Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting...

54
S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong Lin, and Ji-Chang Xiao* * Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China Tel: +86-21-54925340 Fax: +86-21-64166128 Email: [email protected] Content 1. General information ...........................................................................................2 2. Evidence for the proposed mechanism ..............................................................2 3. Screening reaction conditions of dehydroxy-amination of alcohols ..................4 4. General procedure for dehydroxy-functionalization of alcohols .......................4 5 The synthesis of 18 O-1a .....................................................................................15 6. Isolation of Ph 3 P=O..........................................................................................17 7. Inversion of configuration ................................................................................17 8. References and notes ........................................................................................20 9. Copies of 1 H NMR, 19 F NMR, 13 C NMR and 31 P NMR spectra .....................22 Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2018

Transcript of Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting...

Page 1: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S1

Supporting Information

Dehydroxylation of alcohols for nucleophilic substitution

Jia Chen, Jin-Hong Lin, and Ji-Chang Xiao*

* Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China Tel: +86-21-54925340 Fax: +86-21-64166128 Email: [email protected]

Content

1. General information ...........................................................................................2

2. Evidence for the proposed mechanism ..............................................................2

3. Screening reaction conditions of dehydroxy-amination of alcohols..................4

4. General procedure for dehydroxy-functionalization of alcohols .......................4

5 The synthesis of 18O-1a.....................................................................................15

6. Isolation of Ph3P=O..........................................................................................17

7. Inversion of configuration................................................................................17

8. References and notes........................................................................................20

9. Copies of 1H NMR, 19F NMR, 13C NMR and 31P NMR spectra .....................22

Electronic Supplementary Material (ESI) for ChemComm.This journal is © The Royal Society of Chemistry 2018

Page 2: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S2

1. General information

Solvents and reagents were purchased from commercial sources and used as received unless otherwise noted. 1H, 13C, 19F and 31P NMR spectra were detected on a 500 MHz, 400MHz or 300 MHz NMR spectrometer. Data for 1H NMR, 13C NMR, 19F NMR and 31P NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, coupling constant (J) in Hz). Mass spectra were obtained on a GC-MS or LC-MS. High resolution mass data were recorded on a high resolution mass spectrometer in the EI, ESI or DART mode.

2. Evidence for the proposed mechanism

Usually, Ph3P would readily undergo alkylation with alkyl iodides to give alkylphosphonium salts. Surprisingly, Ph3P was almost completely transformed into Ph3P=O, and neither monophosphonium salt (Ph3P+CH2CH2I I-) nor diphosphonium salt (Ph3P+CH2CH2P+Ph3 2I-) was observed in the dehydroxy-functionalization reaction. Furthermore, diphosphonium salt (Ph3P+CH2CH2P+Ph3 2I-) could not promote dehydroxy-functionlization, suggesting that the alkylation process did not occur. NMR spectroscopy was then used to monitor the reaction of Ph3P with ICH2CH2I. Mixing Ph3P (0.2 mmol) and ICH2CH2I (0.2 mmol) in DMF (2 mL) at room temperature would immediately led to the rapid evolution of gas and the complete conversion of both ICH2CH2I and Ph3P. 1H NMR analysis of the reaction mixture revealed that ICH2CH2I was converted into ethylene (CH2=CH2) (Figure S1). Ph3P was transformed into two new species (A and B), the signals of which detected by 31P NMR spectroscopy appeared at 25.5 ppm and 11.9 ppm, respectively. The signal at 25.5 ppm was assigned to Ph3P=O, as the intensity of this signal in 31P NMR spectrum was increased by external addition of Ph3P=O into the system. Intermediate B is so fragile that the attempts at its isolation or further characterization were unsuccessful. Its structure is proposed to be a pentacoordinate species (Figure S1). Ph3P=O should be formed from this species with the simultaneous formation of Vilsmeier–Haack type intermediate C. After intermediates A and B were generated, the subsequent addition of phenylbutanol and sodium phenolate gave the desired product in 28% yield, indicating that both species B and C are key intermediates of the reaction. This low yield is because these two species are unstable and would readily undergo side reactions in the absence of substrates. If substrates are added before intermediates B and C are formed, high yields would be obtained, as shown in Tables 1 and 2.

Page 3: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S3

- CH2=CH2PhONa

5h (28%)aN

Me

Me H

O PPh3I

I

+ NMe

Me H

IIB (11.9 ppm) C

- Ph3P=O (A)

Ph(CH2)4OHPh(CH2)4OPhPh3P+ ICH2CH2I

DMF

Figure S1. The reaction of Ph3P with ICH2CH2I in DMF. aThe yield was determined by 1H NMR spectroscopy.

The reaction of Ph3P with ICH2CH2I to furnish intermediate B occurs so fast that no direct evidence could be collected to elucidate this process. Fortunately, we found that the conversion in chloroform proceeded slowly. Therefore, the reaction in CDCl3 in a NMR tube was monitored by 31P NMR spectroscopy. New phosphorus species D and E were detected immediately after mixing Ph3P and ICH2CH2I (Figure S2-A). They were too unstable to be isolated for characterization, and thus their structures were determined based on their 31P NMR signals. The formation of intermediates D and E should be because of a strong P-I halogen bond.1 In intermediate D, the phosphorus atom carries slightly positive charge, therefore a downfield shift was observed in 31P NMR spectroscopy. Intermediate E is close to a pentacoordinate phosphorus species, thus its signal would move upfield.2 This intermediate could be either a linear or a cyclic structure, depending on the interaction of terminal Ph3P and CH2I moiety. Intermediates D and E were slowly transformed into two new species F and G, with 31P NMR signals appearing at +45.8 ppm and -18.7 ppm, respectively (Figure S2-B). F and G were determined to be Ph3PI2 and [Ph3P+I I-], respectively, based on the reported phosphorus signals of Ph3PI2

3 and [Ph3P+I I-]3-4.

Ph3P + II

(1 equiv) (1 equiv)Ph3P I

CDCl3

Ph3P I

rt

I

D

P PhPh

Ph

I

I

I-

Ph3P

Ph3P

Ph3PI2Ph3P I

F

D

- CH2=CH2 Ph3P + I2

G

GE

E

IIPPh3

Ph3P I

In

Figure S2-A

Figure S2-BI-

F

-30-25-20-15-10-505101520253035404550f1 (ppm)

1

2

Figure S2. The reaction of Ph3P with ICH2CH2I in CDCl3.

Page 4: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S4

3. Screening reaction conditions of dehydroxy-amination of alcohols

+

Ph3PICH2CH2IDMF, T, t

Ph NHMePh

OHPh

N PhMe

3i

Entry Ratioa T (oC) t (hour) Yield (%)b

1 1:3:1.2:1.2 r.t. 10 h 662 1:3:1.2:1.2 50 10 h 633 1:3:1.2:1.2 80 10 h 624 1:3.5:1.2:1.2 r.t. 10 h 685 1:4:1.2:1.2 r.t. 10 h 756 1:4:1.1:1.1 r.t. 10 h 557 1:4:1.3:1.3 r.t. 10 h 708 1:4:1.5:1.5 r.t. 10 h 729 1:4:1.2:1.2 r.t. 2 44

10 1:4:1.2:1.2 r.t. 4 4511 1:4:1.2:1.2 r.t. 6 56

Reaction conditions: 1 (0.5 mmol), 2, Ph3P and ICH2CH2I in DMF (5 mL). aMolar ratio of 1:2:Ph3P:ICH2CH2I. bDetermined by 1H NMR with the use of anisole as an internal standard.

4. General procedure for dehydroxy-functionalization of alcohols

4.1. General procedure for dehydroxylation of alcohols to form C-N and C-S bondsAlcohol 1a (1.0 equiv, 0.5 mmol, 92.1 mg), triphenylphosphine (1.2 equiv, 0.6

mmol, 157.4 mg) and anhydrous DMF (5.0 mL) were added into a 10 mL sealed tube under a N2 atmosphere. 1,2-Diiodoethane (1.2 equiv, 0.6 mmol, 169.1 mg) was then added and the resulting mixture was stirred for around 1 min until the 1,2-diiodoethane was completely dissolved. Amine 2a (3.0 equiv, 1.5 mmol, 181.8 mg) was added subsequently and the mixture was stirred at room temperature for 10-12 h. Dichloromethane (20 mL) was added and the resulting solution was washed with water (20 mL x 3). The organic layer was dried over Na2SO4. After filtration, the solvent was removed by concentration under reduced pressure. The residue was subjected to flash column chromatography to afford the pure product 3a.

Ph

N PhMe

1-([1,1’-biphenyl]-4-yl)-N-benzyl-N-methylmethanamine (3a):5 96%; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.64 – 7.55 (m, 4H), 7.49 – 7.38 (m, 6H), 7.38 –

Page 5: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S5

7.31 (m, 3H), 7.30 – 7.23 (m, 1H), 3.58 (s, 2H), 3.57 (s, 2H), 2.24 (s, 3H). LC-MS (ESI) Calcd. for C21H22N [M+H]+ 288.2; found 288.2.

Ph

NHPh

N-([1,1'-biphenyl]-4-ylmethyl)aniline (3b).5 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 90%; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.57 (t, J = 7.0 Hz, 4H), 7.46 – 7.39 (m, 4H), 7.33 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.8 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.65 (d, J = 7.9 Hz, 2H), 4.36 (s, 2H), 4.05 (s, 1H).

Ph

NH

Me

N-([1,1'-biphenyl]-4-ylmethyl)-4-methylaniline (3c). 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 94%; white solid. m.p. 122 – 123 oC. 1H NMR (400 MHz, chloroform-d) δ 7.62 – 7.52 (m, 4H), 7.49 – 7.39 (m, 4H), 7.39 – 7.29 (tt, J = 7.4, 1.6 Hz, 1H), 6.99 (d, J = 8.0 Hz, 2H), 6.59 (d, J = 8.4 Hz, 2H), 4.35 (s, 2H), 3.94 (s, 1H), 2.24 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 145.9, 140.9, 140.1, 138.8, 129.8, 128.8, 127.9, 127.4, 127.2, 127.1, 126.8, 113.0, 48.3, 20.4. IR (neat) ν = 3392, 2924, 2852, 1612, 1520, 1406, 1928, 1156, 1080, 826, 815, 771, 727, 697, 512 cm-1. HRMS (EI) Calcd. for C20H19N [M]+: 273.1517; found 273.1517.

Ph

NH

Cl

N-([1,1'-biphenyl]-4-ylmethyl)-4-chloroaniline (3d). 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 82%; white solid. m.p. 124 – 125 oC. 1H NMR (400 MHz, chloroform-d) δ 7.68 – 7.51 (m, 4H), 7.50 – 7.38 (m, 4H), 7.35 (t, J = 7.3 Hz, 1H), 7.12 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 8.7 Hz, 2H), 4.34 (s, 2H), 4.09 (s, 1H). 13C NMR (101 MHz, chloroform-d) δ 146.6, 140.8, 140.4, 138.0, 129.1, 128.8, 127.8, 127.45, 127.35, 127.1, 122.2, 114.0, 48.1. IR (neat) ν = 3383, 3026, 2843, 1594, 1494, 1400, 1339, 1157, 1077, 1006, 815, 762, 689, 669, 505 cm-1. HRMS (EI) Calcd. for C19H16NCl [M]+: 293.0971; found 293.0963.

Ph

NPh

Me

N-([1,1'-biphenyl]-4-ylmethyl)-N-methylaniline (3e).6 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. quantitative; white solid.

Page 6: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S6

1H NMR (400 MHz, chloroform-d) δ 7.63 – 7.52 (m, 4H), 7.44 (t, J = 7.6 Hz, 2H), 7.39 – 7.28 (m, 3H), 7.29 – 7.17 (m, 2H), 6.80 (d, J = 8.0 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 4.59 (s, 2H), 3.06 (s, 3H).

Ph

N3

4-(azidomethyl)-1,1'-biphenyl (3f).7 NaN3 was used as the nucleophile. quantitative; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.65 – 7.52 (m, 4H), 7.49 – 7.42 (m, 2H), 7.41 – 7.31 (m, 3H), 4.38 (s, 2H).

Ph

N

N

1-([1,1'-biphenyl]-4-ylmethyl)-1H-imidazole (3g).8 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 78%; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.61 – 7.50 (m, 5H), 7.43 (t, J = 7.4 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 7.8 Hz, 2H), 7.10 (s, 1H), 6.92 (s, 1H), 5.14 (s, 2H).

PhHNPh

N-(4-phenylbutyl)aniline (3h).9 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 71%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.25 (m, 2H), 7.25 – 7.12 (m, 5H), 6.68 (t, J = 7.1 Hz, 1H), 6.58 (d, J = 8.1 Hz, 2H), 3.57 (s, 1H), 3.12 (t, J = 6.9 Hz, 2H), 2.66 (t, J = 7.4 Hz, 2H), 1.80 – 1.59 (m, 4H).

PhNMe

Ph

N-benzyl-N-methyl-4-phenylbutan-1-amine (3i).10 4 equiv of N-nucleophile was used as the nucleophile. 59%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.34 – 7.28 (m, 4H), 7.28 – 7.21 (m, 3H), 7.20 – 7.13 (m, 3H), 3.47 (s, 2H), 2.61 (t, J = 7.5 Hz, 2H), 2.38 (t, J = 7.2 Hz, 2H), 2.17 (s, 3H), 1.73 – 1.48 (m, 4H).

PhHN

Me4-methyl-N-(4-phenylbutyl)aniline (3j). 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 74%; white solid. m.p. 32 – 33 oC. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.25 (m, 2H), 7.22 – 7.11 (m, 3H), 6.98 (d, J = 8.0 Hz, 2H), 6.52 (d, J = 8.3 Hz, 2H), 3.44 (s, 1H), 3.10 (t, J = 6.9 Hz, 2H), 2.65 (t, J = 7.4 Hz, 2H), 2.23 (s, 3H), 1.79 – 1.58 (m, 4H). 13C NMR (101 MHz, chloroform-d) δ 146.2, 142.2, 129.7, 128.4, 128.3, 126.4, 125.8, 112.9, 44.2, 35.7,

Page 7: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S7

29.2, 29.0, 20.4. IR (neat) ν = 3406, 3061, 3024, 2932, 2857, 1619, 1495, 1478, 1453, 1373, 1317, 1250, 1181, 1125, 806, 747, 698, 508 cm-1. HRMS (EI) Calcd. for C17H21N [M]+: 239.1674; found 239.1681.

PhHN

Cl4-chloro-N-(4-phenylbutyl)aniline (3k). 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 53%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 7.29 (t, J = 7.4 Hz, 2H), 7.23 – 7.15 (m, 3H), 7.10 (d, J = 8.5 Hz, 2H), 6.49 (d, J = 8.4 Hz, 2H), 3.57 (s, 1H), 3.09 (t, J = 7.0 Hz, 2H), 2.66 (t, J = 7.5 Hz, 2H), 1.81 – 1.57 (m, 4H). 13C NMR (101 MHz, chloroform-d) δ 147.0, 142.1, 129.0, 128.4, 128.4, 125.9, 121.6, 113.7, 44.0, 35.6, 29.0, 28.9. IR (neat) ν = 3415, 3261, 3061, 3025, 2935, 2857, 1600, 1502, 1475, 1401, 1320, 1248, 1177, 1090, 814, 748, 699, 669, 504 cm-1. HRMS (EI) Calcd. for C16H18NCl [M]+: 259.1128; found 259.1123.

PhNPh

Me

N-methyl-N-(4-phenylbutyl)aniline (3l).11 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 80%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.26 (m, 2H), 7.26 – 7.13 (m, 5H), 6.72 – 6.64 (m, 3H), 3.33 (t, J = 6.9 Hz, 2H), 2.91 (s, 3H), 2.64 (t, J = 7.3 Hz, 2H), 1.73 – 1.56 (m, 4H).

PhN3

(4-azidobutyl)benzene (3m).12 NaN3 was used as the nucleophile. Irrespective of whether a base (2 equiv of 2,6-lutidine) was used or not, a quantitative yield was obtained. If the base is used, it should be added after NaN3. colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.28 (t, J = 7.4 Hz, 2H), 7.22 – 7.14 (m, 3H), 3.27 (t, J = 6.6 Hz, 2H), 2.64 (t, J = 7.4 Hz, 2H), 1.77 – 1.57 (m, 4H).

Ph N3

Me

(3-azidobutyl)benzene (3n).13 NaN3 was used as the nucleophile. 98%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.28 (t, J = 7.4 Hz, 2H), 7.22 – 7.15 (m, 3H), 3.43 (h, J = 6.6 Hz, 1H), 2.80 – 2.59 (m, 2H), 1.88 – 1.69 (m, 2H), 1.28 (d, J = 6.5 Hz, 3H).

PhN N

Page 8: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S8

1-(4-phenylbutyl)-1H-imidazole (3o).14 4 equiv of N-nucleophile was used as the nucleophile; the reaction temperature was 50 oC. 82%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 7.92 (s, 1H), 7.34 – 7.25 (m, 2H), 7.20 (tt, J = 7.3, 1.5 Hz, 1H), 7.17 – 7.10 (m, 3H), 6.92 (s, 1H), 3.96 (t, J = 7.2 Hz, 2H), 2.64 (t, J = 7.2 Hz, 2H), 1.82 (p, J = 7.3 Hz, 2H), 1.63 (p, J = 7.5 Hz, 2H).

Ph

SPh

([1,1'-biphenyl]-4-ylmethyl)(phenyl)sulfane (3p).5 PhS-Na+ was used as the nucleophile. 93%; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.56 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.38 – 7.29 (m, 5H), 7.29 – 7.22 (m, 3H), 7.21 – 7.14 (m, 1H), 4.15 (s, 2H). GC-MS (EI) Calcd. for C19H16S [M]+ 276.1; found 276.1.

Ph

S

CF3

([1,1'-biphenyl]-4-ylmethyl)(4-(trifluoromethyl)phenyl)sulfane (3q): 85%; white solid. m.p. 161 – 162 oC. 1H NMR (400 MHz, chloroform-d) δ 7.63 – 7.52 (m, 4H), 7.49 (d, J = 8.2 Hz, 2H), 7.47 – 7.31 (m, 7H), 4.22 (s, 2H). 19F NMR (376 MHz, chloroform-d) δ -62.45 (s, 3F). 13C NMR (101 MHz, chloroform-d) δ 142.0, 142.0, 140.55, 140.48, 135.4, 129.2, 128.8, 128.0, 127.8 (q, J = 33.3 Hz), 127.4, 127.0, 125.7 (q, J = 3.8 Hz), 124.1 (q, J = 272.7 Hz), 37.4. IR (neat) ν = 1654, 1403, 1322, 1176, 1157, 1118, 845, 823, 773, 745, 689, 590, 495 cm-1. HRMS (EI) Calcd. for C20H15F3S [M]+: 344.0847; found 344.0835.

PhSPh

phenyl(4-phenylbutyl)sulfane (3r).15 PhS-Na+ was used as the nucleophile. 95%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.34 – 7.23 (m, 6H), 7.21 – 7.13 (m, 4H), 2.93 (t, J = 7.1 Hz, 2H), 2.62 (t, J = 7.4 Hz, 2H), 1.85 – 1.62 (m, 4H). GC-MS (EI) Calcd. for C16H18S [M]+ 242.1; found 242.1.

PhS

OMe

(4-methoxyphenyl)(4-phenylbutyl)sulfane (3s): 96%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.36 – 7.22 (m, 4H), 7.21 – 7.09 (m, 3H), 6.83 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 2.83 (t, J = 7.2 Hz, 2H), 2.60 (t, J = 7.6 Hz, 2H), 1.73 (p, J = 7.0 Hz, 2H), 1.62 (p, J = 7.2 Hz, 2H). 13C NMR (101 MHz, chloroform-d) δ 158.8, 142.2, 133.2, 128.4, 128.3, 126.7, 125.8, 114.5, 55.3, 35.8, 35.4, 30.4, 28.8. IR (neat) ν = 3061, 3025, 3001, 2934, 2855, 2835, 1592, 1570, 1493, 1461, 1440, 1284, 1245, 1179,

Page 9: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S9

1103, 1032, 826, 747, 699, 638, 625, 526 cm-1. HRMS (EI) Calcd. for C17H20OS [M]+: 272.1235; found 272.1229.

PhS

CF3

(4-phenylbutyl)(4-(trifluoromethyl)phenyl)sulfane (3t): quantitative; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.49 (d, J = 8.2 Hz, 2H), 7.36 – 7.22 (m, 4H), 7.23 – 7.10 (m, 3H), 2.97 (t, J = 7.0 Hz, 2H), 2.64 (t, J = 7.3 Hz, 2H), 1.90 – 1.62 (m, 4H). 19F NMR (376 MHz, chloroform-d) δ -62.41 (s, 3F). 13C NMR (101 MHz, chloroform-d) δ 142.5, 142.5, 141.8, 128.4, 127.3, 127.2 (q, J = 33.3 Hz), 125.9, 125.6 (q, J = 3.8 Hz), 124.2 (q, J = 272.7 Hz), 35.3, 32.4, 30.4, 28.3. IR (neat) ν = 3086, 3063, 3027, 2934, 2858, 1607, 1497, 1454, 1402, 1328, 1166, 1126, 1095, 1030, 1013, 824, 745, 699, 590, 494 cm-1. HRMS (EI) Calcd. for C17H20OS [M]+: 310.1003; found 310.1004.

Ph S

MePh

phenyl(4-phenylbutan-2-yl)sulfane (3u).16 PhS-Na+ was used as the nucleophile. 40%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.39 – 7.33 (m, 2H), 7.31 – 7.24 (m, 4H), 7.24 – 7.14 (m, 4H), 3.20 (h, J = 6.7 Hz, 1H), 2.87 – 2.70 (m, 2H), 1.99 – 1.87 (m, 1H), 1.87 – 1.76 (m, 1H), 1.32 (d, J = 6.7 Hz, 3H).

PhS

dodecyl(4-phenylbutyl)sulfane (3v): 80%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.30 – 7.23 (m, 2H), 7.20 – 7.12 (m, 3H), 2.62 (t, J = 7.5 Hz, 2H), 2.51 (t, J = 7.3 Hz, 2H), 2.47 (t, J = 7.4 Hz, 2H), 1.77 – 1.66 (m, 2H), 1.66 – 1.58 (m, 2H), 1.58 – 1.50 (m, 2H), 1.40 – 1.19 (m, 18H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 142.3, 128.4, 128.3, 125.7, 35.5, 32.2, 32.0, 31.9, 30.6, 29.7, 29.68, 29.65, 29.63, 29.56, 29.4, 29.28, 29.26, 29.0, 22.7, 14.1. IR (neat) ν = 3085, 3062, 3026, 2925, 2853, 1604, 1496, 1454, 1377, 1261, 1030, 743, 698 cm-1. HRMS (EI) Calcd. for C22H38S [M]+: 334.2694; found 334.2699.

4.2. General procedure for dehydroxylation of alcohols to form C-O and C-X (X = Cl, Br, I) bondsAlcohol 1a (1.0 equiv, 0.5 mmol, 92.1 mg), triphenylphosphine (1.2 equiv, 0.6 mmol, 157.4 mg) and anhydrous DMF (5.0 mL) were added into a 10 mL sealed tube under a N2 atmosphere. 1,2-Diiodoethane (1.2 equiv, 0.6 mmol, 169.1 mg) was then added and the resulting mixture was stirred for around 1 min until the 1,2-diiodoethane was completely dissolved. Sodium phenolate 4a (3.0 equiv, 1.5 mmol, 174.1 mg) was added subsequently and the mixture was stirred at room temperature for 10-12 h.

Page 10: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S10

Dichloromethane (20 mL) was added and the resulting solution was washed with water (20 mL x 3). The organic layer was dried over Na2SO4. After filtration, the solvent was removed by concentration under reduced pressure. The residue was subjected to flash column chromatography to afford the pure product 5a.

Ph

OPh

4-(phenoxymethyl)-1,1'-biphenyl (5a):17 98%; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.60 (t, J = 7.4 Hz, 4H), 7.51 (d, J = 8.1 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.38 – 7.26 (m, 3H), 7.04 – 6.93 (m, 3H), 5.10 (s, 2H). GC-MS (EI) Calcd. for C19H16O [M]+ 260.1; found 260.1.

Ph

O

OMe

4-((4-methoxyphenoxy)methyl)-1,1'-biphenyl (5b): 83%; white solid. m.p. 162 – 163 oC. 1H NMR (400 MHz, chloroform-d) δ 7.64 – 7.57 (m, 4H), 7.50 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.3 Hz, 1H), 6.94 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.1 Hz, 2H), 5.05 (s, 2H), 3.77 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 154.0, 153.0, 140.9, 140.8, 136.3, 128.8, 128.0, 127.37, 127.35, 127.2, 115.9, 114.7, 70.5, 55.7. IR (neat) ν = 2995, 2958, 2927, 2833, 1506, 1488, 1438, 1407, 1388, 1290, 1232, 1220, 1178, 1127, 1112, 1039, 1016, 877, 824, 767, 745, 717, 688, 524 cm-1. HRMS (EI) Calcd. for C20H18O2 [M]+: 290.1307; found 290.1310.

Ph

O

NO2

4-((4-nitrophenoxy)methyl)-1,1'-biphenyl (5c):18 76%; yellow solid. 1H NMR (400 MHz, chloroform-d) δ 8.21 (d, J = 9.1 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 7.5 Hz, 2H), 7.52 – 7.41 (m, 4H), 7.36 (t, J = 7.3 Hz, 1H), 7.04 (d, J = 9.1 Hz, 2H), 5.19 (s, 2H).

Ph

OMe

4-(methoxymethyl)-1,1'-biphenyl (5d):19 92%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.62 – 7.54 (m, 4H), 7.47 – 7.38 (m, 4H), 7.34 (tt, J = 7.3, 1.5 Hz, 1H), 4.50 (s, 2H), 3.42 (s, 3H).

Page 11: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S11

Ph

O Me

O

[1,1'-biphenyl]-4-ylmethyl acetate (5e).20 CH3CO2-K+ was used as the nucleophile.

99%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.62 – 7.55 (m, 4H), 7.48 – 7.40 (m, 4H), 7.38 – 7.32 (m, 1H), 5.15 (s, 2H), 2.12 (s, 3H).

O Me

O

O

MeO

methyl 4-(acetoxymethyl)benzoate (5f).21 CH3CO2-K+ was used as the nucleophile.

96%; colorless liquid. 1H NMR (400 MHz, Chloroform-d) δ 8.01 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 8.2 Hz, 2H), 5.13 (s, 2H), 3.90 (s, 3H), 2.11 (s, 3H).

Ph

O Ph

O

[1,1'-biphenyl]-4-ylmethyl benzoate (5g):22 quantitative; white solid. 1H NMR (400 MHz, chloroform-d) δ 8.14 – 8.06 (m, 2H), 7.64 – 7.57 (m, 4H), 7.57 – 7.50 (m, 3H), 7.48 – 7.41 (m, 4H), 7.35 (tt, J = 7.3, 1.6 Hz, 1H), 5.41 (s, 2H).

PhOPh

(4-phenoxybutyl)benzene (5h):23 quantitative; white solid. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.23 (m, 4H), 7.23 – 7.15 (m, 3H), 6.96 – 6.86 (m, 3H), 3.96 (t, J = 5.9 Hz, 2H), 2.69 (t, J = 7.0 Hz, 2H), 1.96 – 1.67 (m, 4H).

PhO

OMe

1-methoxy-4-(4-phenylbutoxy)benzene (5i): quantitative; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.28 (t, J = 7.5 Hz, 2H), 7.22 – 7.15 (m, 3H), 6.84 – 6.80 (m, 4H), 3.92 (t, J = 4.9 Hz, 2H), 3.76 (s, 3H), 2.68 (t, J = 6.5 Hz, 2H), 1.85 – 1.76 (m, 4H). 13C NMR (101 MHz, chloroform-d) δ 153.7, 153.2, 142.3, 128.4, 128.3, 125.8, 115.4, 114.6, 68.4, 55.8, 35.6, 29.0, 27.9. IR (neat) ν = 3025, 2999, 2939, 2861, 2832, 1508, 1465, 1389, 1288, 1232, 1180, 1107, 1040, 825, 745, 699, 524 cm-1. HRMS (EI) Calcd. for C17H20O2 [M]+: 256.1463; found 256.1470.

Page 12: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S12

PhO

NO2

1-nitro-4-(4-phenylbutoxy)benzene (5j):24 46%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 8.17 (d, J = 9.3 Hz, 2H), 7.32 – 7.25 (m, 2H), 7.22 – 7.16 (m, 3H), 6.91 (d, J = 9.2 Hz, 2H), 4.04 (t, J = 5.8 Hz, 2H), 2.69 (t, J = 7.0 Hz, 2H), 1.92 – 1.74 (m, 4H).

PhOMe

(4-methoxybutyl)benzene (5k):25 40%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.30 – 7.23 (m, 2H), 7.19 – 7.13 (m, 3H), 3.37 (t, J = 6.3 Hz, 2H), 3.31 (s, 3H), 2.62 (t, J = 7.5 Hz, 2H), 1.73 – 1.57 (m, 4H).

PhO Me

O

4-phenylbutyl acetate (5l).26 CH3CO2-K+ was used as the nucleophile. quantitative;

colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.30 – 7.25 (m, 2H), 7.21 – 7.14 (m, 3H), 4.07 (t, J = 6.2 Hz, 2H), 2.63 (t, J = 7.1 Hz, 2H), 2.03 (s, 3H), 1.73 – 1.62 (m, 4H).

PhO Ph

O

4-phenylbutyl benzoate (5m):27 60%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 8.06 – 8.00 (m, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.31 – 7.25 (m, 2H), 7.22 – 7.15 (m, 3H), 4.33 (t, J = 6.0 Hz, 2H), 2.68 (t, J = 7.0 Hz, 2H), 1.88 – 1.73 (m, 4H).

Ph O

O

Me

cinnamyl acetate (5n).21 CH3CO2-K+ was used as the nucleophile. 99%; colorless

liquid. 1H NMR (400 MHz, Chloroform-d) δ 7.42 – 7.35 (m, 2H), 7.35 – 7.28 (m, 2H), 7.28 – 7.20 (m, 1H), 6.64 (d, J = 15.9 Hz, 1H), 6.27 (dt, J = 15.9, 6.5 Hz, 1H), 4.71 (dd, J = 6.5, 1.1 Hz, 2H), 2.09 (s, 3H).

Ph OPh

Me

(3-phenoxybutyl)benzene (5o):28 32%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.30 – 7.25 (m, 4H), 7.21 – 7.14 (m, 3H), 6.92 (t, J = 7.3 Hz, 1H), 6.86 (d, J = 7.9 Hz, 2H), 4.36 (h, J = 6.0 Hz, 1H), 2.87 – 2.66 (m, 2H), 2.14 – 2.01 (m,

Page 13: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S13

1H), 1.96 – 1.82 (m, 1H), 1.32 (d, J = 6.1 Hz, 3H).

O

Me

Me

O

4-phenylbutan-2-yl acetate (5p).16 CH3CO2-K+ was used as the nucleophile. 40%;

colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.30 – 7.23 (m, 2H), 7.20 – 7.13 (m, 3H), 4.92 (h, J = 6.3 Hz, 1H), 2.73 – 2.53 (m, 2H), 2.01 (s, 3H), 1.98 – 1.86 (m, 1H), 1.86 – 1.73 (m, 1H), 1.23 (d, J = 6.3 Hz, 3H).

Ph

Me

O Me

O

Me

2-methyl-4-phenylbutan-2-yl acetate (5q).16 CH3CO2-K+ was used as the nucleophile;

60 oC of reaction temperature and 5 h of reaction time were used. 44%; colorless liquid. 1H NMR (400 MHz, Chloroform-d) δ 7.30 – 7.23 (m, 2H), 7.21 – 7.13 (m, 3H), 2.67 – 2.59 (m, 2H), 2.10 – 2.01 (m, 2H), 1.96 (s, 3H), 1.49 (s, 6H).

N

OPh

OOtBu

tert-butyl 3-(phenoxymethyl)piperidine-1-carboxylate (5r): 55%; white solid. m.p. 57 – 58 oC. 1H NMR (400 MHz, DMSO-d6) δ 7.29 (t, J = 7.8 Hz, 2H), 6.98 – 6.88 (m, 3H), 4.21 – 3.53 (m, 4H), 2.89 (br, 2H), 1.95 – 1.73 (m, 2H), 1.72 – 1.56 (m, 1H), 1.56 – 1.05 (m, 11H). 13C NMR (101 MHz, chloroform-d) δ 158.9, 155.0, 129.4, 120.7, 114.5, 79.4, 69.9, 47.2, 44.5, 35.9, 28.4, 27.4, 24.5. IR (neat) ν = 3447, 2975, 2930, 2857, 1692, 1599, 1587, 1497, 1469, 1421, 1365, 1266, 1242, 1175, 1148, 1041, 753, 691, 668 cm-1. HRMS (EI) Calcd. for C17H25NO3 [M]+: 291.1834; found 291.1842.

N

N

Me Me

OPh

NMeO2S

MeF

N-(4-(4-fluorophenyl)-6-isopropyl-5-(phenoxymethyl)pyrimidin-2-yl)-N methylmethanesulfonamide (5s): 77%; white solid. m.p. 129 – 130 oC. 1H NMR (400 MHz, chloroform-d) δ 7.77 – 7.69 (m, 2H), 7.37 – 7.29 (m, 2H), 7.08 (t, J = 8.7 Hz, 2H), 7.03 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 8.6 Hz, 2H), 4.89 (s, 2H), 3.59 (s, 3H), 3.52 (s, 3H), 3.40 – 3.26 (m, 1H), 1.32 (d, J = 6.7 Hz, 6H). 19F NMR (376 MHz, chloroform-d) δ -110.85 – -110.98 (m, 1F). 13C NMR (101 MHz, chloroform-d) δ

Page 14: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S14

178.4, 166.6, 163.8 (d, J = 250.3 Hz), 158.4, 158.0, 133.8 (d, J = 3.1 Hz), 131.4 (d, J = 8.5 Hz), 129.7, 121.6, 117.5, 115.6 (d, J = 21.7 Hz), 114.7, 63.3, 42.5, 33.1, 31.8, 22.1. IR (neat) ν = 2974, 2931, 1872, 1605, 1594, 1553, 1480, 1339, 1231, 1155, 1069, 1029, 957, 896, 848, 820, 772, 756, 691, 600, 575, 521, 495 cm-1. HRMS (EI) Calcd. for C22H24N3O3FS [M]+: 429.1522; found 429.1528.

Cl

PhO

1-(chloromethyl)-4-phenoxybenzene (5t).29 nBu4N+Cl- was used as the nucleophile. 55%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.40 – 7.30 (m, 4H), 7.12 (t, J = 7.4 Hz, 1H), 7.02 (d, J = 7.7 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 4.58 (s, 2H).

Br

O2N

1-(bromomethyl)-4-nitrobenzene (5u).30 nBu4N+Br- was used as the nucleophile. quantitative; white solid. 1H NMR (400 MHz, chloroform-d) δ 8.14 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.7 Hz, 2H), 4.46 (s, 2H).

I

Br

1-bromo-4-(iodomethyl)benzene (5v).31 NaI was not required as the iodide anion was generated from ICH2CH2I; 60 oC of reaction temperature and 2 h of reaction time in CH3CN were used. 92%; white solid. 1H NMR (500 MHz, chloroform-d) δ 7.44 – 7.40 (m, 2H), 7.26 – 7.23 (m, 2H), 4.40 (s, 2H).

I

(4-iodobutyl)benzene (5w).12 NaI was not required as the iodide anion was generated from ICH2CH2I; 60 oC of reaction temperature and 2 h of reaction time in CH3CN were used. 85%; yellow liquid. 1H NMR (400 MHz, chloroform-d) δ 7.28 (t, J = 7.4 Hz, 2H), 7.23 – 7.15 (m, 3H), 3.20 (t, J = 6.9 Hz, 2H), 2.63 (t, J = 7.5 Hz, 2H), 1.92 – 1.80 (m, 2H), 1.80 – 1.68 (m, 2H).

Me

Cl

(3-chlorobutyl)benzene (5x).32 nBu4N+Cl- was used as the nucleophile. 79%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.33 – 7.25 (m, 2H), 7.23 – 7.16 (m, 3H), 3.99 (h, J = 6.5 Hz, 1H), 2.90 – 2.80 (m, 1H), 2.79 – 2.69 (m, 1H), 2.05 – 1.97 (m,

Page 15: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S15

2H), 1.53 (d, J = 6.5 Hz, 3H).

Me

Br

(3-bromobutyl)benzene (5y).33 nBu4N+Br- was used as the nucleophile. 62%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.26 (m, 2H), 7.23 – 7.16 (m, 3H), 4.13 – 4.02 (m, 1H), 2.91 – 2.81 (m, 1H), 2.79 – 2.69 (m, 1H), 2.19 – 1.98 (m, 2H), 1.72 (d, J = 6.7 Hz, 3H).

Me

I

(3-iodobutyl)benzene (5z).34 NaI was not required as the iodide anion was generated from ICH2CH2I; 60 oC of reaction temperature and 2 h of reaction time in CH3CN were used. 35%; colorless liquid. 1H NMR (400 MHz, chloroform-d) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.16 (m, 3H), 4.19 – 4.05 (m, 1H), 2.90 – 2.80 (m, 1H), 2.75 – 2.64 (m, 1H), 2.22 – 2.10 (m, 1H), 1.95 (d, J = 6.8 Hz, 3H), 1.93 – 1.82 (m, 1H).

5 The synthesis of 18O-1a

NaH (0.6 mmol, 14.4 mg) was added into a solution of H218O (18O content: 95%,

0.6 mmol, 12.0 mg) in anhydrous DMF (1.0 mL) under N2 atmosphere. The mixture was stirred for around 3 min to afford the suspension of Na18OH in anhydrous DMF.

Alcohol 1a (1.0 equiv, 0.2 mmol, 36.8 mg), triphenylphsophine (1.2 equiv, 0.24 mmol, 62.9 mg) and anhydrous DMF (1.0 mL) were added into a 10 mL sealed tube under a N2 atmosphere. 1,2-Diiodoethane (1.2 equiv, 0.24 mmol, 67.6 mg) was then added and the resulting mixture was stirred for around 1 min until the 1,2-diiodoethane was completely dissolved. The above Na18OH suspension was added subsequently and the mixture was stirred at 50 oC for 5 h. Dichloromethane (20 mL) was added and the resulting solution was washed with water (20 mL x 3). The organic layer was dried over Na2SO4. After filtration, the solvent was removed by concentration under reduced pressure. The residue was subjected to flash column chromatography to afford product 18O-1a (25.0 mg, 67%). MS-EI analysis of the product showed that 18O:16O = 50:50.

Page 16: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S16

MS-EI spectrum of the 18O-product:

MS-EI spectrum of the substrate 1a:

Page 17: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S17

6. Isolation of Ph3P=O

OH

Ph+ KOAc

Ph3P (0.24 mmol)ICH2CH2I (0.24 mmol)DMF, r.t., over night

1a (0.2 mmol) 4 (0.6 mmol)

Ph

OAc+ Ph3P=O

5a (79%)

Esterification of alcohol 1a (0.2 mmol) with KOAc occurred well under the optimal conditions. After the reaction was completed, 53.0 mg of Ph3P=O was isolated in 79% yield (based on Ph3P). 1H NMR (400 MHz, chloroform-d) δ 7.72 – 7.60 (m, 6H), 7.58 – 7.48 (m, 3H), 7.49 – 7.37 (m, 6H). 31P NMR (162 MHz, chloroform-d) δ 29.86 (s, 1P).

7. Inversion of configuration

Ph Me

OH

Ph Me

Cloptimal conditions

S-1w 5w (75%, R/S = 81/19)

S-1w (0.5 mmol) was converted into R-5w under the optimized conditions. Enantiomeric excess was determined by chiral GC with a CP-chirasil-DEX CB column (length 25 m, diameter 0.25 mm, 0.25 μm layer thickness) and nitrogen as carrier gas. Injector temperature was 100 oC. Major enantiomer rt = 36.417 min, minor enantiomeric rt = 37.465 min. GC analysis from the isolated product showed an er of 81:19.[α]D

25 = -37.4 (c = 1.15 g/100 mL, CHCl3, er 81:19).Lit. [α] D

25 = -36.4 (c = 1.00 g/100 mL, CHCl3, R-ent, no enantiopurity given).32

Page 18: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S18

Gas chromatogram of a racemic sample:

Page 19: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S19

Gas chromatogram of the enantioenriched sample:

Page 20: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S20

8. References and notes

1. L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney and P. D. Beer, Chem. Rev., 2015, 115, 7118-7195.

2. (a) R. Appel and H. Schoeler, Chem. Ber., 1977, 110, 2382-2384; (b) M. A. H. A. Al-Juboori, P. N. Gates and A. S. Muir, J. Chem. Soc., Chem. Commun., 1991, 1270-1271; (c) Q. Yin, Y. Ye, G. Tang and Y. F. Zhao, Spectrochim. Acta A., 2006, 63, 192-195.

3. P. J. Garegg, T. Regberg, J. Stawinski and R. Stromberg, J. Chem. Soc., Perkin Trans. 2, 1987, 0, 271-274.

4. S. P. Morcillo, L. Alvarez de Cienfuegos, A. J. Mota, J. Justicia and R. Robles, J. Org. Chem., 2011, 76, 2277-2281.

5. P. A. Champagne, J. Pomarole, M.-È. Thérien, Y. Benhassine, S. Beaulieu, C. Y. Legault and J.-F. Paquin, Org. Lett., 2013, 15, 2210-2213.

6. Y. Y. Gui, L. L. Liao, L. Sun, Z. Zhang, J. H. Ye, G. Shen, Z. P. Lu, W. J. Zhou and D. G. Yu, Chem. Commun., 2017, 53, 1192-1195.

7. S. Pramanik and P. Ghorai, Org. Lett., 2014, 16, 2104-2107.8. X. Hua, J. Masson-Makdissi, R. J. Sullivan and S. G. Newman, Org. Lett.,

2016, 18, 5312-5315.9. Z. Chen, H. Zeng, S. A. Girard, F. Wang, N. Chen and C.-J. Li, Angew. Chem.

Int. Ed., 2015, 54, 14487-14491.10. S. Zhu, N. Niljianskul and S. L. Buchwald, J. Am. Chem. Soc., 2013, 135,

15746-15749.11. S. M. Bronner and R. H. Grubbs, Chem. Sci., 2014, 5, 101-106.12. L. Candish, E. A. Standley, A. Gomez-Suarez, S. Mukherjee and F. Glorius,

Chem. Eur. J., 2016, 22, 9971-9974.13. C. Liu, X. Wang, Z. Li, L. Cui and C. Li, J. Am. Chem. Soc., 2015, 137, 9820-

9823.14. C. P. Owen, I. Shahid, M. S. Olusanjo, C. H. Patel, S. Dhanani and S. Ahmed,

J. Steroid Biochem. Mol. Biol., 2008, 111, 117-127.15. T. Tamai, K. Fujiwara, S. Higashimae, A. Nomoto and A. Ogawa, Org. Lett.,

2016, 18, 2114-2117.16. Y. Nishimoto, A. Okita, M. Yasuda and A. Baba, Org. Lett., 2012, 14, 1846-

1849.17. M. Thangaraj, S. S. Bhojgude, M. V. Mane and A. T. Biju, Chem. Commun.,

2016, 52, 1665-1668.18. M. de Candia, F. Liantonio, A. Carotti, R. De Cristofaro and C. Altomare, J.

Med. Chem., 2009, 52, 1018-1028.19. B.-T. Guan, S.-K. Xiang, B.-Q. Wang, Z.-P. Sun, Y. Wang, K.-Q. Zhao and

Z.-J. Shi, J. Am. Chem. Soc., 2008, 130, 3268-3269.20. T.-C. Chang and S. J. Yu, Synthetic Commun., 2015, 45, 651-662.21. T. Mino, T. Hasegawa, Y. Shirae, M. Sakamoto and T. Fujita, J. Org. Chem.,

2007, 692, 4389-4396.22. S. Burugupalli, S. Shah, P. L. van der Peet, S. Arora, J. M. White and S. J.

Page 21: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S21

Williams, Org. Biomol. Chem., 2016, 14, 97-104.23. E. M. v. Duzee and H. Adkins, J. Am. Chem. Soc., 1935, 57, 147-151.24. A. Catalano, A. Carocci, I. Defrenza, M. Muraglia, A. Carrieri, F. Van

Bambeke, A. Rosato, F. Corbo and C. Franchini, Eur. J. Med. Chem., 2013, 64, 357-364.

25. M. Yato, K. Homma and A. Ishida, Tetrahedron, 2001, 57, 5353-5359.26. P. Lu, T. Hou, X. Gu and P. Li, Org. Lett., 2015, 17, 1954-1957.27. J. D. St. Denis, C. C. G. Scully, C. F. Lee and A. K. Yudin, Org. Lett., 2014,

16, 1338-1341.28. C.-G. Yang and C. He, J. Am. Chem. Soc., 2005, 127, 6966-6967.29. M. A. Santos, S. M. Marques, T. Tuccinardi, P. Carelli, L. Panelli and A.

Rossello, Bioorg. Med. Chem., 2006, 14, 7539-7550.30. T. V. Nguyen and A. Bekensir, Org. Lett., 2014, 16, 1720-1723.31. D. Das, J. M. H Anal and L. Rokhum, J. Chem. Sci., 2016, 128, 1695-1701.32. P. H. Huy, S. Motsch and S. M. Kappler, Angew. Chem. Int. Ed., 2016, 55,

10145-10149.33. X. Ma, M. Diane, G. Ralph, C. Chen and M. R. Biscoe, Angew. Chem. Int. Ed.,

2017, 56, 12663-12667.34. A. R. Ellwood and M. J. Porter, J. Org. Chem., 2009, 74, 7982-7985.

Page 22: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S22

9. Copies of 1H NMR, 19F NMR, 13C NMR and 31P NMR spectra

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.2

16

2.1

84

2.0

00

1.2

62

2.9

52

6.1

57

4.1

37

2.2

4

3.5

73

.58

7.2

47

.25

7.2

77

.29

7.3

37

.35

7.3

57

.37

7.4

07

.41

7.4

37

.45

7.4

67

.56

7.5

87

.60

7.6

07

.62

7.6

2

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

0.9

28

2.1

49

2.0

00

0.9

52

1.9

49

0.9

77

4.0

57

4.0

89

4.0

54

.36

6.6

46

.66

6.7

16

.72

6.7

47

.16

7.1

87

.20

7.3

27

.33

7.3

57

.41

7.4

27

.43

7.4

47

.55

7.5

77

.59

1H NMR

1H NMR

Page 23: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S23

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.0

69

0.7

85

2.0

88

2.0

00

1.9

38

0.9

61

4.0

12

4.0

46

2.2

4 H

DO

3.9

4

4.3

56

.57

6.6

06

.98

7.0

07

.31

cd

cl3

7.3

27

.32

7.3

37

.33

7.3

47

.35

7.3

57

.36

7.4

17

.42

7.4

37

.44

7.4

57

.55

7.5

77

.59

7.5

9

-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

20

.43

48

.34

11

3.0

41

26

.83

12

7.0

71

27

.24

12

7.3

61

27

.91

12

8.7

81

29

.78

13

8.7

71

40

.14

14

0.9

01

45

.90

13C NMR

1H NMR

Page 24: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S24

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

0.9

63

2.0

84

1.9

82

1.8

38

1.0

33

3.9

48

4.0

00

4.0

94

.34

6.5

66

.58

7.1

17

.14

7.3

37

.35

7.3

77

.40

7.4

27

.44

7.4

67

.57

7.5

87

.60

0102030405060708090100110120130140150160170180190f1 (ppm)

48

.06

11

3.9

81

22

.19

12

7.0

81

27

.35

12

7.4

51

27

.85

12

8.8

21

29

.12

13

8.0

11

40

.37

14

0.7

61

46

.63

13C NMR

1H NMR

Page 25: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S25

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.0

00

2.0

63

0.9

18

1.9

20

2.0

02

2.8

99

1.9

46

3.9

24

3.0

6

4.5

96

.73

6.7

46

.76

6.7

96

.81

7.2

37

.24

7.2

57

.26

7.2

77

.31

7.3

37

.34

7.3

67

.42

7.4

47

.46

7.5

57

.57

7.6

07

.60

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.0

68

2.8

36

2.0

01

4.0

00

4.3

87

.34

7.3

47

.34

7.3

67

.36

7.3

77

.38

7.3

87

.40

7.4

37

.43

7.4

47

.45

7.4

67

.46

7.4

77

.58

7.5

87

.58

7.6

07

.60

7.6

27

.62

1H NMR

1H NMR

Page 26: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S26

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.0

00

0.8

99

1.0

39

1.8

97

0.9

89

2.0

15

4.8

30

5.1

4

6.9

27

.10

7.2

07

.22

7.3

27

.34

7.3

67

.41

7.4

37

.44

7.5

57

.57

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.3

52

2.1

50

2.1

46

0.8

88

2.0

00

0.9

55

4.9

77

1.9

02

1.6

31

.65

1.6

71

.69

1.7

01

.72

1.7

41

.76

1.7

8

2.6

42

.66

2.6

83

.11

3.1

23

.14

3.5

7

6.5

76

.60

6.6

76

.68

6.7

07

.15

7.1

77

.17

7.1

97

.19

7.2

07

.24

7.2

77

.28

7.3

0

1H NMR

1H NMR

Page 27: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S27

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.4

05

3.3

08

2.1

88

2.1

72

2.2

00

2.9

03

2.7

59

4.3

11

1.5

31

.56

1.5

71

.63

1.6

51

.67

2.1

72

.36

2.3

82

.40

2.5

92

.61

2.6

3

3.4

7

7.1

67

.17

7.1

97

.24

7.2

47

.25

7.2

67

.27

7.2

97

.29

7.3

07

.31

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

11

3.0

64

2.0

91

2.0

64

0.6

14

2.0

00

1.9

11

2.8

03

1.8

41

1.6

11

.62

1.6

41

.66

1.6

81

.70

1.7

21

.73

1.7

51

.77

2.2

32

.64

2.6

52

.67

3.0

93

.10

3.1

23

.44

6.5

16

.53

6.9

76

.99

7.1

77

.19

7.2

07

.26

7.2

87

.30

1H NMR

1H NMR

Page 28: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S28

-100102030405060708090100110120130140150160170180190200f1 (ppm)

20

.39

28

.97

29

.23

35

.69

44

.23

11

2.9

21

25

.79

12

6.3

81

28

.33

12

8.4

11

29

.72

14

2.2

51

46

.19

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

03

2.0

87

2.0

92

1.0

01

2.0

00

1.8

18

2.7

49

1.8

55

1.6

21

.64

1.6

61

.68

1.7

01

.72

1.7

41

.76

1.7

7

2.6

42

.66

2.6

83

.07

3.0

93

.10

3.5

7

6.4

86

.50

7.0

97

.11

7.1

87

.20

7.2

27

.27

7.2

97

.31

13C NMR

1H NMR

Page 29: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S29

-100102030405060708090100110120130140150160170180190200f1 (ppm)

28

.88

29

.01

35

.64

43

.97

11

3.7

21

21

.63

12

5.8

81

28

.39

12

8.4

21

29

.04

14

2.1

01

46

.97

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.1

44

2.0

30

3.0

00

2.0

62

2.8

70

4.7

55

1.8

21

1.6

31

.64

1.6

51

.66

1.6

72

.63

2.6

52

.67

2.9

13

.31

3.3

33

.34

6.6

66

.68

6.7

07

.17

7.1

97

.21

7.2

37

.23

7.2

47

.25

7.2

77

.27

7.2

97

.31

13C NMR

1H NMR

Page 30: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S30

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

72

2.1

34

2.1

00

2.7

87

1.9

37

1.6

01

.63

1.6

41

.66

1.6

71

.69

1.7

11

.73

1.7

42

.62

2.6

42

.66

3.2

63

.27

3.2

9

7.1

67

.18

7.2

07

.26

7.2

87

.30

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.3

65

2.2

04

2.1

85

1.0

00

2.9

33

1.9

47

1.2

71

.29

1.7

21

.72

1.7

41

.75

1.7

51

.76

1.7

71

.77

1.7

81

.79

1.7

91

.81

1.8

11

.83

1.8

41

.85

2.6

22

.64

2.6

42

.65

2.6

62

.67

2.6

72

.69

2.7

12

.73

2.7

32

.75

2.7

62

.77

2.7

83

.40

3.4

23

.43

3.4

57

.17

7.1

97

.21

7.2

67

.28

7.3

0

1H NMR

1H NMR

Page 31: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S31

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.0

43

2.0

00

2.0

46

2.0

00

0.9

45

2.8

14

0.8

93

1.8

41

0.9

06

1.5

91

.61

1.6

31

.65

1.6

71

.78

1.8

01

.82

1.8

4

2.6

22

.64

2.6

6

3.9

43

.96

3.9

7

6.9

27

.13

7.1

57

.18

7.2

07

.22

7.2

77

.29

7.3

17

.92

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.0

75

0.8

64

2.1

08

4.8

00

2.1

31

1.9

98

2.0

69

1H NMR

1H NMR

Page 32: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S32

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.1

72

7.0

98

2.0

00

4.2

56

4.2

2

7.3

27

.34

7.3

67

.38

7.4

07

.42

7.4

37

.45

7.4

87

.50

7.5

37

.55

7.5

67

.58

-200-190-180-170-160-150-140-130-120-110-100-90-80-70-60-50-40-30-20-100102030f1 (ppm)

3.0

00

-62

.45

1H NMR

19F NMR

Page 33: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S33

-100102030405060708090100110120130140150160170180190200f1 (ppm)

37

.45

12

0.0

81

22

.78

12

5.4

81

25

.60

12

5.6

41

25

.71

12

7.0

41

27

.31

12

7.4

11

27

.64

12

7.9

71

28

.18

12

8.2

91

28

.81

12

9.1

71

35

.40

14

0.4

81

40

.55

14

2.0

11

42

.02

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.3

66

2.1

45

2.1

42

3.8

00

6.0

62

1.6

51

.65

1.6

71

.67

1.6

91

.71

1.7

11

.72

1.7

31

.73

1.7

51

.75

1.7

71

.78

1.7

91

.80

1.8

12

.60

2.6

22

.64

2.9

22

.93

2.9

57

.15

7.1

67

.17

7.1

77

.18

7.2

07

.24

7.2

57

.25

7.2

77

.27

7.2

97

.30

7.3

07

.32

7.3

2

13C NMR

1H NMR

Page 34: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S34

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.0

38

2.0

43

2.0

06

2.0

00

2.8

55

1.8

83

2.7

26

3.9

59

1.6

01

.62

1.6

31

.65

1.7

01

.71

1.7

31

.75

1.7

7

2.5

82

.60

2.6

22

.81

2.8

32

.84

3.7

9

6.8

26

.84

7.1

47

.16

7.1

77

.19

7.2

57

.25

7.2

67

.28

7.3

07

.32

-100102030405060708090100110120130140150160170180190200f1 (ppm)

28

.84

30

.35

35

.42

35

.76

55

.34

11

4.5

1

12

5.7

51

26

.69

12

8.3

01

28

.40

13

3.1

51

42

.20

15

8.8

0

1H NMR

13C NMR

Page 35: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S35

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.1

60

2.0

74

2.0

69

2.7

56

4.0

13

2.0

00

1.6

81

.69

1.7

21

.73

1.7

51

.77

1.7

91

.81

1.8

22

.62

2.6

42

.66

2.9

62

.97

2.9

9

7.1

57

.17

7.1

87

.20

7.2

57

.26

7.2

87

.30

7.3

27

.48

7.5

0

-200-190-180-170-160-150-140-130-120-110-100-90-80-70-60-50-40-30-20-100102030f1 (ppm)

3.0

00

-62

.41

1H NMR

19F NMR

Page 36: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S36

-100102030405060708090100110120130140150160170180190200f1 (ppm)

28

.26

30

.42

32

.35

35

.33

12

0.1

61

22

.86

12

5.5

41

25

.58

12

5.6

21

25

.66

12

5.9

01

26

.75

12

7.0

81

27

.32

12

7.4

01

27

.73

12

8.2

61

28

.38

14

1.8

51

42

.51

14

2.5

2

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

3.2

11

1.0

53

1.0

49

2.1

03

1.0

00

3.7

54

4.0

87

1.9

09

1.3

11

.32

1.8

01

.81

1.8

21

.83

1.8

41

.90

1.9

21

.92

1.9

42

.76

2.7

82

.78

2.7

92

.80

2.8

13

.17

3.1

93

.21

3.2

27

.16

7.1

87

.18

7.1

87

.19

7.2

07

.21

7.2

27

.23

7.2

37

.25

7.2

57

.25

7.2

77

.27

7.2

87

.29

7.2

97

.35

7.3

67

.37

7.3

7

13C NMR

1H NMR

Page 37: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S37

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.9

37

18

.35

82

.23

72

.08

42

.06

21

.96

51

.98

81

.96

7

2.6

19

2.0

00

0.8

50

.87

0.8

91

.25

1.3

11

.33

1.3

51

.36

1.5

11

.53

1.5

41

.55

1.5

71

.59

1.6

11

.63

1.6

51

.68

1.7

01

.71

1.7

31

.75

2.4

52

.47

2.4

92

.49

2.5

12

.53

2.6

02

.62

2.6

37

.15

7.1

67

.17

7.2

47

.26

7.2

8

-20-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

14

.13

22

.70

28

.97

29

.26

29

.28

29

.36

29

.56

29

.63

29

.65

29

.68

29

.74

30

.61

31

.93

32

.00

32

.21

35

.52

12

5.7

31

28

.29

12

8.3

9

14

2.2

6

1H NMR

13C NMR

Page 38: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S38

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.0

00

2.7

44

2.8

20

1.9

68

1.9

43

3.8

56

5.1

06

.95

6.9

76

.99

7.0

17

.28

7.3

07

.32

7.3

57

.37

7.4

27

.44

7.4

67

.50

7.5

27

.58

7.6

07

.62

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.8

89

2.0

00

1.9

16

1.9

39

0.9

52

1.9

77

1.9

79

3.9

82

3.7

7

5.0

56

.84

6.8

66

.93

6.9

57

.33

7.3

57

.37

7.4

27

.44

7.4

67

.49

7.5

17

.59

7.6

07

.62

1H NMR

1H NMR

Page 39: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S39

-100102030405060708090100110120130140150160170180190200f1 (ppm)

55

.74

70

.47

11

4.6

81

15

.86

12

7.1

51

27

.35

12

7.3

71

27

.99

12

8.8

11

36

.32

14

0.8

41

40

.89

15

2.9

61

54

.01

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.0

76

2.0

00

0.9

30

4.0

60

2.0

33

2.0

84

1.8

81

5.1

97

.03

7.0

47

.05

7.3

47

.36

7.3

87

.43

7.4

57

.46

7.4

87

.50

7.5

87

.60

7.6

27

.64

8.2

08

.20

8.2

2

1H NMR

13C NMR

Page 40: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S40

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.8

69

2.0

00

0.9

89

4.0

63

4.2

10

3.4

2

4.5

0

7.3

27

.32

7.3

37

.34

7.3

47

.35

7.3

67

.36

7.3

67

.40

7.4

27

.44

7.4

67

.57

7.5

87

.59

7.5

97

.60

7.6

1

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.0

45

2.1

64

1.0

00

4.1

61

4.1

91

2.1

2

5.1

57

.33

7.3

37

.34

7.3

57

.35

7.3

67

.37

7.4

27

.44

7.4

57

.46

7.5

77

.57

7.5

87

.58

7.5

87

.59

7.5

97

.60

1H NMR

1H NMR

Page 41: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S41

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.9

0

3.1

3

2.0

7

1.9

5

1.9

4

2.1

1

3.9

0

5.1

3

7.3

87

.40

8.0

08

.02

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.2

10

1.0

00

4.1

33

2.9

09

4.3

93

1.9

25

5.4

17

.33

7.3

37

.34

7.3

57

.35

7.3

67

.37

7.3

77

.37

7.4

27

.43

7.4

47

.46

7.4

67

.51

7.5

37

.55

7.5

67

.56

7.5

77

.58

7.5

87

.60

7.6

27

.62

7.6

38

.09

8.0

98

.10

8.1

18

.11

8.1

18

.12

1H NMR

1H NMR

Page 42: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S42

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

17

2.0

90

2.1

18

2.7

99

2.7

79

3.9

02

1.7

61

.77

1.7

81

.79

1.8

01

.81

1.8

21

.82

1.8

61

.87

2.6

72

.69

2.7

0

3.9

53

.96

3.9

8

6.8

76

.89

6.9

16

.93

6.9

47

.16

7.1

97

.21

7.2

47

.25

7.2

77

.28

7.3

0

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

91

2.2

10

3.1

15

2.1

61

4.0

00

2.9

49

1.9

53

1.7

81

.79

1.8

01

.81

1.8

12

.66

2.6

82

.70

3.7

63

.90

3.9

23

.93

6.8

27

.17

7.1

97

.21

7.2

67

.28

7.3

0

1H NMR

1H NMR

Page 43: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S43

-100102030405060708090100110120130140150160170180190200f1 (ppm)

27

.91

29

.02

35

.64

55

.75

68

.43

11

4.6

31

15

.44

12

5.7

81

28

.33

12

8.4

5

14

2.2

8

15

3.2

41

53

.71

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

00

2.0

57

2.0

90

1.9

98

2.7

70

1.8

43

1.8

56

1.7

91

.80

1.8

11

.82

1.8

41

.85

1.8

72

.67

2.6

92

.71

4.0

24

.04

4.0

5

6.9

06

.92

7.1

97

.20

7.2

77

.28

7.3

08

.16

8.1

8

13C NMR

1H NMR

Page 44: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S44

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.0

86

2.0

72

2.8

86

2.0

00

2.7

35

2.0

92

1.5

81

.58

1.6

01

.60

1.6

11

.62

1.6

31

.64

1.6

41

.65

1.6

51

.66

1.6

61

.67

1.6

81

.68

1.7

01

.71

1.7

12

.60

2.6

22

.64

3.3

13

.36

3.3

73

.39

7.1

47

.14

7.1

67

.18

7.2

57

.26

7.2

77

.28

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.1

55

2.8

34

2.0

81

2.0

00

2.7

69

1.8

46

1.6

41

.64

1.6

51

.66

1.6

61

.67

1.6

81

.68

1.6

92

.03

2.6

12

.63

2.6

54

.05

4.0

74

.08

7.1

67

.18

7.1

97

.19

7.2

57

.26

7.2

77

.27

7.2

97

.29

1H NMR

1H NMR

Page 45: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S45

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

4.2

00

2.0

75

2.0

75

2.9

37

1.9

61

1.9

28

0.9

31

1.8

65

1.7

71

.78

1.7

91

.80

1.8

01

.82

2.6

72

.68

2.7

0

4.3

24

.33

4.3

5

7.1

67

.18

7.2

07

.26

7.2

87

.30

7.4

17

.43

7.4

57

.52

7.5

47

.56

8.0

28

.02

8.0

48

.04

8.0

4

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.0

0

2.1

4

1.0

2

1.0

1

1.1

32

.03

2.0

8

2.0

9

4.7

14

.71

4.7

24

.72

6.2

46

.25

6.2

76

.28

6.2

96

.31

6.6

26

.66

7.2

37

.24

7.2

47

.25

7.2

67

.26

7.2

97

.31

7.3

17

.32

7.3

37

.37

7.3

97

.39

1H NMR

1H NMR

Page 46: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S46

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.2

00

1.0

81

1.0

86

2.1

37

1.0

36

1.9

30

0.9

18

2.8

57

3.7

83

1.3

11

.33

1.8

71

.88

1.8

91

.90

1.9

01

.91

1.9

12

.04

2.0

52

.05

2.0

62

.07

2.0

72

.08

2.0

82

.72

2.7

42

.74

2.7

62

.77

2.7

92

.79

2.8

14

.34

4.3

54

.37

4.3

86

.85

6.8

76

.90

6.9

26

.94

7.1

67

.18

7.2

07

.25

7.2

67

.26

7.2

77

.28

7.2

9

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.2

00

1.0

41

1.0

40

2.8

73

2.0

75

0.9

37

2.7

73

2.1

83

1.2

31

.24

1.7

71

.78

1.7

81

.78

1.7

91

.79

1.8

01

.80

1.8

11

.82

1.8

31

.87

1.8

91

.89

1.8

91

.90

1.9

11

.91

1.9

21

.92

1.9

31

.94

1.9

52

.01

2.5

92

.61

2.6

22

.63

2.6

32

.64

2.6

52

.66

4.9

04

.91

4.9

34

.94

7.1

57

.17

7.1

97

.26

7.2

8

1H NMR

1H NMR

Page 47: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S47

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

6.2

62

.90

2.0

92

.05

2.7

62

.03

1.4

91

.96

2.0

32

.04

2.0

52

.06

2.0

72

.61

2.6

22

.63

2.6

42

.65

7.1

57

.17

7.1

97

.25

7.2

67

.28

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

11

.31

41

.09

42

.17

8

1.7

84

4.4

19

3.2

92

2.1

83

1.2

41

.36

1.4

21

.62

1.6

21

.65

1.7

91

.81

1.8

31

.87

2.8

93

.69

3.7

83

.80

3.8

23

.84

3.8

63

.87

3.8

84

.03

6.9

26

.93

6.9

47

.27

7.2

97

.31

1H NMR

1H NMR

Page 48: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S48

-40-30-20-100102030405060708090100110120130140150160170180190200210220230240f1 (ppm)

24

.49

27

.39

28

.44

35

.93

44

.48

47

.23

69

.90

79

.39

11

4.4

61

20

.70

12

9.4

2

15

4.9

51

58

.94

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

6.1

15

1.1

12

2.9

89

2.9

44

2.0

00

1.9

39

0.9

27

2.0

11

1.9

38

1.9

42

1.3

11

.33

3.2

83

.30

3.3

13

.33

3.3

53

.36

3.5

23

.59

4.8

96

.93

6.9

57

.01

7.0

37

.04

7.0

67

.08

7.1

17

.31

7.3

37

.33

7.3

57

.71

7.7

17

.72

7.7

37

.74

7.7

4

13C NMR

1H NMR

Page 49: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S49

-200-190-180-170-160-150-140-130-120-110-100-90-80-70-60-50-40-30-20-100102030f1 (ppm)

1.0

00

-11

0.9

5-1

10

.94

-11

0.9

3-1

10

.92

-11

0.9

2-1

10

.91

-11

0.9

0-1

10

.89

-11

0.8

8

-40-30-20-100102030405060708090100110120130140150160170180190200210220230240f1 (ppm)

22

.14

31

.76

33

.13

42

.48

63

.29

11

4.7

11

15

.46

11

5.6

71

17

.50

12

1.6

41

29

.73

13

1.3

81

31

.46

13

3.7

51

33

.78

15

8.0

01

58

.40

16

2.5

51

65

.03

16

6.5

51

78

.40

19F NMR

13C NMR

Page 50: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S50

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

2.0

00

1.8

79

1.9

57

1.0

13

4.1

46

4.5

8

6.9

66

.98

7.0

17

.03

7.1

07

.12

7.1

47

.32

7.3

37

.35

7.3

57

.36

1.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.1

85

2.0

00

1.9

27

1H NMR

1H NMR

Page 51: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S51

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

2.1

10

1.9

00

1.9

54

4.4

0

7.2

37

.24

7.2

47

.25

7.2

57

.40

7.4

17

.41

7.4

27

.43

7.4

3

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

2.0

00

2.0

16

2.0

13

2.0

00

2.8

20

1.9

08

1.7

21

.74

1.7

51

.77

1.8

21

.84

1.8

61

.86

1.8

8

2.6

22

.63

2.6

53

.18

3.2

03

.21

7.1

67

.18

7.1

87

.20

7.2

17

.27

7.2

87

.30

1H NMR

1H NMR

Page 52: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S52

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

3.5

85

2.1

57

1.1

25

1.1

24

1.0

00

3.0

02

2.0

28

1.5

21

.53

1.9

81

.98

1.9

92

.00

2.0

02

.01

2.0

22

.03

2.0

32

.04

2.7

02

.72

2.7

42

.76

2.7

82

.81

2.8

32

.83

2.8

52

.87

2.8

83

.95

3.9

63

.98

4.0

04

.01

4.0

37

.18

7.1

97

.21

7.2

77

.29

7.3

1

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

3.2

70

2.1

51

1.0

74

1.0

72

0.9

77

2.8

52

1.9

00

1.7

11

.73

2.0

32

.04

2.0

52

.05

2.0

62

.06

2.0

72

.08

2.0

82

.10

2.1

12

.12

2.1

32

.14

2.1

62

.70

2.7

22

.72

2.7

42

.74

2.7

52

.76

2.7

82

.82

2.8

42

.85

2.8

64

.05

4.0

64

.06

4.0

74

.07

4.0

84

.08

4.1

07

.18

7.1

97

.21

7.2

77

.29

7.3

01H NMR

1H NMR

Page 53: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S53

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.012.5f1 (ppm)

1.1

14

3.0

84

1.0

41

1.0

47

1.0

36

1.0

00

2.9

80

2.0

25

1.8

71

.87

1.8

81

.89

1.8

91

.90

1.9

01

.91

1.9

11

.92

1.9

41

.96

2.1

32

.14

2.1

52

.16

2.1

82

.67

2.6

82

.69

2.7

02

.71

2.7

12

.73

2.8

12

.82

2.8

32

.84

4.0

94

.10

4.1

14

.11

4.1

24

.12

4.1

34

.14

7.1

87

.20

7.2

27

.27

7.2

97

.29

7.3

1

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0f1 (ppm)

6.0

77

3.0

03

5.9

20

7.4

27

.44

7.4

67

.46

7.5

17

.52

7.5

37

.54

7.6

27

.63

7.6

47

.65

7.6

67

.67

1H NMR

1H NMR

Page 54: Supporting Information Dehydroxylation of alcohols for … · 2018-05-30 · S1 Supporting Information Dehydroxylation of alcohols for nucleophilic substitution Jia Chen, Jin-Hong

S54

-240-220-200-180-160-140-120-100-80-60-40-20020406080100120140f1 (ppm)

1.0

00

29

.86

31P NMR