Supported by:

16
Supported by: Office of Science . K. Mansfield a , H. W. Kugel a , R. Maingi b , M. G. Bell a , R. Bell a , E. Fredrickso . Kaita a , J. Kallman a , S. Kaye a , B. LeBlanc a , D. Mueller a , S. Paul a , R. Raman c , . Roquemore a , S. Sabbagh d , H. Schneider a , C. H. Skinner a , V. Soukhanovskii e , . Timberlake a , J. Wilgen b , L. Zakharov a and the NSTX Team ELM Suppression by Li Deposition on NSTX Graphite Divertor Surfaces a Princeton Plasma Physics Laboratory, Princeton, NJ 08543 b Oak Ridge National Laboratory, Oak Ridge, TN 37831 c University of Washington,, Seattle, WA 98195 d Columbia University, New York, NY 10027 e Lawrence Livermore National Laboratory, Livermore, CA 94551 DOE Contract DE-AC02-76CH03073 1

description

ELM Suppression by Li Deposition on NSTX Graphite Divertor Surfaces. Office of Science. D. K. Mansfield a , H. W. Kugel a , R. Maingi b , M. G. Bell a , R. Bell a , E. Fredrickson a , R. Kaita a , J. Kallman a , S. Kaye a , B. LeBlanc a , D. Mueller a , S. Paul a , R. Raman c , - PowerPoint PPT Presentation

Transcript of Supported by:

Page 1: Supported by:

Supported by:

Office ofScience

D. K. Mansfielda, H. W. Kugela, R. Maingib, M. G. Bella, R. Bella, E. Fredricksona,R. Kaitaa, J. Kallmana, S. Kayea, B. LeBlanca, D. Muellera, S. Paula, R. Ramanc, L. Roquemorea, S. Sabbaghd, H. Schneidera, C. H. Skinnera, V. Soukhanovskiie, J. Timberlakea, J. Wilgenb, L. Zakharova and the NSTX Team

ELM Suppression by Li Deposition on NSTX Graphite Divertor Surfaces

a Princeton Plasma Physics Laboratory, Princeton, NJ 08543b Oak Ridge National Laboratory, Oak Ridge, TN 37831c University of Washington,, Seattle, WA 98195d Columbia University, New York, NY 10027e Lawrence Livermore National Laboratory, Livermore, CA 94551

DOE Contract DE-AC02-76CH03073 1

Page 2: Supported by:

BT = 0.5 T

Ip = 800 kA

PRINCETON PLASMA PHYSICS LABORATORY

PPPL

Purpose : Study ELM Suppression by in situ Modification of NSTX Plasma Surface Interaction: Li on Graphite

R/a = 1.46

Lower Single Null

PNBI = 4 MW

Type 1 ELMS

Lithium Evaporators with Shutters

H. Kugel P2-58

B treated Graphite

2

Page 3: Supported by:

Li10 min

Plasma 1 s

Li10 min

Plasma 1 s

He 6.5 min

Continuous Li Evaporation

Time

Newly-Installed Li Shutters Allow More Flexible Wall Conditioning and Improved Plasma Operations

H. Kugel P2-58C. Skinner P2-59

Previous Divertor PFC Conditioning Scenario

New Conditioning Scenario with Shutters

Shutters Closed

Shutters Closed

He 6.5 min

He 6.5 min

He 6.5 min

Advantages:• Windows clear• No He dilution• Shot cycle shortened

Disadvantages:• Window coatings• He co-deposition & dilution

3

Page 4: Supported by:

O

H C

oil

Cur

rent

(kA

)

Pla

sma

Cur

rent

(M

A)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

1

-20

0

20

Time (s)

NB

IP

ower (M

W)0

4

The Effects of Li Wall Conditioning on Inductive Flux Consumption Were Immediate and Pronounced

First Deposition 116 mg (~100 nm)

No Li

Fifth Deposition

No Li

4

Page 5: Supported by:

No Li

No Li

ELM Suppression by 5th Discharge With LiNo ELMs Immediate Increase in Stored Energy

1st Li

5th Li

1st Li 5th Li

Sto

red

En

erg

y (1

02 kJ

)

0

2.5

D

(A

. U

.)

No Li

1st Li

5th Li

No Li 1st Li 5th Li

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Time (s) 5

Page 6: Supported by:

D

(A

.U.)

0.2 0.3 0.4Time (s)

*

*

* *

*

* **

Ratemg/min

Recent mg

Total mg

0 0 0

16 116 116

193 30916

16

16

16

161 471

168 638

171 809

How Does Wall Conditioning Suppress ELMs? - By a Series of Omissions …

129019No Li

129021

129022

129023

129024

129025

6

Page 7: Supported by:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

1

2

3

4

55

0

Da19n 3

Da38n 1.5

Da41n

0.90 Time n

Da

(A.U

.)n

eL (

1016

cm

-2 )

Sto

red

E

ner

gy

(102

kJ)

0

2.50

8

PN

BI (M

W)

0

46

2

Time (s)0 0.90.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

129019

129038

129041

No Li

No ELMS

No ELMS

129019No Li

129041129038

No Li129019 129038129041

Ratemg/min

Recent mg

Total mg

70 767 5734

70 970 8348

Complete ELM Suppression at Higher Li Evaporation Rates and Higher PFC Accumulations Higher Confinement

Beta Limit

7

Page 8: Supported by:

Te

(keV

)

Ti

(keV

)

ne

(1019

m-3)

Vto

r (k

m/s

)

0

0.5

1.0

1.5

0

0.5

1.0

1.5

0

5

10

0

150

250

1.1 1.2 1.3 1.4 1.5R (m)R (m)

t = 515 ms

t = 515 ms

t = 485 ms

t = 485 ms

129041129019

1.1 1.2 1.3 1.4 1.5

• Pronounced Improvements in Discharge Parameters • Large Changes at Plasma Edge Due to Li

PronouncedPedestalFeatures

Li

8

Page 9: Supported by:

129024 ELMs

Total Lithium: 638 mg

0

5

1

2

3

4

ne (

101

2 c

m-3)

Reflectometry Shows Clear Modification of SOL Density by Lithium / ELMS

1.46 1.48 1.50 1.52 1.54 1.56 1.58 1.60

Major Radius (m)

129041No ELMs

TotalLithium :8348 mg

LCFS

9

Page 10: Supported by:

The Same Intermittent ELM Behavior was Observed After Evaporation Ended as Li Lost Effectiveness

129019 No Li

129057 Taken Next Day NoEvaporation

8348 mgResidual

10

Page 11: Supported by:

Summary and Conclusions

• Actively modifying the plasma surface interaction in situ has completely eliminated ELMs.

• ELMs disappeared in a series of omissions with no apparent change in either amplitude or frequency.

• Thin films of Li (100 nm /discharge) can have pronounced effects on NSTX performance.

• The evidence supports the view that wall conditioning by Li modifies both the SOL and pedestal properties.

• Initial TRANSP run indicates increased current in outer region.Stability analysis underway (S. Kaye)

11

Page 12: Supported by:

Extra Slides

Page 13: Supported by:

Time (s)

Ze

ff(0

) F

rom

Met

als

No Li with ELMs

With Li, No ELMs Beta Limit

No ELMs Metals Accumulate in Core

Page 14: Supported by:

Velocity at SOL = 4.5 m/sec

Powder InjectorLi

Possible ELMs Pacing with 40 m Li Powder Injected into Plasma SOL/ Pedestal

Page 15: Supported by:

• Lithium Edge Conditions Yield ELM Suppression• TRANSP Analysis Finds Increase in Edge Current

No Li

S. Kaye

No Li

Stability Analysis in Progress

S. Kaye10

Page 16: Supported by: