Supplementary Materials for...stretchable temperature sensor for body-attachable wearable...

13
advances.sciencemag.org/cgi/content/full/6/22/eaay2671/DC1 Supplementary Materials for Optothermotronic effect as an ultrasensitive thermal sensing technology for solid-state electronics T. Dinh*, T. Nguyen, A. R. M. Foisal, H.-P. Phan, T.-K. Nguyen, N.-T. Nguyen, D. V. Dao *Corresponding author. Email: [email protected], [email protected] Published 27 May 2020, Sci. Adv. 6, eaay2671 (2020) DOI: 10.1126/sciadv.aay2671 This PDF file includes: Figs. S1 to S9 References

Transcript of Supplementary Materials for...stretchable temperature sensor for body-attachable wearable...

advances.sciencemag.org/cgi/content/full/6/22/eaay2671/DC1

Supplementary Materials for

Optothermotronic effect as an ultrasensitive thermal sensing technology for

solid-state electronics

T. Dinh*, T. Nguyen, A. R. M. Foisal, H.-P. Phan, T.-K. Nguyen, N.-T. Nguyen, D. V. Dao

*Corresponding author. Email: [email protected], [email protected]

Published 27 May 2020, Sci. Adv. 6, eaay2671 (2020)

DOI: 10.1126/sciadv.aay2671

This PDF file includes:

Figs. S1 to S9 References

Fig. S1. Characteristics of the SiC film. (A) Atomic Force Microscopy (AFM) image of 5 µm ×5 µm; (B) Raman spectrum of 3C-SiC grown on silicon (Si).

Figure S1(A) shows an atomic force microscopy (AFM) image of the surface roughness of the as-grown SiC film. The results indicate a roughness of less than 20 nm achieved for the film. In addition, Figure S1(B) illustrates the Raman spectrum of the SiC/Si platform with

two main peaks at wavenumbers of 797 and 965 cm-1. These wavenumbers correspond to the transverse optic (TO) mode and longitudinal optic (LO) mode of 3C-SiC material,

respectively.

Fig. S2. Current-voltage (I-V) measurement results for SiC grown on Si. (a) The I-V characteristics of the SiC film in darkness, showing a linear relationship between the applied voltage and the measured current. This indicates the Ohmic contact between 3C-SiC and the aluminum electrodes. (b) The I-V curve of the SiC/Si heterojunction, indicating its good diode characteristic.

Fig. S3. Thermoresistance of SiC transferred onto glass. (A) Transfer of SiC-on-glass. (B) TCR of SiC-on-glass. Adapted from Ref. [19] with permission from The Royal Society

of Chemistry.

Fig. S4. Impact of the electrical current on the TCR

Fig. S5. Current transport in SiC and Si at elevated temperatures

Fig. S6. The circuit model of the platform at low temperatures

Fig. S7. Response of the photovoltage under light illumination, indicating a response time of 50 ms.

Fig. S8. Capability of optothermotronic implementation by integration of on-chip light

source. (A) Photovoltaic effect in SiC/Si, showing the capability of using any light wavelengths from UV to visible source. Adapted from Ref. [35]. (B) Capability of growing

Al(Ga)N LED on SiC for on-chip integration. Adapted from Ref. [36] under a CC BY

license.

Fig. S9. Capability of optothermotronic implementation by integration of external

light sources. (A) Harvesting energy from sunlight. (B) Integration of external light source

using a focusing lens.

REFERENCES AND NOTES

1. A. Feteira, Negative Temperature Coefficient Resistance (NTCR) ceramic thermistors: An industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009).

2. C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hinckley, I. Pochorovski, X. Yan, J. W.-F. To, J. Y. Oh, J. Y. Oh, J. B.-H. Tok, Z. Bao, B. Murmann, Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1, 183–190 (2018).

3. T. Q. Trung, S. Ramasundaram, B.-U. Hwang, N.-E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016).

4. C. Yan, J. Wang, P. S. Lee, Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015).

5. V. K. Rai, Temperature sensors and optical sensors. Appl. Phys. B 88, 297–303 (2007).

6. T. Q. Trung, H. S. Le, T. M. L. Dang, S. Ju, S. Y. Park, N.-E. Lee, Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv. Healthc. Mater. 7, 1800074 (2018).

7. T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A. R. M. Foisal, T. N. Viet, C.-D. Tran, Y. Zhu, N.-T. Nguyen, D. V. Dao, Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016).

8. T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D. V. Dao, Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. J. Microelectromech. S. 26, 966–986 (2017).

9. C. Yi, J.-H. Lee, B. S. Kwak, M. X. Lin, H. O. Kim, H.-I. Jung, Diagnosis of diabetes mellitus using sialic acid expression of erythrocyte and a microfluidic resistive temperature detector (micro-RTD). Sens. Actuators B 191, 305–312 (2014).

10. S. Y. Hong, Y. H. Lee, H. Park, S. W. Jin, Y. R. Jeong, J. Yun, I. You, G. Zi, J. S. Ha, Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv. Mater. 28, 930–935 (2016).

11. T.-P. Huynh, P. Sonar, H. Haick, Advanced materials for use in soft self-healing devices. Adv. Mater. 29, 1604973 (2017).

12. N. S. Boltovets, V. V. Kholevchuk, R. V. Konakova, V. F. Mitin, E. F. Venger, Ge-film resistance and Si-based diode temperature microsensors for cryogenic applications. Sensor. Actuat. A-Phys. 92, 191–196 (2001).

13. X. F. Zhou, H. Zhang, H. Yan, C. L. He, M. H. Lu, R. Y. Hao, Giant temperature coefficient of resistance in Co-doped ZnO thin films. Appl. Phys. A 114, 809–812 (2014).

14. M. E. Itkis, F. Borondics, A. Yu, R. C. Haddon, Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006).

15. G. E. Fernandes, J. H. Kim, A. K. Sood, J. Xu, Giant temperature coefficient of resistance in carbon nanotube/phase‐change polymer nanocomposites. Adv. Funct. Mater. 23, 4678–4683 (2013).

16. S.-H. Lee, S. Hwang, J.-W. Jang, Giant temperature coefficient of resistivity and cryogenic sensitivity in silicon with galvanically displaced gold nanoparticles in freeze-out region. ACS Nano 11, 1572–1580 (2017).

17. F. Niklaus, C. Vieider, H. Jakobsen, paper presented at the Mems/Moems Technologies and Applications III, J. C. Chiao, X. Chen, Z. Zhou, X. Li, Eds. (Spie-Int. Soc. Optical Engineering, Bellingham, 2008), vol. 6836.

18. C. Boragno, U. Valbusa, G. Pignatel, Fast P‐doped silicon bolometer for detecting heat pulses. Appl. Phys. Lett. 50, 583–584 (1987).

19. T. Dinh, H. P. Phan, T. Kozeki, A. Qamar, T. Namazu, N. T. Nguyen, D. V. Dao, Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv. 42, 106083 (2015).

20. T. Dinh, H.-P. Phan, D. V. Dao, P. Woodfield, A. Qamar, N.-T. Nguyen, Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 3, 8776–8779 (2015).

21. D. Nakamura, I. Gunjishima, S. Yamaguchi, T. Ito, A. Okamoto, H. Kondo, S. Onda, K. Takatori, Ultrahigh-quality silicon carbide single crystals. Nature 430, 1009–1012 (2004).

22. H. Yang, D. Qi, Z. Liu, B. K. Chandran, T. Wang, J. Yu, X. Chen, Soft thermal sensor with mechanical adaptability. Adv. Mater. 28, 9175–9181 (2016).

23. S. Harada, W. Honda, T. Arie, S. Akita, K. Takei, Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 8, 3921–3927 (2014).

24. A. R. M. Foisal, H.-P. Phan, T. Kozeki, T. Dinh, K. N. Tuan, A. Qamar, M. Lobino, T. Namazu, D. V. Dao, 3C–SiC on glass: An ideal platform for temperature sensors under visible light illumination. RSC Adv. 6, 87124–87127 (2016).

25. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006)

26. H.-P. Phan, D. V. Dao, P. Tanner, L. Wang, N.-T. Nguyen, Y. Zhu, S. Dimitrijev, Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett., 104, 111905 (2014),

27. P. R. N. Childs, J. R. Greenwood, C. A. Long, Review of temperature measurement, Rev. Sci. Instrum., 71, 2959 (2000).

28. I. K. Moon, B. Ki, S. Yoon, J. Oh, Lateral photovoltaic effect in flexible free-standing reduced graphene oxide film for self-powered position-sensitive detection. Sci. Rep. 6, 33525 (2016).

29. P. Berto, L. Philippet, J. Osmond, C. F. Liu, A. Afridi, M. M. Marques, B. M. Agudo, G. Tessier, R. Quidant, Tunable and free-form planar optics. Nat. Photonics, 13, 649–656 (2019).

30. V. V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, E. Stein von Kamienski, Band offsets and electronic structure of SiC/SiO2 interfaces. J. Appl. Phys. 79, 3108 (1996).

31. T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D. V. Dao, N.-T. Nguyen, An on-chip sic mems device with integrated heating, sensing, and microfluidic cooling systems. Adv. Mater. Interfaces 5, 1800764 (2018).

32. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).

33. P. Wurfel, U. Wurfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts (John Wiley & Sons, 2006).

34. U. Würfel, A. Cuevas, P. Würfel, Charge carrier separation in solar cells. IEEE J. Photovoltaics 5, 461–469 (2015).

35. A. R. M. Foisal, T. Dinh, V. T. Nguyen, P. Tanner, H.-P. Phan, T.-K. Nguyen, B. Haylock, E. W. Streed, M. Lobino, D. V. Dao, Self-powered broadband (UV-NIR) photodetector based on 3C-SiC/Si heterojunction. IEEE T. Electron Dev., 66, 1804–1809 (2019).

36. D. Massoubre, L. Wang, L. Hold, A. Fernandes, J. Chai, S. Dimitrijev, A. Iacopi, Vertically conductive Single-Crystal SiC-based Bragg reflector grown on Si wafer. Sci. Rep. 5, 17026 (2015).