAGTTATCCTCCCCTGCTCC

    Protein DWARF 53 Q2RBP2 2.40E-11 93.5 protein binding GO:0005515

    32666 AATTCTCCATTCTCGGCCCTATGCGGTCGGAGATATGCATTGATTGGCTGCATACATGCGATTGTAAAA

    GCTATGATACCAATTCTAGCGTGTTTGGATAT uncharacterized protein A0A287XV68 3.30E-11 84.4

    oxidation-reduction process

    GO:0055114

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    17

    33000 AATTCATACCTTTTCAGGCTAAGAACTTCATAGTTTTTCCGCAAATAATCTGCATGCTTAGTAAGAGCG

    TCCTGGGCATAATCTTTGGCTACAGTTCGAAT

    5'-3' exonuclease A0A3L6FDQ9 4.40E-11 87.5 exonuclease

    activity NA

    17452 AATTCTCTCAATTTGATCTCCTCTTCCTTGGTAGGAGCCATCTTTAGCAAGGTCTCCAGCAATTCTGCTC

    CAAAGTTGCCTGTGTTACCTGCAGGACAAAC

    Formin-like protein NA 4.50E-11 87.9 NA NA

    33450

    AATTCTGATTGTGCAGGATTTAATTGACATGGAC

    ATGGAAGATGAACGGTCTGGGAGAATGGATGAAATTCACCAACGACTCCATTCTGCTTATTGCCAGT

    Hyperosmalolality-gated

    Ca2+ permeable channel 2.1 A0A097NUT4 6.30E-11 93.1 NA NA

    25104

    AATTCTCTGTATATGTGCATGGAGTGGGGCGTGG

    CGATGGAGGTCGGCGACGATGTGCGGCGTCACGTGGTGGAGAGCAGGATAAGGGAGGCCATGGCCGG

    uncharacterized protein A0A3B6AR37 6.40E-11 81.3 transferase

    activity GO:0016758

    22770

    AATTCATGGTTCACCCACTTTCTAAGGCTCAGCTC

    CTCGTTGAACATGGTGTCGGTGGGCTTCCTCCCCGTGATGACTTCAAGAAGCATTATCCCGTAGCT

    Putative LRR receptor-like

    serine/threonine-protein kinase

    A0A1E5WK78 8.50E-11 87.1

    integral

    component of membrane

    GO:0016021

    24077

    AATTCCCGGCCATACAATTCAGAGATATTGTCAC

    GGCGACAAACAACTTCTCAAGTACATGTCTGATCGGCCGCGGAGGTTTCGGCAAAGTTTACAAGGTA

    uncharacterized protein A0A3L6T804 8.60E-11 81.3 recognition of

    pollen GO:0048544

    30664 AATTCGGTAGCTGGGCTGCCATGACGGCACGTACCTTGCCGGCCTTTCCTGGTCTGGCCTTCCTTCCTG

    CAGCTGTTGTCCCATAGGTGGGCCTCGTACCT Os06g0658000 protein A0A0P0X020 9.90E-11 85.2 NA NA

    39055 AATTCTCAGGACAAGATGGCGTGTCGACCATCGAGCATATAAGCCAGTTCCTGGCTCAGTGCGGGGAGGCATCGACTGAAGATGCGCTGAGGGTGAGATTC

    retrotransposon protein Q75HS0 3.00E-10 87.5 DNA

    integration GO:0015074

    14390 AATTCTGCGAACGCCAGGGCGCCGTACTTGTTGCCGAGCATGCCGTGCAGCTTTATGATGGTCTCCTCC

    TCCTCGGCGGTGAAGTTGCCGCGCTTGAGGTC

    Myb-related protein Zm1-like

    NA 4.00E-10 96.4 DNA binding NA

    25013 AATTCACTCTCTGATAGTGTGTCCAATTTGACGATGGATGATGCTACTTCAAACGCCGCACCTGGTGAA

    AATGGGAACGGTGTGGCAGGATCCTGATTGTA uncharacterized protein C5XZU7 5.60E-10 87.1 actin binding GO:0003779

    25040 AATTCGGGCTCACCTTGAGCTCGGGTAGGAAGTCGGTGAGGTGCGGGACGTCCTCGAGCACGTAACCG

    CCGCAGCCGCTGGCGAGCTTCTTCTTGGCAGAC

    ATP-dependent 6-phosphofructokinase

    C0PCM8 7.60E-10 92.6

    fructose 6-phosphate metabolic

    process

    NA

    22453

    AATTCGAGAAGGAACGTCGTACTTGTGGGAAGCG

    ACGTGGAGCTCCTCGTTCTTGGAGCCTTTGAGGTTCTCGGAGCCGAGCTTCACGAGGAAGGAGCGCC

    SNARE-like superfamily protein

    NA 7.70E-10 100

    retrograde

    vesicle-mediated transport

    NA

    41687 AATTCAAGCCGAAGCTTTCAGACTTTGGCCTGGCGAGGGAGGGGCCAACCGAAGGCAGAACACACGTCTCCACCGCGGTAACTAACAACACGAGATCTCCT

    uncharacterized protein A0A0Q3JIL9 1.40E-09 100 protein kinase

    activity GO:0004672

    28458 AATTCCCGAGGTTCAACTGAGGCAATGGCGGGCGAGCAGGTGCACGTGCTCTCTGCGCTGGACGGCGCCAAGACGCAGTGGTACCACTTCACGGCCATCAT

    uncharacterized protein NA 1.90E-09 96.2 NA NA

    4621 AATTCCTCATGCTCGAGGGCGAGGACGGCGAAGGGGGCTACTACCCCGAGCTACGCTGCTACGACGGGCAGTACTACTACGTGCAGGAGCAGCAGGAGGAG

    uncharacterized protein A0A0E0KGX1 2.00E-09 75 NA NA

    9868 AATTCTATTATTTCGGCAAGGGAACGAACTGGAGAGTAAGACAAATCTGACAAATAAGCGTTCAGGCT

    uncharacterized protein I1IVI9 2.00E-09 96.7 NA NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    18

    TAACTTGAACTCTGCTAATAGAGCAACCAGCTC

    34818 AATTCCACTTTGACAACCTCAAGAAAGTATCTAT

    CACTGGATTCTGTTCCTCCAAAAGCTTGATTGAGCTAACGGGTCAAATTCTTAAGACTTCCAAGTCT

    uncharacterized protein A0A0A9RTP3 2.70E-09 81.8 NA NA

    60433 AATTCCTACACTTGCCGTGCCAGCAACCAGAACACCCGTTAGCTCCGATGGATGTGGTTGCTACATGTT

    GACTAACAGAGTCCATGTCTACCCGCGCCACA

    uncharacterized protein A0A0A8YPK1 2.70E-09 76.7 RNA binding GO:0003723

    31873 AATTCACGTCAACAAAGGTGGTACCTTTCCCAACTGATCGAAGAGCACTGAGGGGCTGCCATAGAGCT

    GAGAAGGTGATTCCGATGCTGAACAAGTGGACC

    uncharacterized protein A0A0A9NLR2 3.00E-09 100 integral

    component of

    membrane

    GO:0016021

    60473 AATTCTTAATCAACTAACAAGTAGCTGGTTCCAC

    ATCTCCACGGCTTCTTGTCTCACCTTCTTCTTCCTC

    CAGTACCCACTCATAACAACATCCCATGTTT

    uncharacterized protein A0A2S3HTJ6 3.60E-09 82.8 NA NA

    29577 AATTCCATCAGTTGAAGGGGCAGCATGACAAGCTCTTGAATTGACTCTTTGATATCATCTAGAGATCCA

    ATGTCATCAAATGTCACTCCTATTTCACCAGC

    Putative AAA domain-containing protein

    C24B10.10c

    A0A199W7S5 3.60E-09 86.7 NA NA

    37250

    AATTCTATCCAATCGGTATTTGCAGTGGCGGTGTG

    TCAATGCACAGGCTGATGCTGCCCTTGCTGCGCAGAAGCTGACTGTTGAGGTGAGTATCTGCATTC

    uncharacterized protein A0A2T7C0P8 3.70E-09 92.9 NA NA

    147

    AATTCTAATTCTTACATGGCGTGGCTCGACAGGC

    AGCCGGCGCGTTCCGTGGTGTATGTAAGCTTCGGCAGCCGTAAGGCCTTGGCCAGGGAGCAGATAAG

    Glycosyltranferase A0A0E0A8A8 3.70E-09 75.8 transferase

    activity GO: 0016758

    5622

    AATTCTCATTCTCCTCCTCCTCCCCCTCCTCTTTGT

    CCTCGTTCACATTCTCCAAAGCCTCCAAATCAGGCGGCCGAGGCGACGGTGGGGCAGGTACCGCC

    uncharacterized protein A0A3L6QR23 3.70E-09 81.8 nucleic acid

    binding GO:0003676

    41751

    AATTCCGAGCGATTTCACACAAGTCGCATGAACT

    CAGCTTCCAAAGCTGCCAACAGGAACAAGCAAAGTAAGCAGATCTGTGTGGCCAAGAAATGGATCAC

    uncharacterized protein A0A452YWY3 4.90E-09 63 deaminase

    activity GO:0019239

    27631

    AATTCTGCGCTCGAGACCATTGCTGAGGAGGGCG

    CCGCGGTCTCTAGTTGGGCCTCGGAGTACCCACCCAACATGCTCTTCTATGCGGAGTACCCTGGTTG

    protein transport protein sec16

    A0A1D6QV04 5.00E-09 73.2 COPII vesicle

    coating GO:0048208

    34161 AATTCCGGGTAGTCACGCCGGAAAGCATCTTCCCGTTCCCAAGTGGCTTCCTCCTCCGAGTGATTCCGC

    CATTGCACCTTGACGAACTTGATCTTGCGACT Retrotransposon protein Q7XE96 6.70E-09 68.8

    DNA integration

    NA

    65948 AATTCTCAGGTACATTCATGGAACAATTGAAATGGGACTGAAGTTTGTTAAAGATAGCTCCCTGCTAG

    TTAGTGCTTTTTCTGATGCAGATTGGGCTGGTT retrotransposon protein Q2QY49 6.80E-09 75.8

    nucleic acid binding

    GO:0003676

    21937 AATTCCTTACGGTCACGGTGATCTCGTGGCGTCGGCGGTACGCCTCCGTGGAAGGATCATCGGGAGCTGCAGAAACGACAGGAAGAGGGTGGTGGTGCGAG

    DEAD-box ATP-dependent RNA helicase 40

    A0A1E5VF87 9.20E-09 78.8 ATP binding /

    helicase activity NA

    41723 AATTCCTGAGGTGGCTACGGGGAAGGAATCTCTCGAGCGACGACCGCATAATGCGCCTAAAAGAAGGGTACTCTTTCATCATGTTCTCCAGTCAACTCTTT

    Ubiquitin-specific protease family

    A0A1D6Q0A7 9.30E-09 92.3 peptidase activity

    NA

    47369 AATTCCTCACCATCATCTCACTGTTATTGTTGAACGATTCGTTGAGAGTGTTCAGAAGGTTCAGGTCCT

    TGGTCGAGGCTCCGATCTCGTCCTCGAGGACT

    transcription factor bHLH61 A0A1E5VQ23 1.70E-08 75.8 protein

    dimerization

    activity

    GO:0046983

    34096 AATTCTCACTTCCTGCAGCACTGCCTTCCTTTTCT

    GATTAGAGCTCGCTGTTTCTGCAAGTGAGTTCTCA

    TCTGTCGCATTGTTATCACAACCATTTCTAT

    uncharacterized protein C5WZ78 1.80E-08 75.8 NA NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    19

    37576 AATTCTATGATGGATAATGGACAACCTTTTTGACATCTTTGGAAGAAACTAAGGGCCTTGCGGAATCA

    TGTACGCAAACAAGTTCCGAATTTCTATCAATT

    uncharacterized protein I1HU38 2.20E-08 92.6 isoprenoid

    biosynthetic

    process

    NA

    5202 AATTCCGAGTGCCAAGCACGACCCTCGCTAATGGGATACAAAGGGACTGCTTCCTGTTCATCGTGCCC

    AAGTCGTACCTAGAGAAAAACAGCAAAATCTCT

    uncharacterized protein A0A0A9H6B2 2.70E-08 75 NA NA

    13104

    AATTCTTCAGCTTCAGCGATTATTTGAGCACGTAG

    CTCCTTCTCCTTCCGTTCTTTTGCCTCAAGTTCCAAAGCATTTTTCCTGAAACCATTGCGACAATT

    Clathrin light chain A0A287JMT4 5.00E-08 89.7

    intracellular

    protein transport

    NA

    8288

    AATTCCTTCTCCTCCCCCGCCGCGGCGAACTCGAG

    CCGCCCTGGCCGCACGTCCACCGACACGCCGTGCGGCTCGGTGACCCTCGCAACGTACTCGACCGG

    uncharacterized protein A0A287RQV0 6.00E-08 75.8

    serine-type

    endopeptidase activity

    NA

    30358

    AATTCAGTGTATGTTATGATCTCAACTGAAGCAG

    GGATCTCATTTCCGTCACCGCCTCCACCGACTGTTGGTTCAGATTGAAGATTTATCTGCTCATCATC

    uncharacterized protein A0A2S3ILP0 6.10E-08 74.3 NA NA

    189

    AATTCACCGTCCAAACCATCTCTCATGGATCGAC

    GACTGGTACGAGACCAAGACCAGCACCAGCCCCAGCGCAAGCGCGACACCCCACGGCGACGACCCCG

    uncharacterized protein A0A498JNU3 6.20E-08 75.9 NA NA

    30569 AATTCGTAGGAGAGGTTGAGCGGCGTCCAAACGGACTCGTTCATGACGTCGCCGAATAACCCGCTGCCGTCCTCCTTGAGCGGCGACGCGGCCACCACCGA

    Anthocyanidin reductase-like

    C5XDT9 1.10E-07 78.8 catalytic activity

    GO:0003824

    16261 AATTCCTCATGGTGTCCATCCAGTGACACGATCGTGTCGTTTGCCGAGAAGATGCTGAAATTGGAGCAG

    ATGGTGGAGAAGATGACCCTGGAGGGCCTCGG uncharacterized protein NA 1.50E-07 76.7 oxidoreductase NA

    56311 AATTCATCTTCGGCCTCATCTTCAGGGAAAACCAGCTCGTGGAGACGGACCCGCTCCTCAACAAGGTCGACGGAGCGACGGCGCTCCGCAGCGCCATCCCC

    uncharacterized protein A0A2S3IGM9 1.90E-07 81.5 NA NA

    55079 AATTCAGTCAACAGGAGCAAGTAGGTACCCTGTTTCCTCGGTCGATGAACTTCATGGCCACCAGCTCCC

    GCGTCTCCTTGTTCCGCATCAGCTTGGCCACT

    Serine/threonine-protein kinase SAPK5

    Q7XKA8 4.00E-07 92

    signal transduction of hyperosmotic

    response

    NA

    2594 AATTCTATGGGTATTAAAATATTGAGGCGTATGGTGATTCACTTTTAGTCGTGCAGCAAGTTGCCGGTA

    ATTTTCAATGCCTCGATGGTTCTCTTAATGCC

    protein L0P3P1 4.00E-07 76.9 nucleic acid

    binding GO:0003676

    58555

    AATTCCGTGAATAGAAGGGGATTTTCCACCTTCC

    GTTAACGCATATGGAGCAGCAGGAGGGGAGGTTGGATCCCTCGCAGAGCGCGCAGCTGCTGCCCCGT

    DNA-directed RNA

    polymerase II protein A0A1D6IKB5 4.10E-07 86.4

    RNA

    biosynthetic process

    GO:0032774

    36280

    AATTCTGTTATATCTGGCAAGTGGTCCTTTGCGAC

    ATAGAATCAATGTTATATGGTTGTATACTGTTTGTAAAACTTAAACATTGGGATTGTGTCCTATCT

    ATP sulfurylase A0A0A9GXL7 4.40E-07 72.4 NA NA

    21629

    AATTCAGGTGCCTCATATTTCGTTTTGGATTTGAG

    GGACAATCTTGGCGGACTAGTGCAGGTATGTCAGCTATTTTGCTCTCTATCATATGATATCTCTGT

    uncharacterized protein A0A287L925 5.40E-07 82.1

    serine-type

    peptidase activity

    NA

    11901

    AATTCCGGATACCCATGTCGCCTCCTCTTCAGAGT

    GATTATTCCATTGCACCTTCACGAATTTGATCTTGCGGCTTCGCAGTGTGCGTTCCGCTTCATCAA

    protein Q01MJ7 5.40E-07 69 proteolysis GO:0006508

    24343 AATTCTTGTGGTCTTCGGGGCTGCTCAAGGCTGTGGCGGCCCTGGTGATCCTGATGGCCGGCGTGCTCA

    TCGGGCATGCGGCCAGCACCAACTTGTACTAC uncharacterized protein A0A368QAI2 1.00E-06 72.7

    acetylglucosaminyltransferase

    activity NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    20

    32471 AATTCCTGATACATTTTTTATGGGCTTAGGACAATGCAAGCTCATTAAAGGCCCAGCTTGATCAGCAGA

    AGGGTGTAGTTGAAAATTTGATTTCAAACACC

    Probable membrane-

    associated 30kDa protein Q8S0J7 1.00E-06 95.8

    host-virus

    interaction NA

    23585 AATTCTATGCTTATTCCGTTATTCCATTGGGTGCCTTTGTGCAGTCACAAGAAGGCATCGAAGGGTCAT

    ACAAATGGCCACCTTCACTTTATCTGTACGCG

    uncharacterized protein A0A0A9ENA8 1.00E-06 83.3 NA NA

    22278

    AATTCTCGGCGCCGTACGCACCTCAACAAAACGA

    CGTTGCGAAGAGCAAGAATTGCACCCTCATTGACATTGCTCAACAATACAAGACCTCTGACCGGTTT

    retrotransposon protein Q10IC4 1.00E-06 64.9 zinc ion binding GO:0008270

    30638

    AATTCGTACCTCCTTGGAAGCATTTGGGGCATTG

    AATCCGCCCCCATGTTCTGTGGGTTCCAGGCGCCCATGGATGATGAGGCCGTGACAAGCTTGCATCG

    uncharacterized protein Q651N2 1.10E-06 89.5 NA NA

    14606

    AATTCGAGATGAAGGATTTAGGAGTAACAAAGA

    AAGTTTTTGGCATGAAAATTCATAGAAGCATGACAAGTGAGAAGATGTACCTTAGTCGACAAGGTTAT

    protein Q7XTM9 1.40E-06 63.6 nucleic acid

    binding GO:0003676

    32038

    AATTCCTGCCACCAATTTCCTCAGCTCTGGACTGC

    TCCTACTGTCTCTCAGGATCACTGCGAGGTTTCTAAAAAGAAGGGGATGTCTGGATATATTGTTTC

    uncharacterized protein B8B5D0 1.40E-06 77.4 NA NA

    38562 AATTCACGGGGATCTACGAACAGGACGCCAGCAGGCGACGCCGTCGTCAAGTCGTCCTCGTTGTCGTCG

    CTGGCATCGCCATTGCCAACGGCAGCACCGAG uncharacterized protein A0A287TQI9 1.70E-06 71.9 NA NA

    2218 AATTCAGACTTGCTCACCTAGGCATTTGGTGCAAAAGGATCAAGGGGATACCACTCGATCGTTAATATTTTCTCCAGTGGCACACCATAGTCTAAAAGGAC

    uncharacterized protein A0A3L6PZU7 1.90E-06 80.8 NA NA

    1826 AATTCTGGTCCAGTTTCGACATTCCAGGTTCATGAATATCTAAGGCCTAAGGTAATCTCTTCCATGCTAA

    GATAAACAGCCAACAGTTCTTGAGGACTACA

    Serine/threonine-protein phosphatase 2A 55 kDa

    regulatory subunit B A0A453F0F3 4.90E-06 87.5 NA NA

    1072 AATTCTATGCAGTTTCAACATCTGGACAACAATC

    AATGTGGTAATGGAGTGGAAGAATCAAAGACACTGGCGACTCATAACCAAATTGGAGTTGCTCACGT

    uncharacterized protein A0A1B6QNQ3 6.70E-06 74.1 G-quadruplex RNA binding

    GO:0002151

    5808

    AATTCATGATGCGCAGTGCCAAGATAGTCAGCAA

    CTTCCCTAGCAGCTTTAAGATCTGGAGAACCCTAGAATGAAGAATGAAAGAAAAACTTCATCATACT

    Asparagine synthetase A0A199ULZ1 9.10E-06 95.2

    asparagine biosynthetic

    process /

    glutamine metabolic process

    NA

    3235 AATTCCAATAATTCATTGAAAGCTAAGGAACAATGATTGGCAAGTGGTGGTGGAAAGATTTGAAAAGA

    AATTGACTCATTGGAAAGAAAAGCTCATGTCCT

    protein Q01HC3 9.20E-06 66.7 NA NA

    13852 AATTCTAGAGGTTCAAGCGAAACATCCTCCCTTGAAGCTACTGGAAATAGTTCCTCAAACACCAGTGC

    GCCAAAGGCAGCAAATGCATCTGACGGTTCTGG

    uncharacterized protein A0A0A9DLQ5 1.20E-05 75 NA NA

    13183 AATTCTTCGTCTTTTGTGTATTCTTGCAGGTATCGTGGGAGGAGCTGTACATCAAATCCTTGCTCCGAT

    CCGCCCGCGGCAGCCTGATGGGACCTGCAGCC

    uncharacterized protein A0A1D6M9V6 2.40E-05 90.9 NA NA

    22807 AATTCAGAACTTGGTACTGCCCTCAGTGACAGTGTGTCAGATCTCAATGGAGATTTTCATAGAAATTTC

    AATAATCTTTTGTATGCGAAAGGGTGCCAGCA

    uncharacterized protein K3ZHB9 3.20E-05 57.6 nucleotidyltrans

    ferase activity GO:0016779

    5820 AATTCGAAATGAATGGTTTCTACAACCGCAGGAG uncharacterized protein A0A368SI73 3.20E-05 64.5 membrane GO:0016020

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    21

    AAGCAGCCACGCGTGTCGCACCGTCCATCCCTAGAACACCGCCACGTACCGCCACACCCAAATGTCC

    17004 AATTCGAGTTAGCACTGTCCAGGAGGAGAAGGAATCGGGGAAAGAGCTAAGTTCTCACCTCCTTCTTCT

    TCCGCGCGAGGTTCCAGATCCTCCACGTCATG

    Putative sucrose-phosphate synthase 3

    A0A3L6DDT8 3.90E-05 67.7 NA NA

    25768 AATTCGGCGGCGTTCTTCCCACCGTGGCCGTCGAATACACCAAACAACGCCTGAGAAAGTGAAGAAA

    TGGATAGATTAGTGCGTTTAAAGCAAATTCTAAA

    uncharacterized protein A0A3L6DF17 6.00E-05 70 metal ion binding

    NA

    8446 AATTCAAAGGGCTTACATTTTCCACATATTGGTATGGTACAGGCAAATTTCATGAAGATGCCATTTTCC

    GATAACACCTTTGATGCTGTTTATGCTATTGA

    Cycloartenol-C-24-methyltransferase 1

    Q6ZIX2 8.40E-05 90.5 sterol

    biosynthetic

    process

    GO:0016126

    1249 AATTCCTCCTCGGATTTGGTGTGTCTGACGCGGTTCTTGCGCCAGATCTGAAGGAGATCGCGTCGGTGA

    TCGAGGCCGGCTCGCTGTCCAAGGAGGTCCGC

    26S proteasome non-ATPase regulatory subunit 3

    homolog A

    NA 1.10E-04 81.5 enzyme

    regulator

    activity

    NA

    41793 AATTCGAGATGTCCATGATTGGCGCCATGAGTTTGCTTCCATGATGTCGAGGGCATTCGAGATGTCCA

    TGATTGGCGAGCTTACATTCTTCCTTGGCTTTC

    Retrotransposon protein Q2QVL0 1.50E-04 79.2 zinc ion binding NA

    36528

    AATTCCTCTTTGTTTCTGATACAGGTGTGACAAGA

    ACGGCGATGGGATGCTCACGGAAGATGAGGTCAAAGAGGTTAGCGACTCACCGAAAAGCACATGAT

    uncharacterized protein A0A287M3Y8 1.50E-04 90.5 oxidoreductase

    activity NA

    35598

    AATTCCCATTAGTATTATGTGAACTAGGGGATGG

    GTTGCCCTGGTTCTGCTGCAGCAGTTGAGAGAACCCATGCCAGAATCTTGTGGGTGGAACCTGACTG

    uncharacterized protein N1QWC7 1.60E-04 68.8 NA NA

    31805

    AATTCAGCCAAACTCAGTGCTGGTATTCGAGATT

    GAAGTCCTCAGCGCTCAGTAACTGCGAGTGTGATTCTGTATGGGTCATTGGAATGCTATCGTGCCGA

    uncharacterized protein A0A0A9UMF0 1.80E-04 69.9 NA NA

    31472

    AATTCCACGCTCCAGCTTCGGTTCTTCAGTTGGAC

    AAGCCGCCGTTGGAGAGAGAGTCCCAGCCCCAGACGTAGCCGGCGGCGGCACAGCTCGTCACGTCG

    uncharacterized protein A0A0A9QUC8 2.20E-04 66.7 NA NA

    22649

    AATTCCAACTGGCTCTCTTCAGGAACAGCAGCAG

    GAAGAACTTGTTCGCCGATCGGGTGAGTACCCATTTTATTCTACTCCATGTATAGCAGACCATTATT

    uncharacterized protein K3YZZ8 2.30E-04 85.7 NA NA

    17786 AATTCGCCCAGCGCGATTTCCAGGTGCCGCTCCTTTGGCTCCATGTTGTTTCTACACAACAACAACGCTT

    TCCTTATTAGTAGTAGCACATCATCATAGGT uncharacterized protein A0A368S804 2.60E-04 80 NA NA

    37669 AATTCACCAACCAGGTCGATGGTTTCGTTGCTGATGGCGTCCATCGCGAGGGCGTTGGCCTCCATGGCG

    GTCCACCGTACCGCAAAGGGAATCAATCTGCA uncharacterized protein A0A0A9GYP9 2.80E-04 71.4 NA NA

    20139 AATTCTGGTTCTGATTTCTGCATACATATGTGCATCTGGGGAGCCCACTGATCTGCATTCACATTACCA

    GAGTCCCAACCGTGAGATTCTATTACAAAAAG uncharacterized protein A0A0A9IS59 2.90E-04 78.9 NA NA

    13540 AATTCATGATCTGACGATCACCACCAATAACACAAGCATAAGCACATACCCTGATTGTGTGAACTCCT

    GCATAACAGCGGCAGTCTCTCGTACAAGCTGTG

    Proteasome subunit alpha

    type A0A1D6Q5M1 3.30E-04 80

    ubiquitin-dependent

    protein

    catabolic process

    NA

    70668 AATTCTAAGTTGTCAATTCTGTGGCTTCTGTTCTCCTCAGAAGGTTCCATATAGGGACAATTACTCAAG

    TTCAAGAAACTACAGAGGAGGTTACAACAATG uncharacterized protein A0A2T7CFX0 5.30E-04 76.2

    nucleotidyltransferase activity

    NA

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    22

    1302 AATTCCATGTGCAGGCATCGACCATTCACCGCTTGTGGAGCACCACTCTGCTGCACCGCGCAGCAGTA

    TCAGTGCGTGCACACTCTCCGACTCTCTTTGTG

    BURP domain-containing

    protein A0A3L6T4X2 5.50E-04 69 NA NA

    1723 AATTCCTGCCTTGACATGTGCTTCATCTCCTCCAGCTCCTTCTCATACGTGCTTAACTACACGAGCCAAG

    TCTAGTAAATCAGTAAACACTGACACACATG

    uncharacterized protein A0A453IWN1 6.10E-04 94.4 NA NA

    29809

    AATTCTTAGCTGCAATGTTACCTTGTGCAGGTAGT

    TAGCCGTGTAGATTTGCAAACCGTGTCAGTTTGTGTTGAGACAAAAAGGAAAGTCTGTTTCACTTC

    no hit

    33472

    AATTCGTGGTGGACCAACCGAAACGGAAGCTTGG

    AAGCGTTTTTCCGTGCGGATCCAGGCAAGAAAGATCCGTGTTCGCGACAGCATTCCCCGGGATCGGA

    no hit

    27483

    AATTCCGACTCCTTCGACGCCTGCTTCACTGGCCC

    GCTCGTGTGGGCGCTCCCGCCGCTCCGCGGAGATCATCTGGCAAGGACGCGGCGACGACCTCATCC

    no hit

    74818

    AATTCTATATGAAAATAATCATGATAATCATGTA

    CCTTTTCTTGTTTTCTTCTATAGAAATGGTACAGTAATATTTTGGAAGCTGACAAAACACAACCACC

    no hit

    17330 AATTCTCTATATACAGCATAATCCCATGCTATATTATGCTAAGTTAATCTTTTTTGCCAACCTTCTCTCC

    CCAGCACTTAGTGCCTATGATATTCCTTAAA no hit

    37541 AATTCACCTAGAATCAACGTATTTTAGTAAACGTCTGTAATTGACCCCCGACCTATCAGTCGTCTAAAACATACGCCTCATTCCCACTTTGGGAATGACCC

    no hit

    12720 AATTCTGCTTCTTGCTTGACCACAAAACTAAGGAACGCCCTAGCAAGTGATGCCCAAAGAGGTACTCTTGCGATCCACACGACTTCTGGCAAAGTCAGAAT

    no hit

    95098 AATTCTGATATGAATTGCCATTGTCAGGTTCGTTGCAAACAGTCCACATGAAAATGGAGCTTTGACATT

    GCTTAAAGTTACTACAGTCCAAAGCTGGACCC no hit

    34693 AATTCTTCCGCCGCCACCTGTAAGACAATTCCACGCCAGGGATTCGAGAGCTAAGCTTAAACAATTCGGGTTAACCAATACGAGGACGGTCGCTGTCAAGG

    no hit

    3930 AATTCTTAAAAACGACCGTGAAATGCGTAACTTATGGCTTCGGTCTCTCTCTTGAAAATCGAGATTGTG

    TGGTGTTCAGTGTACCTCAGATCGAAGTTTTT

    no hit

    37447 AATTCAGCAGCATATATGCTCTGCTCTGCGGTTCAAATGGCCACTCACTCGAGGGTGCCGTTGTAGCTG

    GAGGTCACCGTGAAGGAGGAGAAGCCGTTGTC

    no hit

    19532 AATTCGAACGCGATCTTAAGCATCGCTCACTAAGATCATACACAGACACATCTGCTTTTCCCCTCTACC

    TGTTTTATTTGTGTTTTTTTTTTCTCGTTTCG

    no hit

    23454 AATTCCACATTTCTCATACCATCCCTGACAAGGAAAAGACCTCTTTTTCTCAAAGGATGATAAAAGCT

    TCAAGTATGCTGTTAAGTTCAAGACACAACGCA

    no hit

    11636

    AATTCCGCCCTGATTCGGGCGAGACCTACCTCGA

    TCGACGCGGCGCGGCGGCGTCGGATCGGGATCGGGGATGCGGCGCGGGCCCCACGCTCTCGTGGCCT

    no hit

    39710 AATTCCAAACGTCGATACGGTGGGTAGGGTAAAC no hit

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    23

    ATGGAGCGATCCACGACCGATACCTGCACGTTGAAGCTCTCCTCCACCTTGGTGTAGGGCGCCATGA

    13144 AATTCCTATCACCACTGGTTTTATAGTCAAAAACATAAGTTCCTGTTTACCTGAAAACTGAACATGAGT

    ATCTTCTTCCTTGCATATTCGGATGGATATAT no hit

    35715 AATTCATCCATTCTTATTAATGAAATCATCAATTATATTTTCATATTTAGTTTCCTCCAAAATGTGATCA

    CTTTCAACCACTATTGTTGCTAACGCATTGA

    no hit

    4848 AATTCTCAGCGACGTAGATGAGAGAGCCCTGGGGCTGCAGACGTCGAACCAGCCATTCCTGTGGGTGG

    TTTCGCTCCGACGACTCCAGTATCCGTGGGCAC

    no hit

    39950 AATTCTTACGTGGTTGGTCTGGAACGGGCGAGGTGAATTGAATTGCGTGTGTGCGTGCAGATCAACAC

    CTGCAACGGATTCTACTGCGACCAGTTCACGCC

    no hit

    87626 AATTCAATCAAGAAATCAGGGATCGAACTAATAGAATATCCTTCACAATATCAAGTAGCCGCCAAGAA

    CTCATCAAGAATCGATCTTCACATGTAAAACAC

    no hit

    27151

    AATTCTTGTCGTAACATGGCAAAGTAAGGTGAGT

    TCTTGATCTGCAGGTGGCTACCCTTGTTGCCGTCTATGCGAACATCGGCTTCGCTTCGATCAGTTCG

    no hit

    18879

    AATTCTGTTGTGGGCTGTTTCTCACTGTGCAAGCT

    GAATTGCCATTTGTGGTTCAGGTGGAAGCGAAGAAAGCAGTTCCCAGGGACGACCATAGTATCACG

    no hit

    37439

    AATTCAGGGTCACAAGATGATTATAAAGAAATTC

    AAACCTACCTTAGCTACATTGCCCCAGCAGTCTCTTACCATTTAATGAACAATAAGGACCTTGAATA

    no hit

    2336

    AATTCGTGAAGAAGAACCCATCGGCACTAAGAAA

    CATGTCGCTTCCCTACTTGCAGTGAGTAGAGTGGATTATCTGCCCATGTTCAGTTCAAAATTGAACC

    no hit

    36767

    AATTCTGGCCATTGAAGTGGCAGCATGACAAGCT

    CCTAAATTTGACGCCTTGATATCATCCAGAGCGCAGTATCACCAAATGTCACTCCTATTTCACCGGG

    no hit

    17799 AATTCCTTCTTCGTCAATGTCGGCGACGCCTTGCAGGTACTACTGATTTTGGACCTTTTCATGTTTTATC

    TCGATGATTAGCAAATGCACGCATGGAATCT no hit

    72822 AATTCATCCTTTGGAGGAATTAAGATTTGGCGACGCACAACACTTTGAGCTTCAGTCACAAGTATATTAATCATTTACCTATCCATGCACAAAATTAATTT

    no hit

    27740 AATTCCCCTTTGTCTCCTTTGGTAAGTTTGGCACATGTTCATGCATCCATCTGCTAGCTATGCCAAAGGAAGGGACAATACAATCTACCAAATAGGCTGTA

    no hit

    14468 AATTCGCCGTACGAGAACAGCTGGTCGCCGCCAACGAGCTCGGCCAACAACACGTCGTCCATCGCCGTGGACTCACCCCCCGCCGCGGACGCCCAGACGCC

    no hit

    3707 AATTCGAACGCTAGCAGAGCAGCGATCCAGGGG

    AGGAGGAGGTGGCACGAGTTGATTACGAACCTGG

    CTGCGGATAGTGGCGTCGGCGCCCTCGACGGCGC

    no hit

    31217 AATTCATGGATACTCAGACCAACCATAATGACTGAAATTGTCTTATCAATAATTCTTTGTGATAGGCTG

    no hit

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    24

    GGGAATTAAGAGACCGAGAAATGGAGCTGAAG

    23036 AATTCCAACTACTGCTCTCACTGAACCTTTTCTCTGTATACGTTTGTAGATTACTAGTTGGCTGGAATCA

    GCGCCCAAGATATCAACTCGTGTTCCTGAAC no hit

    29902 AATTCTGTGGAACAGATCTTTTGCATTTTCAAACATTCCATGTTCAACATATGACCTCAACATGAATCAT

    CATGTGGCATGTCACATCCATTAGGTGAACA

    no hit

    5371 AATTCTTGATCAGCGTATATTTGTTTGGTTCTGACTCCCATTTCAAATCCCCCTCGGGAAGATCCTCGTG

    AGGAAGGCCAAGAATCGGTACACATGGATAG

    no hit

    3658 AATTCAGGCTCAACACGACCACTCGGGTGGACACCGAGGATAGATTGCAGGGGATGAGATGTGTTAGC

    TCCAGCTTCCACCATGGCGGCCGCTGCCTCCGG

    no hit

    44159 AATTCCCCATTGACACAACAAACATCAAGGTAATTATACTGGTATGTATACTAGTTTGGTGATAATCAA

    TGCAACGGATCTTCATATCATGCATCTTCCTG

    no hit

    77255

    AATTCGAGGTTGATCACCATGGCCTTTTCCCTAGC

    TGCATAATTAATCTTCGCAAATTACAACACCAAAGTTTTGGGTCTTCTTGGTTTTCTCGCCAACAA

    no hit

    30235

    AATTCTCTTATGTATTGTAGAATATACAATCCTAA

    GCAATGCGGGAAAGCATAAACTCACCTCCTTTGACGGTACATATATGTAAGGAATGTTGGCTTCCT

    no hit

    30476

    AATTCTACCGTGATGCGTCTAGTCTCCAATATGGG

    AAGGTACGGCAACAGTGCCATCGCTTAATAGATCTTTTGATGTTTATGTAAGGTCCTCATGGAAAG

    no hit

    39357

    AATTCCATTCGCTTATAGGACGGGTCTCATATCTG

    ATGATATCTACAAGGTAAGACTGGAAATTTTGAATAGTATCCTAAACTGATGTTTGTATACTCTGG

    no hit

    16713

    AATTCTATCTATAAAAGCCGCATCAGGTGAGGTC

    GAGTGGCGGCGGAGAAGTCCCGAGGCGCACAAACGGGAGCCGTCGCTGCCAACGGAAACGGAAGCTT

    no hit

    19966 AATTCGGATCTCCACCACATTCCAATGCGTTCCCCGACCTAGAGAATAATCGGTGTTAGAAATGGAAAA

    TGATTCAGAAACATACGTATGGCATCTAAGAT no hit

    13763 AATTCTGCTGTTGAACAGAATAAGAAGCTTCGTGAAGAACTGGTCAGTGTTTTTTGGCTTATTTTTCCA

    ATAGTTCTGGGCTCTAATGAATAAGTTACTTT no hit

    35605 AATTCTATTTTGCGCTGAAATCAAAGATTCTATCAGTCTCATGAGGACGATGCGGGCCACACGGAAAAC

    GGCAGCGGAATGTCCTTGGCCACGGCGGCCAG no hit

    18216 AATTCGGGCCCTACTATTTCATCGCGTCACCGTATCCATTCCCAGGTTGATAACTCTGACACATGATGTT

    TGCAAGGTTTTGATCGGGTTCAGTCTAAATG no hit

    30183 AATTCACGCTTCCCAGGTAAGCAGATTATTTTTTGCCCGTTTGGATGGGATTACCACTTATTTCGCTCGG

    TAAGCCGCTTATAAGCAGAATCAAACAGACC

    no hit

    35409 AATTCCTCCTCTGCAAATTATACACTACACATAAATTTCTGCAAATACATCCAACCTACAGACATTTTCC

    TGACCTTTAAAGTCGAACCCGTAACCAGTCT

    no hit

  • History & adaptation on the CO Plateau – Massatti & Knowles 2020

    25

    24301 AATTCCTATTGTGGCTGGTGCCACGGCCAACGGCTACACCTGATAAAAGGGGTAAGCCTGTGGCGGGT

    GTGGGTGGAGGGCATGTTGTACCGCCAAAGCTG

    no hit

    94263 AATTCTTACCCGCAGCCGATCTTATTCTGGTGAGAGTTCGGTGGTATTTTTTTCCTGTGTATTCATTTCCA

    TAGAATGTTTCCCTCACTCACCGGGATCGG

    no hit

    35900

    AATTCTCTCAGCGTAGCTATTGCATTCAATTACAG

    TAGTGCTGAGAAAATACTTACAGCTCAAGCAGCAACTGGCACAGGTTCAGGGACCCTGGAATTTCT

    no hit