Supplementary Information - Royal Society of Chemistry · Supplementary Information Cis ......

16
S1 Supplementary Information CisTrans and TransCis Isomerizations of Styrylcoumarins in the Solid State. Importance of the Location of Free Volume in Crystal Lattices Jarugu Narasimha Moorthy,* ,† Parthasarathy Venkatakrishnan, Govardhan Savitha and Richard G. Weiss *,§ Department of Chemistry, Indian Institute of Technology, Kanpur – 208016, INDIA § Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA Table of Contents Graphic Table of Contents 1. 1 H and 13 C NMR Spectra of the cis-Styrylcoumarin 1 S2 2. 1 H and 13 C NMR Spectra of the trans-Styrylcoumarin 1 S3 3. 1 H and 13 C NMR Spectra of the cis-Styrylcoumarin 2 S4 4. 1 H and 13 C NMR Spectra of the trans-Styrylcoumarin 2 S5 5. 1 H and 13 C NMR Spectra of the cis-Styrylcoumarin 3 S6 6. 1 H and 13 C NMR Spectra of the trans-Styrylcoumarin 3 S7 7. 1 H and 13 C NMR Spectra of the cis-Styrylcoumarin 4 S8 8. 1 H and 13 C NMR Spectra of the trans-Styrylcoumarin 4 S9 9. Cavity Plot for cis-1,2-bis(1-naphthyl)ethylene S10 10. Cavity Plot for Z-2-Benzylidenebutyrolactone S11 11. Cavity Plot for the E-2-Chlorocinnamic acid S12 12. Cavity Plot for the Z-2-Chlorocinnamic acid S13 13. Cavity Plot for the trans-1,2-Dibenzoylethylene S14 14. Cavity Plot for the Z-2-Methylcinnamic acid S15 15. Cavity plot for the cis-1,2-bis(azulenyl)ethylene S16 O O O O hν cis trans Ph solution state Ph R R R = H/Me solid state × hν

Transcript of Supplementary Information - Royal Society of Chemistry · Supplementary Information Cis ......

S1

Supplementary Information

Cis→Trans and Trans→Cis Isomerizations of Styrylcoumarins in the Solid State.

Importance of the Location of Free Volume in Crystal Lattices

Jarugu Narasimha Moorthy,*,† Parthasarathy Venkatakrishnan,† Govardhan Savitha† and Richard G. Weiss*,§

†Department of Chemistry, Indian Institute of Technology, Kanpur – 208016, INDIA §Department of Chemistry, Georgetown University, Washington, DC 20057-1227, USA

Table of Contents Graphic

Table of Contents 1. 1H and 13C NMR Spectra of the cis-Styrylcoumarin 1 S2 2. 1H and 13C NMR Spectra of the trans-Styrylcoumarin 1 S3 3. 1H and 13C NMR Spectra of the cis-Styrylcoumarin 2 S4 4. 1H and 13C NMR Spectra of the trans-Styrylcoumarin 2 S5 5. 1H and 13C NMR Spectra of the cis-Styrylcoumarin 3 S6 6. 1H and 13C NMR Spectra of the trans-Styrylcoumarin 3 S7 7. 1H and 13C NMR Spectra of the cis-Styrylcoumarin 4 S8 8. 1H and 13C NMR Spectra of the trans-Styrylcoumarin 4 S9 9. Cavity Plot for cis-1,2-bis(1-naphthyl)ethylene S10 10. Cavity Plot for Z-2-Benzylidenebutyrolactone S11 11. Cavity Plot for the E-2-Chlorocinnamic acid S12 12. Cavity Plot for the Z-2-Chlorocinnamic acid S13 13. Cavity Plot for the trans-1,2-Dibenzoylethylene S14 14. Cavity Plot for the Z-2-Methylcinnamic acid S15 15. Cavity plot for the cis-1,2-bis(azulenyl)ethylene S16

O OO O

cis trans

Ph

solution state

PhR R

R = H/Me

solid state×hν

S2

Figure S1. 1H NMR spectrum of cis-1.

Figure S2. 13C NMR spectrum of cis-1.

O Ocis-1

S3

Figure S3. 1H NMR spectrum of trans-1.

Figure S4. 13C NMR spectrum of trans-1.

O O

trans-1

S4

Figure S5. 1H NMR spectrum of cis-2.

Figure S6. 13C NMR spectrum of cis-2.

O O

cis-2

S5

Figure S7. 1H NMR spectrum of trans-2.

Figure S8. 13C NMR spectrum of trans-2.

O O

trans-2

S6

Figure S9. 1H NMR spectrum of cis-3.

Figure S10. 13C NMR spectrum of cis-3.

O

Me

O

cis-3

S7

Figure S11. 1H NMR spectrum of trans-3.

Figure S12. 13C NMR spectrum of trans-3.

O

Me

Otrans-3

S8

Figure S13. 1H NMR spectrum of cis-4.

Figure S14. 13C NMR spectrum of cis-4.

O

Me

O

cis-4

S9

Figure S15. 1H NMR spectrum of trans-4.

Figure S16. 13C NMR spectrum of trans-4.

O

Me

O

trans-4

S10

cis-trans isomerization of cis-1,2-bis(1-naphthyl)ethylene

cis-1,2-bis(1-napthyl)ethylene trans-1,2-bis(1-napthyl)ethylene

cis−trans

Figure S17. The cavity plot for cis-1,2-bis(1-naphthyl)ethylene. The voids of radius 1.0 Å can be identified over the napthyl ring in the direction along which cis→trans isomerization may occur. The direction for the motion of the ring is indicated by an arrow. (ref: Aldoshin, S. M.; Alfimov, M. V.; Atovmyan, L. O.; Kaminsky, V. F.; Razumov, V. F.; Rachinsky, A. G. Mol. Cryst. Liq. Cryst. 1984, 108, 1).

S11

cis-trans isomerization of Z-2-benzylidenebutyrolactone

O

O

H

cis−trans

Z-2-benzylidenebutyrolactone E-2-benzylidenebutyrolactone

O

OH

Figure S18. The cavity plot for Z-2-benzylidenebutyrolactone. Notice that the location of the empty spaces for the motions of the phenyl ring may permit Z→E isomerization (ref: Kaupp, G.; Haak, M. Angew.Chem., Int. Ed. 1996, 35, 2774).

S12

trans-cis isomerization of E-2-chlorocinnamic acid

COOH

PhCl

trans-cis PhCl

HOOC

E-2-chlorocinnamic acid Z-2-chlorocinnamic acid

Figure S19. The cavity plot for the E-2-chlorocinnamic acid. There are no spaces between the aryl rings, but the cages above and below the carboxy moiety can be identified suggesting the possibility of the motion of the latter as being responsible for the initial course of the isomerization. In this case, E→Z isomerization is observed. (ref: (a) James, T. C. J. Chem. Soc. 1911, 99, 1620. (b) Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. Chem. Soc., Perkin Trans. 2. 1972, 1750).

S13

The case of Z-2-chlorocinnamic acid. No cis-trans isomerization!

PhCl

HOOC

Z-2-chlorocinnamic acid

COOH

PhCl

E-2-chlorocinnamic acid

no trans-cis

Figure S20. The cavity plot for the Z-2-chlorocinnamic acid. There are no voids between the aryl rings, but they can be found in the region close to Cl atoms. In this instance, no Z→E isomerization is observed. (ref: Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. Chem. Soc., Perkin Trans. 2. 1972, 1750).

S14

trans-cis isomerization of trans-1,2-dibenzoylethylene

O

O

Ph

PhO

PhO Ph

trans-cis

trans-1,2-dibenzoylethylene cis-1,2-dibenzoylethylene

Figure S21. The cavity plot for the trans-1,2-dibenzoylethylene. The cages lie in the direction in which the phenyl rings may undergo in-plane motion to afford cis product. In this case, facile trans-cis isomerization is observed. (ref: (a) Bart, J. C. J.; Schmidt, G. M. J. Recl. Trav. Chim. Pays-Bas. 1978, 97, 231. (b) Kaupp, G.; Schmeyers, J. J. Photochem. Photobiol. B: Biol. 2000, 59, 15).

S15

The case of Z-2-methylcinnamic acid. No cis-trans isomerization!

Z-2-methylcinnamic acid

COOH

PhMe PhMe

HOOC

E-2-methylcinnamic acid

No cis−trans

Figure S22. The cavity plot for the Z-2-methylcinnamic acid. The cages lie over the edges of the phenyl rings, but their location is in the direction opposite to the axis about which the motion of atom may facilitate the isomerization. Hence no Z→E isomerization is observed. (ref: Filippakis, S. E.; Leiserowitz, L.; Rabinovich, D.; Schmidt, G. M. J. J. Chem. Soc., Perkin Trans. 2. 1972, 1750).

S16

The case of cis-1,2-bis(azulenyl)ethylene. No cis-trans isomerization!

No cis−trans

cis-1,2-bis(azulenyl)ethylene trans-1,2-bis(azulenyl)ethylene

Figure S23. The cavity plot for the cis-1,2-bis(azulenyl)ethylene is shown above. The sites of location of empty cages may not permit isomerization (ref: Natarajan, A.; Mague, J. T.; Venkatesan, K.; Arai, T. ; Ramamurthy, V. J. Org. Chem. 2006, 71, 1055).