SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY...

29
SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin (SW-Morocco) Wolfgang Kuhnt 1 , Ann Holbourn 1 , Andy Gale 2 , El Hassane Chellai 3 , William J. Kennedy 4 1 Institute for Geosciences, Christian-Albrechts-University, 24118 Kiel, Germany 2 Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK 3 Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University-Marrakech, PO Box 2390, Marrakech, Morocco 4 University Museum of Natural History, Oxford OX1 3PW, UK GEOLOGICAL SETTTING The Mohammed Plage (MPL) succession and Shell-ONAREP Exploration Well (S13) are situated in the northern onshore part of the Tarfaya-Laayoune coastal basin in SW-Morocco (Fig. 1, Suppl. Fig. 1). This basin is bounded to the south by the West African craton, to the east by the Palaeozoic fold belt of the Mauretanides and the Precambrian Requibat Massif and to the north by the Precambrian Anti Atlas High (Choubert et al., 1966). Maximum sediment accumulation occurred during the Mesozoic and Paleogene in the offshore part of the basin on the present-day shelf and upper slope (von Rad and Einsele, 1980). During the Miocene, the uplift of the volcanic province of the Canary Islands considerably affected sedimentation patterns between the Canaries and the NW African coastline and shifted the depocenter westwards into the abyssal part of the basin. More than 500 m of Upper Cretaceous pelagic sediments, mainly consisting of calcareous nannoplankton, clay, dispersed biogenic silica, planktonic foraminifers and marine organic matter were deposited in the northern part of the Tarfaya Basin with a regional depocenter near the town of DR2009051

Transcript of SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY...

Page 1: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin (SW-Morocco) Wolfgang Kuhnt1, Ann Holbourn1, Andy Gale2, El Hassane Chellai3, William J. Kennedy4

1Institute for Geosciences, Christian-Albrechts-University, 24118 Kiel, Germany 2Department of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK 3Department of Geology, Faculty of Sciences Semlalia, Cadi Ayyad University-Marrakech, PO Box 2390, Marrakech, Morocco 4University Museum of Natural History, Oxford OX1 3PW, UK GEOLOGICAL SETTTING

The Mohammed Plage (MPL) succession and Shell-ONAREP Exploration

Well (S13) are situated in the northern onshore part of the Tarfaya-Laayoune coastal

basin in SW-Morocco (Fig. 1, Suppl. Fig. 1). This basin is bounded to the south by

the West African craton, to the east by the Palaeozoic fold belt of the Mauretanides

and the Precambrian Requibat Massif and to the north by the Precambrian Anti Atlas

High (Choubert et al., 1966). Maximum sediment accumulation occurred during the

Mesozoic and Paleogene in the offshore part of the basin on the present-day shelf and

upper slope (von Rad and Einsele, 1980). During the Miocene, the uplift of the

volcanic province of the Canary Islands considerably affected sedimentation patterns

between the Canaries and the NW African coastline and shifted the depocenter

westwards into the abyssal part of the basin. More than 500 m of Upper Cretaceous

pelagic sediments, mainly consisting of calcareous nannoplankton, clay, dispersed

biogenic silica, planktonic foraminifers and marine organic matter were deposited in

the northern part of the Tarfaya Basin with a regional depocenter near the town of

DR2009051

Page 2: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Tarfaya. Sedimentation rates exceeded 10 cm/kyr during transgressive phases,

allowing for investigation of climatic events on a centennial resolution, which is

comparable to climate change studies in the Quaternary (Kuhnt et al., 2001; 2004;

Kolonic et al., 2005).

Previous investigations of lithofacies, organic matter, microfossil assemblages

and carbonate microfacies in the Tarfaya Basin allowed two distinct depositional

systems to be identified in the Albian and Cenomanian to Campanian. The Albian is

dominated by terrigenous silici- and bioclastic sedimentation with low organic matter

of mainly terrestrial origin. Clay mineral assemblages are characterized by abundant

illite and chlorite, eroded from crystalline rocks outcropping in the Anti-Atlas and

Mauretanides, and by reworked kaolinite indicating active erosion around the Tarfaya

Basin (El Albani et al., 1999a). The Cenomanian to Campanian interval is

characterized by pelagic marls and limestones containing abundant marine organic

matter (Kuhnt et al., 1990; Kolonic et al., 2005). Higher mean content of smectite in

clay mineral assemblages and abundant pelagic macro- and microfaunas reflect

higher relative sea level (El Albani et al., 1999a). These Cenomanian-Campanian

sediments appear to have been deposited during the development of an open shelf

coastal upwelling-system (Einsele and Wiedmann, 1982; Kolonic et al., 2005).

The MPL succession is situated along the coastal cliff between the river

mouths of Oued Chebeika and Oued Amma Fatma in the northern part of the basin

between the towns of TanTan and Tarfaya (Suppl. Fig. 1). The succession dips gently

to the SW, and its stratigraphic base is close to the mouth of the Oued Laaguig, while

the top is near the topographic reference point “21 m” approx. 10 km NE of the mouth

of Oued Amma Fatma. Lower Cretaceous sediments are outcropping at the base of the

cliff, and the Upper Cretaceous succession is overlain by Moghrabian (Plio-

Page 3: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Pleistocene) shallow marine, clastic sediments. The MPL succession was initially

sketched and dated with ammonites in the early seventies (Wiedmann et al., 1978;

Wiedmann and Kuhnt, 1996 and unpublished field sketches). However, no detailed

sedimentological and paleontological investigation was undertaken until the late

nineties, due to the violent, armed conflict raging in the Western Sahara region for

many years. Initial interpretation of a shore-face to outer shelf paleobathymetric

position were based on sedimentological criteria such as the occurrence of calcareous

tempestites, hummocky cross stratification and limestone channels (El Albani et al.,

1999b) and micropaleontological evidence from benthic foraminiferal assemblage

counts (Gebhardt et al., 2004).

Well S13 was drilled in the most distal part of the Tarfaya Basin, a few

kilometers east of the town of Tarfaya (Suppl. Fig. 1). This well is stratigraphically

the most complete oil shale exploration well in the basin, since it was drilled well

beyond the bitumen rich zone (“zone riche”) down into the lower Cenomanian (Leine,

1986). Organic-carbon rich sediments in S13 exhibit conspicuous cyclicity, mainly

expressed in fluctuations of the organic carbon and pelagic carbonate contents. Two

prominent low frequency cycles (lower Cenomanian to late Turonian and late

Turonian to middle Campanian) were recognized, which reflect the UZA 2 and UZA3

second order supercycles in the Haq et al. (1987; 1988) sea level chart. Maximum

organic carbon burial associated with benthos-free, laminated sediments, indicating

bottom water anoxia occurred during 3rd order sea level highstands in the latest

Cenomanian and early-middle Turonian. These intervals coincide approximately with

sea level highstands of the Haq et al. (1987; 1988) sea level chart.

Higher frequency variability in organic matter-carbonate percentages was

additionally detected with dominant periodicities around 100 and 40 kyr (Kuhnt et al.,

Page 4: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

1997; 2004). These cycles, which are best expressed in the density logging data of

Shell-ONAREP exploration wells in the more distal part of the Tarfaya Basin, were

used as a powerful regional stratigraphic correlation tool. A total of 26 cycles was

discriminated, allowing detailed basinwide correlation of organic-rich sediments from

the upper part of the late Cenomanian Rotalipora cushmani Zone to the lower part of

the late Turonian Marginotruncana schneegansi Zone. The cyles were labelled cycles

-4 to -1 in the upper part of the R. cushmani Zone, cycle 0 including the extinction

level of R. cushmani, and cycles 1 to 22 in the Whiteinella archaeocretacea and

Helvetoglobotruncana helvetica Zones (Kuhnt et al., 1997; 2004). The logging record

ends in the uppermost part of the thick limestone-dominated interval between 201 and

208 m, which is correlative to the prominent limestone bed 1.26 in the MPL

succession.

BIOSTRATIGRAPHY

Mohammed Plage succession

The position of zonal boundaries for the R. brotzeni (= R. globotruncanoides),

R. reicheli, R. cushmani, and W. archaeocretacea Zones is based on the planktic

foraminiferal zonation of Caron (1985) and Robaszynski and Caron (1995), with

some modification, as the first appearance of R. reicheli appears to be latitudinally

diachronous (Robaszynski et al., 1994). While R. reicheli first appears in the upper

part of the Dixoni Zone in the late early Cenomanian of the Boreal realm, its first

occurrence is slightly later in the basal middle Cenomanian of the Tethyan realm

(Robaszynski et al., 1993). In the Tarfaya Basin, we place the lower/middle

Cenomanian boundary (corresponding to the Dixoni/Rhotomagense ammonite zonal

boundary) just below the first occurrence of R. reicheli, at an intermediate position

Page 5: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

between the Boreal and Tethyan correlations. In contrast to Robaszynski and Caron

(1995), we also use the last occurrence of R. reicheli in the middle of the

Rhotomagense Zone as the top of the R. reicheli Zone, since the first occurrence of R.

cushmani is difficult to define because this species is scarce, and shows gradual

evolution from R. montsalvensis in the lower middle Cenomanian. Moreover, the

stratigraphic position of the first occurrence of R. cushmani in relation to the

ammonite zonation strongly differs in the Boreal and Tethyan realms, whereas the LO

of R. reicheli is approximately synchronous (Robaszynski and Caron, 1995). We

additionally note that the extinction of R. greenhornensis, which normally occurs ~30

kyr before the extinction of R. cushmani, is coeval with the extinction of R. cushmani

(top of the R. cushmani Zone corresponding to the upper part of the Geslinianum

ammonite Zone) at the base of Unit 4 (bed 4.94) in the MPL succession, thus

indicating the presence of a hiatus.

The planktonic foraminiferal biostratigraphy of the MPL succession is

corroborated by ammonite collections from individual beds. The lowest Cenomanian

fauna is found in the summit of bed 9.17, and includes elements typical of the lowest

Cenomanian Neostlingoceras carcitanense Subzone, such as Neostlingoceras sp. and

Utaturiceras bethlahemense. The presence of the overlying Sharpeiceras schluteri

Subzone (Gale, 1995) is reflected by the occurrence of Sharpeiceras sp. in bed 7.26.

The highest lower Cenomanian ammonites are found in bed 6.2, above which

ammonites are absent up until bed 3.2. The lowest middle Cenomanian fauna is found

in bed 3.2, including Cunningtoniceras cunningtoni, a species typical of the C. inerme

Zone (Gale, 1995). This zone extends up to bed 3.12. Acanthoceras sp. including A.

rhotomagense, reflect the presence of the A. rhotomagense Zone from bed 2.13 up to

Page 6: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

bed 1.26. This fauna includes Calycoceras (Newboldoceras) cf. vergonense in bed

2.06, suggestive of the Turrilites acutus Subzone.

Shell-ONAREP Well S13

All four globally recognized Cenomanian planktonic foraminiferal zones were

identified in S13 (Kuhnt et al., 1990, Fig. 8):

(1) lower Cenomanian R. brotzeni – globotruncanoides Zone (358-278 m)

(2) latest lower to middle Cenomanian R. reicheli Zone (278-232 m)

(3) late Cenomanian R. cushmani Zone (232-183.2 m)

(4) latest Cenomanian W. archaeocretacea Zone (183.2-95 m), spanning the

Cenomanian/Turonian boundary

Within the expanded pelagic sequence in S13, several bio-events allow a

further subdivision of the four standard planktic foraminiferal zones. The last

occurrence (LO) of R. greenhornensis provides a distinct datum in the upper part of

the R. cushmani Zone, about 3.3 m below the final extinction of R. cushmani.

Immediately above the LO of R. greenhornensis a marked increase in radiolarian

abundance and the occurrence of ‘atypical’ specimens of R. cushmani with a high

trochospire and weakly developed keels were noted (Luderer and Kuhnt, 1997). This

change in zooplankton assemblage composition correlates with a pronounced positive

δ13C excursion in both carbonate and organic carbon (Kuhnt et al., 1990; Luderer and

Kuhnt, 1997). Above the extinction of R. cushmani s.l. at 183.2 m, planktonic

foraminiferal assemblages are dominated by hetereohelicids and unkeeled trochospiral

forms of Hedbergella and Whiteinella, including typical representatives of the zonal

marker W. archaeocretacea.

Page 7: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

PALEOBATHYMETRY

Results from a canonical correspondence analysis (CCA), based on benthic

foraminiferal assemblage counts, P/B-ratio and planktic foraminiferal morphogroups

(Gebhardt et al., 2004) support the paleobathymetric assignment of sedimentary

sequences in the MPL succession. The most significant factor recognized in the

ordination of benthic species and samples was water depth. The CCA identified

Bolivina anambra, Globulina lacrima, Lenticulina spissocostata and

Spiroplectammina sp. as typical “shallow water species”, and Praebulimina nannina,

Gavelinella dakotensis, Gavelinella sp., Saccammina alexanderi and Valvulineria

lenticula as “deep water species”. The suite of benthic foraminiferal assemblages

points to repeated periods of shallowing within a general deepening trend in the lower

part of the succession (R. brotzeni and R. reicheli Zones). In contrast, assemblages

from the upper part of the succession (R. cushmani and W. archaeocretacea Zones)

do not contain any shallow water indicators.

According to Gebhardt et al. (2004), a first sea level rise occurred between

beds 7.1 and 7.25, followed by a sea level fall (beds 7.25-7.26). The next rise, which

began in beds 7.28-7.30, continued until bed 6.17. A minor regression in beds 5.1-5.2

was succeeded by a long transgressive phase, continuing until deposition of beds 3.2-

3.8. A prominent regressive episode, indicated by unsually low P/B-ratios and paralic

benthic foraminiferal assemblages, occurred during deposition of the dark greenish

gray claystone in bed 3.9. This major regression was followed by a further

transgression (beds 3.12-3.19). A brief sea level drop is indicated in bed 2.1 by low

P/B-ratios and CCA values. A less pronounced fall occurred at the end of the R.

reicheli Zone (bed 2.12) within the main transgressive trend. A minor regression is

further indicated in beds 4.37 to 4.40 by lower P/B-ratios and CCA values.

Page 8: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

REFERENCES Caron, M., 1985, Cretaceous planktic foraminifera, in Bolli, H.M., Saunders, E., and Perch-Nielsen,

K., eds., Plankton stratigraphy, Cambridge, Cambridge University Press, p. 17-86. Choubert, G., Faure Muret, A., and Hottinger, L. 1966, Aperçu géologique du Bassin côtier de

Tarfaya (Stratigraphie), in Choubert, G., Faure Muret, A., Hottinger, L., Viotti, C., and Lecointre, G., eds., Le Bassin côtier de Tarfaya (Maroc Méridional): Notes et Mèmoires Service Géologique du Maroc, v. 175/1, p. 7-106.

Einsele, G., and Wiedmann, J. 1982, Turonian black shales in the Moroccan coastal basins: first upwelling in the Atlantic Ocean?, in von Rad, U., Hinz, K., Sarnthein, M., and E. Seibold, E., eds., Geology of the Northwest African Continental Margin: Berlin, Springer-Verlag, p. 393-414.

El Albani, A., Kuhnt, W., Luderer, F., Herbin, J.P., and Caron, M., 1999a, Paleoenvironmental evolution of the Late Cretaceous sequence in the Tarfaya Basin (southwest of Morocco), in Cameron, N.R., Bate, R.H., and Clure, V.S., eds., The Oil and Gas Habitats of the South Atlantic: Geological Society London, Special Publication, v. 153, p. 223-240.

El Albani, A., Vachard, D., Kuhnt, W., and Chellai, H., 1999b. Signature of hydrodynamic activity caused by rapid sea level changes in pelagic organic-rich sediments, Tarfaya basin (southern Morocco): C.R. Acad. Sci. Paris, Sciences de la terre et des planets, v. 329, p. 397-404.

Gale, A.S., 1995, Cyclostratigraphy and correlation of the Cenomanian Stage in Western Europe, in House, Mr.R., and Gale, A.S., eds., Orbital Forcing Timescales and Cyclostratigraphy: Geol. Soc. London Spec. Publ. v. 85, p. 177-197.

Gebhardt, H,, Kuhnt, W., and Holbourn, A., 2004, Foraminiferal response to sealevel change. Organic carbon flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco: Marine Micropaleontology, v. 53, p. 133-157.

Haq, B.U., Hardenbol, J., and Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156-1167.

Haq, B.U., Hardenbol, J., and Vail, P.R., 1988, Mesozoic and Cenozoic chronostratigraphy and eustatic cycles, in Wilgus, C.K. et al., eds., Seal-level research: An integrated approach: Society of Economic Paleontologists and Mineralogists Special Publication,v. 42, p. 71-108.

Kolonic, S., Wagner, T., Forster, A., Sinninghe-Damsté, J.S., Walsworth-Bell, B., Erba, E., Turgeon, Brumsack, H.-J., Chellai, E.H., S., Tsikos, H., Kuhnt, W., and Kuypers, M.M.M., 2005, Mechanisms of black shale deposition at the NW-African Shelf during the Cenomanian/Turonian Oceanic Anoxic Event 2: implications for climate coupling and global organic carbon burial: Paleoceanography, v. 20, PA 1006, doi:10.1029/2003PA000950.

Kuhnt, W., Herbin, J. P., Thurow, J., and Wiedmann, J. 1990, Distribution of Cenomanian-Turonian organic facies in the western Mediterranean and along the adjacent Atlantic Margin, in Huc, A.Y., ed., Deposition of Organic Facies: AAPG Studies in Geology, v. 40, p. 133-160.

Kuhnt, W., Nederbragt, A., and Leine, L., 1997, Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco): Cretaceous Research, v. 18, p. 587-601.

Kuhnt, W., Chellai, E.H., Holbourn, A., Luderer, F., Thurow, J., Wagner, T., El Albani, A., Beckmann, B., Herbin, J.-P., Kawamura, H., Kolonic, S., Nederbragt, S., Street S., and Ravilious, K., 2001, Morocco basin’s sedimentary record may provide correlations for Cretaceous paleoceanographic events worldwide: EOS, Transactions, American Geophysical Union, v. 82/33, p. 361-364.

Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J., and Wagner, T., 2004, Orbital-scale record of the Late Cenomanian-Turonian Oceanic Anoxic Event (OAE-2) in the Tarfaya Basin (Morocco): International Journal of Earth Sciences, doi: 10.1007/s00531-004-0440-5.

Leine, L. 1986, Geology of the Tarfaya oil shale deposit, Morocco: Geologie en Mijnbouw, v. 65, p. 57-74.

Luderer, F., and Kuhnt, W., 1997, A high resolution record of the Rotalipora extinction in laminated organic-carbon rich limestones of the Tarfaya Atlantic coastal basin (Morocco): Ann. Soc. Geol. Nord, v. 5 (2éme série), p. 199-205.

Robaszynski, F., and Caron, M., 1995, Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe-Méditerranée: Bull. Soc. Géol. France, v. 166, p. 681-692.

Robaszynski, F., Hardenbol, J., Caron, M., Amédro, F., Dupuis, C., González Donoso, J.-M., Linares, D., and Gartner, S., 1993, Sequence stratigraphy in a distal environment: the Cenomanian of the Kelaat Senan region of Central Tunisia: Bull. Centres Rech. Explor.-Prod. Elf Aquitaine, v. 17, p. 395-433.

Page 9: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Robaszynski, F., Caron, M., Amédro, F., Dupuis, C., Hardenbol, J., González Donoso, J.-M., Linares, D., and Gartner, S., 1994, Le Cénomanien de la region de Kelaat Senan (Tunisie centrale): litho-biostratigraphie et interpretation séquentielle: Revue de Paléobologie, Genève, v. 12, p. 351-505.

Von Rad, U., and Einsele, G., 1980, Mesozoic-Cainozoic subsidence history and palaeobathymetry of the northwest African continental margin (Aaiun Basin to D.S.D.P. Site 397): Philosophical Transactions of the Royal Society, London, A, v. 294,p. 37-50.

FIGURE CAPTIONS

Supplementary Figure 1: Topography and geology of MPL area with location of

logged sections along coastal cliff.

Supplementary Figure 2: Polished rock slabs showing characteristic lithologies in

S13: (1) organic carbon-lean, homogenous micritic limestones at 268.4 m; (2)

homogenous to strongly bioturbated marls with variable organic carbon content at

284.2 and 311.4 m; (3) organic-rich laminated marls at 177.0, 206.7, 216.1 and 277.7

m. Lower part of succession (lower to middle Cenomanian) is characterized by flame

structure bioturbation with rare intercalation of laminated TOC-rich intervals. Rare

limestone intervals exhibit irregular bedding structures probably representing

disconformities. Organic-rich laminated marls are more common in upper part of

succession, but bioturbation remains pervasive in early stage of OAE-2 carbon isotope

excursion (rock slab at 185.9 m).

Supplementary Figure 3: Selected thin sections of biomicritic limestones with

abundance of silt to fine sand size quartz grains estimated using particle analyzer tool

in ImageJ.

Page 10: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

de

uO

giug

aa

L

uorrahcemAaki

ebehC deu

O

Oum Esbed

Oued Amma Fatma90

40

g i e r a a L

CB196

1

76

rahmE´I medeK Tassagdelt

21

C

30

47

n a e c O c i t n a l t A

Albian to lowermost CenomanianCenomanianUppermost Cenomanian-to Turonian

(Pliocene)Moghrebian

Pleistocene

Dunes

Perennial wetland

Perennial stream

Cliff

11°30´11°35´11°40´

11°45´

28°10´

28°15´

11°40´ 11°35´

28°15´

Topographical Base Map: Carte du Maroc- 1/200 000- Province de Tarfaya Feuille NG-28-XXIV (1963)

AA

B

AB Vertical exaggeration 1:2010 m30 m50 m

giugaaL deuO

Section 7Section 4 Se

ction

1Se

ction

2

Sect

ion

5Se

ctio

n 6

Section 3

ATLANTIC OCEAN

0 2 4 6 8 km

72

38

8

“Mohammed Plage”

Mohammed Plage

11°45´

N

Supplementary Figure 1

Page 11: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Supplementary Figure 2

Page 12: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Supplementary Figure 3

Page 13: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

Supplementary Tables 1-6

Table 1: Mohammed Plage section: bed thicknesses

Table 2: Mohammed Plage section: composition of acid residues

Table 3: Mohammed Plage section: Stable isotope data

Table 4: Mohammed Plage section: Plankton/benthos ratios and total organic carbon

Table 5: Well S13: Stable isotope data

Table 6: Well S13: Pyrolisis data

Page 14: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 1 Section Bed-number Thickness (cm) Top of bed (m above base) 4 4.100 175 60.03 4.99 3 58.28 4.98 50 58.25 4.97 5 57.75 4.96 77 57.70 4.95 6 56.93 4.94 120 56.87 4.93 30 55.67 4.92 13 55.37 4.91 10 55.24 4.90 20 55.14 4.89 12 54.94 4.88 13 54.82 4.87 3 54.69 4.86 4 54.66 4.85 18 54.62 4.84 25 54.44 4.83 35 54.19 4.82 80 53.84 4.81 12 53.04 4.80 22 52.92 4.79 8 52.70 4.78 47 52.62 4.77 4 52.15 4.76 5 52.11 4.75 3 52.06 4.74 12 52.03 4.73 24 51.91 4.72 48 51.67 4.71 32 51.19 4.70 19 50.87 4.69 7 50.68 4.68 18 50.61 4.67 4 50.43 4.66 12 50.39 4.65 3 50.27 4.64 13 50.24 4.63 13 50.11 4.62 6 49.98 4.61 9 49.92 4.60 25 49.83 4.59 7 49.58 4.58 15 49.51 4.57 12 49.36 4.56 28 49.24 4.55 120 48.96 4.54 3 47.76 4.53 2 47.73 4.52 10 47.71 4.51 8 47.61 4.50 80 47.53 4.49 20 46.73 4.48 10 46.53 4.47 10 46.43 4.46 50 46.33 4.45 15 45.83 4.44 20 45.68

Page 15: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

4.43 20 45.48 4.42 15 45.28 4.41 15 45.13 4.40 30 44.98 4.39 25 44.68 4.38 15 44.43 4.37 50 44.28 4.36 15 43.78 4.35 30 43.63 4.34 15 43.33 4.33 80 43.18 4.32 10 42.38 4.31 30 42.28 4.30 70 41.98 4.29 80 41.28 4.28 10 40.48 4.27 20 40.38 4.26 70 40.18 4.25 2 39.48 4.24 20 39.46 4.23 12 39.26 4.22 17 39.14 4.21 5 38.97 4.20 8 38.92 4.19 10 38.84 4.18 14 38.74 4.17 5 38.60 4.16 15 38.55 4.15 7 38.40 4.14 20 38.33 4.13 5 38.13 4.12 20 38.08 4.11 35 37.88 4.10 20 37.53 4.9 15 37.33 4.8 40 37.18 4.7 25 36.78 4.6 60 36.53 4.5 20 35.93 4.4 25 35.73 4.3 10 35.48 4.2 30 35.38 4.1 20 35.08 2 2.17 15 34.88 2.16 8 34.73 2.15 18 34.65 2.14 10 34.47 2.13 20 34.37 2.12 40 34.17 2.11 8 33.77 2.10 11 33.69 2.9 9 33.58 2.8 6 33.49 2.7 38 33.43 2.6 13 33.05 2.5 12 32.92 2.4 35 32.80 2.3 13 32.45 2.2 12 32.32 2.1 20 32.20

Page 16: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

3 3.20 5 32.00 3.19 23 31.95 3.18 15 31.72 3.17 30 31.57 3.16 6 31.27 3.15 4 31.21 3.14 15 31.17 3.13 50 31.02 3.12 115 30.52 3.11 5 29.37 3.10 11 29.32 3.9 120 29.21 3.8 8 28.01 3.7 20 27.93 3.6 8 27.73 3.5 5 27.65 3.4 12 27.60 3.3 15 27.48 5 5.17=3.4 10 27.33 5.16=3.3 15 27.23 5.15=3.2 10 27.08 5.14=3.1 75 26.98 5.13 7 26.23 5.12 60 26.16 5.11 8 25.56 5.10 20 25.48 5.8 8 25.28 5.8 25 25.20 5.7 12 24.95 5.6 18 24.83 5.5 6 24.65 5.4 18 24.59 5.3 40 24.41 5.2 48 24.01 5.1 8 23.53 6 6.17=5.0 70 23.45 6.16 10 22.75 6.15 40 22.65 6.14 7 22.25 6.13 8 22.18 6.12 4 22.10 6.11 15 22.06 6.10 4 21.91 6.9 6 21.87 6.8 3 21.81 6.7 1 21.78 6.6 3 21.77 6.5 2 21.74 6.4 3 21.72 6.3 2 21.69 6.2 160 21.67 7 7.30 30 20.07 7.29 7 19.77 7.28 25 19.70 7.27 15 19.45 7.26 20 19.30 7.25 130 19.10 7.24 25 17.80 7.23 15 17.55 7.22 6 17.40

Page 17: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

7.21 8 17.34 7.20 10 17.26 7.19 10 17.16 7.18 10 17.06 7.17 10 16.96 7.16 4 16.86 7.15 5 16.82 7.14 15 16.77 7.13 10 16.62 7.12 5 16.52 7.11 12 16.47 7.10 5 16.35 7.9 25 16.30 7.8 20 16.05 7.7 5 15.85 7.6 15 15.80 7.5 5 15.65 7.4 15 15.60 7.3 5 15.45 7.2 10 15.40 7.1 230 15.30 8+9 8.3=9.16 100 13.00 8.2=9.15 10 12.00 8.1=9.14 230 11.90 9.13 10 9.60 8.0=9.12 25 9.50 9.11 230 9.25 9.10 40 6.95 9.9 60 6.55 9.8 60 5.95 9.7 40 5.35 9.6 45 4.95 9.5 140 4.50 9.4 75 3.10 9.3 135 2.35 9.2 35 1.00 9.1 65 0.65

Page 18: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 2 sample number

position in

section (m)

percent acid

residue

quartz (% of

residue)

Mica (% of

residue)

pyrite (% of

residue)

organic aggregates

(% of residue)

aggl. foraminifers

(% of residue)

biosiliceous material (% of residue)

dino-cysts

percent terrigenous

sand

1.03 35.43 0.88 70 a a 10 10 10 0.621.05 35.83 3.35 35 30 25 15 1.171.07 A 36.65 0.50 20 15 40 15 a 0.101.07 B 36.98 0.06 40 5 30 20 5 a 0.031.09 36.58 5.38 10 80 10 0.541.10 37.43 0.64 60 25 10 a 5 a 0.381.12 37.98 13.16 10 90 1.321.14 38.23 1.69 50 10 30 10 0.851.16 38.48 10.93 10 90 1.091.18 38.67 0.94 20 25 50 5 a 0.191.25 39.47 5.72 100 01.26 A 39.83 0.18 20 75 5 0.041.26 B 40.28 0.64 80 10 10 02.04 32.63 0.04 75 10 15 0.032.06 A 32.99 7.25 7 93 0.512.06 B 33.24 0.48 60 10 30 a a 0.292.08 33.46 1.24 80 5 5 10 0.992.10 33.64 1.36 85 10 5 1.152.13 34.27 1.11 90 10 1.002.14 A 34.42 1.39 95 a 5 1.322.14 B 34.56 6.36 98 2 6.232.16 34.69 13.74 10 90 1.372.18 A 34.93 1.54 30 40 a 30 0.462.18 B 35.03 0.66 60 a 20 20 a 0.403.02 27.03 3.54 98 1 1 a 3.473.04 27.28 0.84 65 a a 35 0.553.06 27.69 0.07 85 5 10 a 0.063.08 bottom

27.95 1.19 15 a a 80 5 0.18

3.08 top 27.97 0.07 70 a 25 5 0.053.09 B 28.16 0.35 40 40 5 15 0.143.09 D 28.31 0.19 30 65 a 5 03.09 F 28.46 0.23 a 100 03.09 H 28.61 0.17 100 03.09 L 28.76 1.46 90 10 0

Page 19: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

3.09 N 28.91 1.41 100 03.09 P 29.06 0.00 a a 03.09 R 29.21 0.03 a 1 9 90 03.10 bottom

29.23 0.00 a 0

3.10 mid 29.26 0.24 100 03.10 top 29.29 0.00 45 30 35 99 03.12 A 29.53 3.56 70 a 30 a 2.493.12 B 29.69 0.07 85 a 3 6 6 a 0.063.12 C 29.85 3.05 10 70 20 a 0.303.12 D 30.01 0.48 50 a 40 a 10 a 0.243.12 E 30.17 0.32 75 a 5 10 5 5 0.243.12 F 30.33 0.21 35 a 5 30 10 20 0.073.12 G 30.49 0.37 80 a 5 5 a 10 a 0.303.14 31.10 0.50 90 4 2 4 a a 0.453.18 31.65 0.19 95 a a a 5 0.195.01 23.49 0.06 95 a 5 a a a 0.065.03 A 24.11 0.45 92 a 3 a 5 a 0.425.03 B 24.21 2.33 10 a 85 5 0.235.03 C 24.31 0.68 a a 100 a a 05.05 24.59 29.81 90 10 26.835.07 24.89 0.50 95 a 1 4 a a 0.475.09 25.24 0.13 40 a a 30 30 0.055.11 25.52 0.99 95 a 3 2 a 0.945.13 26.20 0.82 90 1 1 4 4 0.746.02 A 20.18 1.27 95 a 3 2 a 1.216.02 B 20.29 2.76 100 a a 0 a 2.766.02 C 20.40 1.94 100 a a 0 1.946.02 D 20.51 2.33 90 a 10 2.106.02 E 20.62 5.37 60 a a 40 3.226.02 F 20.73 5.81 100 a a a 5.816.02 G 20.84 6.88 100 a a a 6.886.02 H 20.95 3.43 80 2,5 2 15 2.756.02 I 21.06 2.40 97 3 a a 2.336.02 J 21.17 5.22 55 a 30 15 2.876.02 K 21.28 0.54 98 a a 2 a a 0.536.02 L 21.39 4.43 30 60 10 1.336.02 M 21.50 3.39 40 50 10 a 1.366.02 top 21.61 0.51 90 5 5 0.466.04 21.71 0.29 80 10 10 a a 0.236.06 21.76 0.31 75 15 10 a a 0.23

Page 20: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

6.08 21.80 0.06 65 5 30 a a 0.046.10 21.89 0.11 20 a a 80 a a 0.026.11 21.99 0.23 a a 100 06.12 22.08 0.00 a 0 a 06.14 22.22 0.10 a 0 a 06.16 22.70 0.00 a 0 a 06.18 23.49 0.28 a a a 100 a a 07.01 top 14.15 0.43 100 a a a a 0.437.02 15.35 0.29 100 a a a 0.297.03 15.43 0.58 100 a a a 0.587.04 15.53 0.39 100 a a a 0.397.05 15.63 0.00 60 a a 40 a 07.06 15.73 1.04 83 10 7 a 0.867.07 15.83 1.75 50 a 50 a a 0.887.08 15.95 0.97 100 a a a 0.977.09 A 16.13 1.13 100 a a a a a 1.137.09 B 16.21 0.94 100 a a a a 0.947.11 16.41 1.44 90 a a 10 a 1.297.13 16.57 3.89 95 5 a a 3.697.15 16.80 1.81 80 a 15 5 1.447.17 16.91 0.71 75 a 5 20 a 0.537.19 17.11 0.50 40 5 50 5 0.207.21 17.30 0.24 30 30 40 a a 0.077.23 17.48 0.10 90 a 10 a a 0.097.25 A 17.93 0.63 35 a 5 60 a a 0.227.25 B 18.06 0.54 75 2 3 15 5 a 0.407.25 C 18.19 0.11 100 a a a a 0.117.25 D 18.32 1.12 60 3 35 2 0.677.25 E 18.45 0.47 60 a a 40 a 0.287.25 F 18.58 0.68 75 a a 20 5 0.517.25 G 18.71 0.96 75 2 5 13 5 0.727.25 H 18.84 0.73 95 a 5 a a 0.707.25 I 18.97 0.87 100 a a 0.877.27 19.38 1.49 100 a a 1.497.28 19.58 0.32 100 a a a a 0.327.29 19.74 3.89 20 5 75 a 0.78

a = accessory (<1%)

Page 21: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 3 bed number depth (m) d13C d18O

7.1top 14.15 -0.44 -3.68

7.2 15.35 -0.41 -2.43 7.3 15.43 -0.40 -2.06 7.4 15.53 -0.25 -2.99 7.5 15.63 -0.39 -1.94 7.6 15.73 -0.86 -3.51 7.7 15.83 -1.17 -4.83 7.8 15.95 -0.81 -2.45

7.9A 16.13 -0.25 -1.56 7.9B 16.21 -0.41 -1.43 7.11 16.41 -0.54 -1.40 7.13 16.57 -0.85 -3.11 7.15 16.80 -0.67 -1.70 7.17 16.91 -1.21 -1.90 7.19 17.11 -0.87 -1.71 7.21 17.30 -0.60 -1.50 7.23 17.48 -0.53 -1.50

7.25A 17.93 -0.69 -1.27 7.25B 18.06 -0.43 -1.27 7.25C 18.19 -0.89 -1.43 7.25D 18.32 -0.76 -1.54 7.25E 18.45 -0.93 -1.80 7.25F 18.58 -0.73 -1.40 7.25G 18.71 -0.71 -1.51 7.25H 18.84 -0.47 -1.25 7.25I 18.97 -1.30 -2.13 7.27 19.38 -0.90 -1.56 7.28 19.58 -0.50 -1.12 7.29 19.74 -1.06 -1.68 6.2A 20.18 -1.34 -1.62 6.2B 20.29 -0.89 -1.45 6.2B 20.29 -1.00 -1.49 6.2C 20.40 -1.05 -1.88 6.2D 20.51 -0.82 -1.38 6.2E 20.62 -0.87 -1.32 6.2F 20.73 -1.12 -1.68 6.2G 20.84 -1.16 -2.40 6.2H 20.95 -0.77 -1.40 6.2I 21.06 -1.34 -1.86 6.2J 21.17 -1.03 -1.83 6.2K 21.28 -1.05 -1.89 6.2L 21.39 -1.06 -1.33 6.2M 21.50 -1.56 -1.59

6.2TOP 21.61 -1.31 -1.23 6.2TOP 21.61 -1.39 -1.25

6.4 21.71 -1.88 -1.66 6.6 21.76 -1.97 -2.42 6.8 21.80 -1.86 -2.03

6.10 21.89 -2.00 -1.57 6.11 21.99 -1.94 -1.50 6.12 22.08 -2.63 -2.19 6.14 22.22 -1.68 -1.38 6.16 22.70 -1.83 -1.36

5.1 23.49 -1.63 -1.22 6.18 23.49 -1.71 -1.12 5.3A 24.11 -1.46 -1.06 5.3B 24.21 -2.19 -1.42

Page 22: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

5.3C 24.31 -3.34 -1.92 5.5 24.59 -2.22 -1.90 5.7 24.89 -1.56 -1.06 5.9 25.24 -1.61 -1.38

5.11 25.52 -1.80 -1.43 5.13 26.20 -0.51 0.42

3.2 27.03 -2.41 -2.44 3.2 27.03 -2.45 -2.22 3.4 27.28 -1.61 -1.33 3.6 27.69 -1.33 -1.16

3.8BOTTOM 27.95 -1.15 -1.68 3.8TOP 27.97 -1.09 -2.09

3.9B 28.16 -1.46 -1.62 3.9D 28.31 -1.40 -1.46 3.9F 28.46 -1.00 -1.26 3.9H 28.61 -0.76 -1.36 3.9L 28.76 -0.37 -1.54 3.9N 28.91 -0.52 -1.59 3.9P 29.06 -0.87 -1.50 3.9R 29.21 -0.96 -1.27

3.10BOTTOM 29.23 -1.04 -1.11 3.10BOTTOM 29.23 -1.07 -1.18

3.10MID 29.26 -0.87 -1.05 3.10TOP 29.29 -0.90 -0.96

3.12A 29.53 -2.48 -2.12 3.12B 29.69 -1.15 -1.25 3.12C 29.85 -1.15 -1.47 3.12C 29.85 -1.20 -1.63 3.12D 30.01 -1.22 -1.43 3.12E 30.17 -1.20 -1.38 3.12F 30.33 -1.04 -1.23 3.12G 30.49 -1.38 -1.27

3.14 31.10 -1.34 -1.64 3.18 31.65 -1.22 -1.34

2.4 32.63 -1.36 -1.30 2.6A 32.99 -1.00 -2.35 2.6A 32.99 -1.06 -2.43 2.6B 33.24 -1.31 -1.26

2.8 33.46 -1.00 -2.28 2.10 33.64 -1.45 -1.58 2.13 34.27 -1.27 -1.34

2.14A 34.42 -1.65 -2.11 2.14A 34.42 -1.84 -2.34 2.14B 34.56 0.45 -3.45

2.16 34.69 -1.66 -1.91 2.18A 34.93 -1.67 -1.62 2.18B 35.03 -1.03 -1.73

1.3 35.43 -2.08 -1.69 1.5 35.83 -2.65 -3.02

1.7A 36.58 -2.18 -1.77 1.7B 36.68 -2.15 -1.59

1.9 37.25 -0.30 -4.81 1.10 37.43 -3.20 -2.45 1.12 37.98 -0.76 -5.22 1.14 38.23 -3.27 -2.95 1.16 38.48 -0.30 -4.36 1.18 38.67 -2.58 -2.74 1.18 38.67 -2.57 -2.80 1.25 39.47 -0.16 -4.01

1.26A 39.83 -1.07 -2.98

Page 23: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

1.26B 40.28 -2.81 -2.12 4.27 40.60 -0.11 -4.13 4.28 40.90 -0.61 -3.59 4.29 41.25 -0.18 -3.69 4.30 41.55 -2.32 -2.45

4.33_BASE 42.53 -2.21 -3.39 4.33_MID 42.90 -1.57 -3.33 4.33_TOP 43.25 -0.63 -3.65

4.35 43.55 -1.46 -3.48 4.37_BASE 44.03 -0.44 -2.58

4.37_TOP 44.45 -0.69 -3.74 4.39 44.70 -2.91 -3.58

4.40_BASE 44.80 -2.50 -2.82 4.43 45.50 -0.56 -3.22 4.45 45.73 -1.35 -3.46

4.46_BASE 45.80 -1.14 -3.25 4.46_TOP 46.47 -1.00 -3.25

4.48 46.62 -1.73 -3.08 4.50_75 46.70 -1.16 -3.00

4.51_BASE 46.87 -1.38 -2.94 4.51_TOP 47.45 -1.20 -3.11

4.55_1 48.00 -1.82 -2.86 4.55_35 48.65 -1.44 -3.07

4.57_BASE 49.39 -0.75 -3.26 4.61 49.95 -0.78 -3.85 4.62 50.05 -0.98 -4.12 4.64 50.27 -0.83 -2.66 4.70 50.90 -1.18 -3.04

4.72_40 51.30 -1.02 -2.58 4.72_20 51.50 0.58 -2.70 4.72_5 51.70 0.12 -2.97

4.74 52.09 -0.56 -2.82 4.78_42 52.25 -0.56 -2.93 4.78_20 52.47 -1.33 -3.28 4.78_5 52.62 0.86 -2.87

4.80 52.90 -0.50 -2.86 4.82_25 53.30 -0.48 -3.39 4.82_5 53.50 -0.93 -3.50

4.84_BASE 54.18 -0.75 -3.27 4.84_TOP 54.43 -0.82 -3.27

4.89 54.88 0.20 -3.02 4.94_145 55.70 0.90 -3.92 4.94_125 55.90 0.86 -3.93

4.94_95 56.20 -0.54 -4.20 4.94_65 56.50 0.53 -4.93 4.94_45 56.70 0.99 -3.54 4.94_35 56.80 0.44 -4.67 4.94_5 57.10 -3.50 -5.90

4.96_75 57.25 0.13 -3.58 4.96_5 57.95 0.67 -4.01

4.98_50 58.05 0.82 -3.94 4.98_25 58.30 0.73 -3.87 4.98_5 58.50 1.11 -4.17

4.100_170 58.65 1.57 -3.85 4.100_150 58.85 0.81 -4.08 4.100_120 59.15 1.54 -3.72

4.100_90 59.45 1.69 -3.76 4.100_60 59.75 1.12 -3.06 4.100_30 60.05 1.61 -3.38

4.100_0 60.35 0.82 -2.97

Page 24: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 4 depth P/B-ratio TOC (%) 60.35 97 3.0 60.05 96 1.9 59.75 92 3.3 59.45 98 6.0 59.15 98 7.5 58.85 99 6.8 58.65 97 8.4 58.30 97 7.0 57.55 98 2.8 57.15 91 2.4 56.80 98 7.9 55.90 91 6.3 55.50 66 4.6 55.20 67 4.8 55.05 82 5.1 54.75 94 6.5 54.67 82 3.6 54.64 48 5.1 54.55 73 3.7 54.30 83 5.9 53.90 93 7.5 53.60 96 6.3 53.25 99 6.2 52.95 94 7.4 52.75 92 7.1 52.65 88 5.3 52.18 85 6.2 51.75 87 1.1 51.45 93 5.4 51.05 95 3.1 50.65 94 9.1 50.52 91 4.1 50.40 90 6.1 49.80 49 5.8 49.65 68 4.4 49.50 85 4.6 49. 11 6.0 48.25 81 6.7 47.90 67 5.9 47.75 60 5.0 46.20 96 8.7 45.65 88 4.7 45.30 57 5.2 45. 66 4.7 44.30 92 5.0 43.25 98 6.2 42.15 92 5.5 39.69 90 4.3 39.55 78 0.7 39.40 93 3.2 39.14 83 4.6 38.95 97 3.4 38.86 92 2.2

Page 25: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

38.70 77 0.9 38.59 83 3.5 38.33 91 1.7 38.05 95 2.2 37.90 95 1.0 37.55 86 3.9 36.95 96 4.3 36.45 25 4.3 36.32 88 1.5 36.10 86 3.6 35.92 90 0.9 35.70 93 2.3 35.18 92 3.5 34.98 95 2.1 34.51 92 2.4 34.26 96 2.8 34.14 86 1.9 33.94 82 2.2 33.86 82 3.9 33.62 69 2.6 33.38 91 2.9 33.28 92 2.3 32.78 95 1.9 32.44 19 1.9 32.28 88 3.7 32.13 94 2.0 31.76 40 2.6 31.10 81 1.3 30.80 87 0.8 30.60 76 1.0 30.35 78 3.3 29.91 80 0.7 29.90 86 0.7 29.74 69 1.0 28.99 29 0.7 28.94 42 0.1 28.70 45 1.4 28.49 78 1.2 28.16 84 4.9 28.02 86 4.4 27.81 55 5.3 27.24 79 0.6 27.20 74 2.4 26.48 70 2.4 26.03 87 4.5 25.80 85 6.0 25.65 81 1.7 25.53 51 0.8 25.38 88 2.9 25.13 68 5.3 24.93 81 4.8 24.41 82 5.7 23.59 75 2.5 23.28 85 2.4 22.99 80 1.0 22.45 76 4.6

Page 26: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

20.51 77 1.4 20.12 70 2.5 19.78 98 3.3 18.24 15 5.0 17.26 54 2.3 17.12 43 0.9 16.17 47 15.97 31 3.2 15.90 37 10.68 0 0.2 3.850 0 0.2

Page 27: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 5 S13 depth d13Ccarb d13Corg

170.00 1.54 -25.00170.00 2.82 -25.06170.50 0.53 -25.02172.00 0.16 -24.60176.00 0.44 -24.50176.00 0.57 -25.69177.00 -1.21 -25.32178.00 1.50 -24.02179.00 2.35 -25.80181.70 3.63 -25.49182.00 2.18 -24.90182.00 2.64 -23.82182.20 3.01 -23.49182.60 1.72 -25.25183.20 2.77 -25.60183.70 2.62 -25.44184.10 2.66 -25.67185.00 1.58 -24.80185.30 2.04 -26.09186.20 0.79 -25.91186.80 0.25 -26.20187.00 2.27 -25.54188.00 3.15 -27.45188.50 1.27 -27.67188.90 1.01 -26.80189.40 0.45 -27.66190.00 0.46 -27.63190.30 0.06 -27.50190.90 -0.10 -27.60191.30 0.98 -27.44192.20 -0.81 -28.50192.20 -0.14 -27.70194.50 0.91 -27.11196.10 0.84196.10 0.90 -27.50197.50 -0.52 -28.13198.70 -2.34 -27.61199.20 1.51 -28.39200.40 -0.37201.00 0.44201.90 0.05201.90 -0.04 -28.24202.70 1.05205.70 0.58206.70 -1.15206.70 -0.28206.70 -0.30208.10 0.14208.90 -0.58209.70 -0.79210.60 0.52210.60 1.08212.30 -9.50213.40 -0.23213.40 0.38 -27.96213.40 -0.20214.10 0.39

Page 28: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

216.10 0.33217.70 0.09219.50 -2.00223.00 -2.33223.20 -3.04225.00 -0.18225.90 -0.61228.80 0.00228.80 0.00232.50 -0.18236.00 0.75236.70 0.13239.50 0.62247.00 0.75247.00 0.64251.30 0.37251.80 -0.24254.00 0.19257.00 -0.70257.80 -0.13261.90 -0.36262.70 0.97262.70 1.02264.20 -0.27267.70 -2.45268.40 -0.92269.90 -0.87270.50 0.15 -27.88270.50 0.24277.70 -1.25277.70 -1.16279.50 0.28288.80 0.18289.30 -0.46296.30 -0.81297.20 -0.34298.50 -0.15302.50 -1.65307.30 -0.73311.00 -0.68311.40 -0.57311.40 -0.64314.00 -0.75314.10 -0.73319.40 -0.08322.00 -2.20323.30 -0.48328.40 -0.51331.00 -0.75331.00 -0.77334.00 -1.34336.00 -2.36342.60 -0.28347.00 -0.09349.10 0.22352.60 -0.85356.10 -0.57356.10 -0.61358.50 -0.48

Page 29: SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy … · 2008-12-02 · SUPPLEMENTARY MATERIAL Cenomanian Sequence Stratigraphy and Sea Level Fluctuations in the Tarfaya Basin

SUPPLEMENTARY TABLE 6 sample #

thickness of sample (m)

depth middle (m)

oil (l/t) Fischer essai

OM (%)

69 2.00 170.00 65 7.3070 2.00 172.00 115 15.8071 2.00 174.00 98 14.4072 2.00 176.00 62 9.1073 2.00 178.00 98 15.2074 2.00 180.00 88 13.0075 2.00 182.00 48 7.6676 2.00 184.00 73 10.3077 2.00 186.00 63 9.6078 2.00 188.00 29 4.2079 2.00 190.00 80 12.4080 2.00 192.00 45 6.9081 2.00 194.00 49 7.2082 2.00 196.00 48 7.9083 2.00 198.00 43 8.3084 2.00 200.00 43 6.3085 2.00 202.00 43 6.2086 2.00 204.00 36 4.2087 2.00 206.00 35 5.0488 2.00 208.00 43 7.1089 3.00 210.50 32 6.0090 3.00 213.50 38 6.1091 3.00 216.50 36 5.9092 3.00 219.50 43 6.6093 3.00 222.50 38 5.8094 3.00 225.50 41 5.2095 3.00 228.50 36 5.4096 3.00 231.50 34 6.2097 3.00 234.50 32 4.2098 3.50 237.75 35 6.5099 5.50 242.25 29 4.90100 3.00 246.50 27 4.60101 3.00 249.50 37 6.40102 4.00 253.00 34 5.90103 4.00 257.00 32 6.30104 4.50 261.25 25 5.70105 4.00 265.25 25 5.70106 1.90 269.50 35 7.50107 4.15 273.00 23 5.70108 5.00 277.50 31 5.40109 5.00 282.50 18 6.60110 5.00 287.50 26 6.30111 5.00 292.50 20 6.20112 4.00 297.00 18 3.30113 4.00 301.00 17 5.90114 4.00 305.00 20 5.20115 4.00 309.00 15 5.00116 4.00 313.00 50 3.95117 4.00 317.00 50 3.75118 4.00 321.00 90 3.75119 4.00 325.00 50 4.30120 3.00 338.50 12 3.56121 2.00 351.00 11 4.50122 2.50 358.00 80 3.30