Supplementary Information for Chemical Characterization of ...€¦ · Supplementary Information...

25
Supplementary Information for Chemical Characterization of Nanoparticles and Volatiles Present in Mainstream Hookah Smoke Véronique Perraud, 1* Michael J. Lawler, 1 Kurtis T. Malecha, 1 Rebecca M. Johnson, 2 David A. Herman, 2 Norbert Straimer, 3 Michael T. Kleinman, 2 Sergey A. Nizkorodov 1 and James N. Smith 1 1 Department of Chemistry, University of California, Irvine, CA 92697 2 School of Medicine, University of California, Irvine, CA 92697 3 Department of Epidemiology, University of California, Irvine, California, USA

Transcript of Supplementary Information for Chemical Characterization of ...€¦ · Supplementary Information...

Supplementary Information for

Chemical Characterization of Nanoparticles and Volatiles Present in

Mainstream Hookah Smoke

Véronique Perraud,1* Michael J. Lawler,1 Kurtis T. Malecha,1 Rebecca M. Johnson,2 David

A. Herman,2 Norbert Straimer,3 Michael T. Kleinman,2 Sergey A. Nizkorodov1 and James

N. Smith1

1Department of Chemistry, University of California, Irvine, CA 92697

2School of Medicine, University of California, Irvine, CA 92697

3Department of Epidemiology, University of California, Irvine, California, USA

2

1.WaterpipeSmokingProtocol

Allsmokingsessionswereperformedusingthesamewaterpipe(AnahiSmoke,model

“Fantasy”)describedinFigureS1:

FigureS1.(a)Glasswaterpipeusedinthisstudy.(b)Close-upoftheconventionaltobaccopreparationlooselypackedinsidetheheadofthewaterpipe.

Priortoanexperiment,theglasswaterpipewasentirelycleanedusingdeionizedwater

followedbyisopropylalcoholandkeptovernightinanovenmaintainedat~100°Ctoevaporate

theresidualsolvents.ThepreparationofthetobaccomixturewasadaptedfromShihadehetal.

head(containingthetobacco)

charcoals

bowlcontaining800mLofdeionizedwater

(b)Conventionaltobaccolooselypackedinsidethehead

smokinghoseconnectedtothedilutionsystem

body

(a)waterpipe

3

(2012)andShihadehetal.(2014),where10goftobaccomixture,whichwerestoredinthe

darkat~4Cuntilitsuse,wereweighedandleftonthebenchatroomtemperatureovernight

forconditioning.Atthebeginningofeachexperiment,800mLofdeionizedwaterwasaddedto

thewaterpipereservoirandthedownstemwasplaced39mmunderthewatersurface.Then,

the10gofpreparedtobaccowerepackedlooselyinsidethewaterpipeheadandwrappedwith

perforatedaluminumfoil.Threecubesofcharcoalwereheatedonahotplateforabout10

min,insuringthatallthefacesofthecubewereincandescent.Thecubeswerethenplacedon

thefoilsurfaceatopthetobaccofor5minpriortothefirstpuff.Threecharcoalcubeswere

necessarytouniformlyheatthetobacco.Asmokingpump,operatingatatotalflowrateof~10

Lmin-1,wasconnectedtoasolenoidaircontrolvalve(IngersollRand,modelP251SS-012-D)

thatwastimedbyacontrolboard(TeagueEnterprises,modelTE-2)andwasusedtoprovidea

4spuffatafrequencyof2min-1.Anadditionalflowof~3Lmin-1(sumofalltheanalytical

instrumentflowrates),yieldingatotalpuffflowrateof~13Lmin-1,wasdrawnintoadilution

systemasdescribedbelow.Allsmokingsessionswereexecutedfor30min.Attheendofthe

experiment,theremainingtobaccowasweighedtoestimatethelossoftobaccoproductfor

onesession.

2.FastFlowDilutionSystem

(a)Description.Thefastflowdilutionsystem(Figure1)beginswithatwo-valvedeliverysystem

thatselectsbetweensampling~3Lmin-1ofthetotalpuffflow,whichcorrespondstothesum

oftheinletflowstoallinstruments,orthesameflowrateofpurifiedair(FTIRpurgeair

generator,ParkerBalstonmodel75-62).Thisassuredthatacontinuousflowofsampleairwas

4

providedtotheinstrumentsatalltimeregardlessofwhetherornotapuffwasbeingmade.

Theuseofbothvalveswassimplytoincreasetheairthroughputthroughthesystem.The

valvesweresynchronizedtothepuffsusingatimingsignalprovidedbythecontrolboard.

Exitingthetwo-valvedeliverysystem,thesamplewasthendilutedbyacustomtwo-stagefast

flowdilutionstainlesssteeltube(Blairetal.2015).Thepuffwasdilutedfirstbyadditionofa

drypurifiedairflowof~16Lmin-1usingamassflowcontroller(SierraInstruments,model

SmartTrak50).Afractionofthedilutedflow(~3Lmin-1)wastransferredtoaseconddilution

stagethroughanorifice,whereitwasdilutedbyadditionofanother~15Lmin-1ofdrypurified

air.Again,onlyafractionofthatflow(~3Lmin-1)wasdrawnintoastainlesssteelmixing

chamber,towhichsamplingtubesfortheindividualinstrumentswereattached.Eachdilution

branchwasequippedwithacriticalorifice(O’KeefeControlsCo.,TypeK2)andHEPAfilter(Pall

Corp.,model12144)followedbyvacuumpumpstoexhausttheexcessairataconstantrate.

Thebalanceoftheflowsthroughthefastflowdilutionsystemwasevaluatedandcontrolledat

thebeginningofeachexperimenttoassurepropertransferofthesampletotheinstruments

andalsotoconfirmthatthedilutionsystemwasoperatedunderconsistenttemperatureand

pressureconditions.TheReynoldsnumberforthedilutionsystemwasestimatedtobe

1.8×102,indicatinglaminarflowconditions(Hinds1999).

Attheendofthedilutionsystemtherewasastainlesssteelcylinderactingasamixing

chamberwithatotalvolumeof4L(50cmlong;10cmdiam.).Theaverageresidencetimeof

thesampleflowinthedilutiontubewasestimatedtobe21s,whiletheresidencetimein

chamberwasabout1.3min.Thesamplewasdeliveredatthebottomofthechamberviaa0.25

cmO.D.stainlesssteeltubingwhilealltheinstrumentswereconnectedtoseparateindividual

5

outletsatthetopofthechamber.Thisensuredpropermixingofthesampleandaccomplished

some“averaging”ofthepuffstomakemoreconsistentaerosolsizedistributionmeasurements.

(b)Particletransmissionefficiencythroughthedilutionsystem.Inordertodeterminethe

transmissionefficiencyofparticlesthroughthefastflowdilutionsystem,particleswere

generatedusingaconstantoutputatomizer(TSI,model3076)containingamixtureof2:1

dimethylamine/sulfuricacidinwater(DMA,Aldrich,40%wt.inwater;H2SO4,FisherScientific,

96.2%).Apressureof~20psigofdrycleanairwasusedattheinletoftheatomizerandaflow

of~2.8Lmin-1exitedtheatomizerandpassedthroughaNAFIONTMmembranedrier(Perma

PureLLC,modelFC125-240-5MP)todrytheparticles.Afractionofthisdryaerosolflow(~0.1L

min-1)wasdilutedwith1.4Lmin-1ofdrycleanairandsampledfirstthroughthefastflow

dilutionsysteminabsenceofthetwo-valvedeliverysystemusingthescanningmobilityparticle

sizer(SMPS),describedabove.Inthiscase,onlytheSMPSwasconnectedtothemixing

chamberlocatedattheendofthefastflowdilutionsystemdrawingatotalof~1.5Lmin-1

throughout.Thetwo-stagedilutionairwasreducedto10.5Lmin-1and~6.0Lmin-1forthe

dilutionstages1and2,respectively.Inaddition,thoseexperimentswerecarriedoutwithan

ultrafinecondensationparticlecounter(TSIInc.,model3025A)insteadofamodel3760particle

counterasdescribedbelow.ThefollowingflowrateswereusedfortheSMPS:1.5Lmin-1

aerosolflow,10Lmin-1sheathflow.

Thetransmissionefficiency(TE)oftheparticlesthroughthedilutiontubeitselfwas

observedtobehigh[TE(dil.tube)~1]atalldiameters(FigureS2a)whilethemixingchamber

showedreducedTEfortheparticleswithdiametersmallerthan50nm(FigureS2b).The

6

resultingtransmissionefficiencycurveforthechamberwithoutthetwo-valvedeliverysystem

wasdeterminedastheratioofthesizedistributionmeasuredwiththemixingchambertothe

sizedistributionmeasuredwithout(FigureS2c).

FigureS2.Sizedistributionsof2:1DMA:H2SO4particlesmeasuredattheatomizeroutput(nodilution;greentrace)and(a)afterthedilutiontube(nomixingchamber;purpletrace),(b)afterthedilutionchamber(redtrace).(c)Resultingtransmissionefficiencyofmixingchamber.Particlesfromamixtureof2:1DMA/H2SO4weregeneratedusingaconstantoutputatomizer.Afractionoftheoutletflowoftheatomizer(0.1Lmin-1wasatomizedwith1.4Lmin-1ofdrycleanairbeforebeensampledusingthedilutionsystem.

(a)

(b)

(c)

7

Then,thetwo-valvedeliverysystemwasaddedanditsefficiencycurvedetermined

usingonlyonechannel(nopuff).Fortheseexperiments,nodilutionoftheoutputofthe

atomizerwasusedpriortosamplingusingthedilutionsystem.FigureS3showstheresulting

sizedistributionandtransmissionefficiencyofthetwo-valvedeliverysystemdeterminedasthe

ratioofthesizedistributionmeasuredwiththetwo-valvedeliverysystemtothesize

distributionmeasuredwithout.

FigureS3.Sizedistributionsof2:1DMA:H2SO4particlesmeasuredafterthedilutiontube+mixingchamber(bluetrace)andafterthetwo-valvedeliverysystem+dilutiontube+mixingchamber(greentrace).(b)Resultingtransmissionefficiencyofthetwo-valvedeliverysystem.Particlesfromamixtureof2:1DMA/H2SO4solutionweregeneratedusingaconstantoutputatomizer.Afractionoftheoutletflowoftheatomizer(1.4Lmin-1)wassampledusingthedilutionsystem(nodilutionpriorsampling).

(a)

(b)

8

Theoveralltransmissionefficiency,TE(overall),wasthenobtainedas:

!" #$%&'(( = !" *+(. -./% ×!" 2ℎ'4/%& ×!"(-6# − $'($%898-%4)

TheresultingoveralltransmissionefficiencythroughtheentiresystemisshowninFigureS4

anddemonstratesexcellenttransmissionforparticleslargerthan50nm(TE(overall)>89%).

FigureS4.Overalltransmissionefficiency(TE)ofthedilutionsystemcalculatedfromequation !" #$%&'(( = !" *+(. -./% ×!" 2ℎ'4/%& ×!"(-6# − $'($%898-%4).

3.WaterpipeMainstreamSmokeSampling

Relativehumidityandtemperatureweremonitoredcontinuouslyusingtwoprobes

(VaisalaCorp.,modelHMP110)locatedattheentranceofthetwo-valvesystem(sampling

mainstreamsmokefromthewaterpipe)andatthemixingchamber(aftertwo-stagedilution

withdrypurifiedair).Acarbonmonoxide(CO)monitor(ThermoFisherScientific,model48i)

wasusedtomonitortheCOlevelsinthemainstreamemissionofthewaterpipeafterthetwo-

stagedilution(flowrate~0.45Lmin-1).Calibrationoftheinstrumentwasperformedusinga

9

standardgasmixturecontaining8.99ppmCOinhelium(PraxairCorp.),andacalibrationfactor

of1.08wasdetermined.

Sizedistributionsoftheparticlesemittedinthemainstreamofthewaterpipewere

measuredusingascanningmobilityparticlesizer(SMPS)composedofanelectrostaticclassifier

(TSI,Inc.,model3080L),featuringalongdifferentialmobilityanalyzer(DMA;TSIInc.,model

3081),combinedwithacondensationparticlecounter(CPC)(TSI,Inc.,model3760).Aerosol

wassampledfromthemixingchamberataflowrateof1.5Lmin-1andthesheathairofthe

DMAwas5Lmin-1withvoltagescannedfrom5V-10kV,allowingadistributionoverthemobility

diameterrangeof4to500nmtobemeasured.Aone-directionalscantimeof60swasused.

InstrumentcontrolanddataacquisitionwereperformedusingsoftwarewrittenintheLabView

programminglanguage(NationalInstrumentsCorp.).Theinversiontotheactualparticlesize

distributionwasperformedusingamodifiedversionoftheWashingtonStateUniversitySMPS

DataInversionToolkitwrittenintheIgorProprogramminglanguage(Wavemetrics,Inc.).Even

withtheeffortstodilutethemainstreamsmoke,theCPCwasnotalwaysabletocountparticles

rapidlyenoughforthehighconcentrationsmeasured.Poissoncountingstatisticswereusedto

correctthedatawhenthissaturatedcountingconditionwasapparent.

Thechemicalcompositionofultrafineparticlesfromthedilutedmainstreamwaterpipe

smokewasmeasuredusingTDCIMS(Lawleretal.2018;Smithetal.2004).Theinstrumenthad

aninletflowrateof~1.5Lmin-1andisequippedwithatime-of-flightmassspectrometerwitha

resolvingpowerof~3500(TofwerkAG,modelHTOF).Fortheseexperimentsabipolaraerosol

neutralizerwasusedtochargethesampledaerosolbecausetheunipolarchargersused

typicallywithTDCIMSsufferedfromleakscausedbythepressuredropinducedbythedilution

10

system.Thislimitedourabilitytoisolatesize-dependentcomposition,sowereport

compositiontypicalofsub-100nmparticles.Polydispersedparticleswerecollectedfor2-10

minonthetipofaPtwirebyelectrostaticprecipitation.Typicalestimatedsamplemasswas

0.2-1.4ng,basedoncharacterizationofsize-resolvedcollectionefficiencyusingatomized

aerosolandthemeasuredaerosolsizedistributionsduringtheexperiments.Thecollected

particlesweresubsequentlythermallydesorbedovera1-mintemperaturerampandsoakfrom

roomtemperatureto~600˚C.Positiveionmodewasrecordedforallexperiments,

correspondingtochemicalionizationofdesorbednanoparticleconstituentsusing(H2O)nH3O+

(n=1-3)reagentions,formingH+adductsofclosed-shellmolecules,i.e.[M+H]+.

Real-timemeasurementsoftheorganicgasesfromthedilutedmainstreamsmokewere

performedusingahighresolutionPTR-ToF-MS(IoniconAnalytik,PTR-ToF-MS8000).The

operatingprincipleofthePTR-ToF-MShasbeendescribedpreviously(Jordanetal.2009).

Briefly,volatileorganiccompoundssampledbytheinstrumentcanundergoprotontransfer

reactionwiththeH3O+reagent,formingprimarily[M+H]+ionsiftheprotonaffinityofthe

analyteishigherthanthatofwater.Theinstrumentwasoperatedwithadriftvoltage,

temperatureandpressureof600V,60°Cand2.2mbarrespectively(resultinginaratioofthe

electricfield(E)tothenumberdensityofthedrifttubebuffergasmolecules(N)ofE/N~135Td

where1Td=10-17Vcm2)andaflowrateof0.1Lmin-1through1.59mmO.D.PEEKtubinginlet

heatedat70°C.Thedatawereacquiredusinga1stimeresolution.Mass-to-chargecalibration

wasverifiedatthebeginningofeachexperimentusingfourisotopicionsincludingH318O+at

m/z21.022,16O18O+atm/z33.994,(H2O)H318O+atm/z39.033andacetoneatm/z59.049([M+

H]+)fromroomair.Inaddition,headspaceoverpure1,3-diiodobenzene(98%,Sigma-Aldrich)

11

wassampledatthebeginningofsomeexperimentstomasscalibratethehigherrangeofmass-

to-chargevaluesusingitscorrespondingfragmentionatm/z203.943([C6H4I2+H–I]+)

(Stockwelletal.2015).

4.ReferenceCigaretteSmokingProtocol

Thecigaretteswereconditionedatarelativehumidityof~60%bymaintainingthem

enclosedinadesiccatorabovea~75%wt.aqueousglycerolsolutionforatleast48hpriorto

use.Theinletofthedilutionsystemwasslightlymodifiedtomakeitpossibletosmokethe

cigaretteartificiallyusingapuffflowof~1Lmin-1thatwascombinedwithdrypurifiedairto

makeatotalof~3Lmin-1asrequiredbyourinstrumentsuite.Thecigarettewaslitusingan

electroniclighterforthedurationofthefirstpuffandatotalof7puffsweresmokedforeach

cigarette(2spuff;every60s).Thetotaldilutionfactorofthecigaretteemissionsampled

throughtheentiresystemincludingthe2-stageactivedilutionandthepufftimestep(2spuff;

58spurifiedair)was~3250.

12

5.RelativeHumidityandTemperatureProfilesDuringWaterpipeSmoking

FigureS5.Representativerelativehumidity(RH)timeprofile(a)andtemperatureprofile(b)obtainedduringawaterpipesmokingsessionwiththeconventionaltobacco.EachdatapointcorrespondstotheaveragevalueofRHandtemperaturemeasuredovertwo-minutetimeintervals.Theblueopeneddatapointscorrespondtomeasurementsattheexitofthewaterpipehose(beforethedilutiontube)andtheredfilleddatapointscorrespondtomeasurementsatthemixingchamber.

hookahsmokingsession

hookahsmokingsession

(a)

(b)

13

6.OnlineMeasurementsofVolatileOrganicCompoundsbyPTR-ToF-MS

FigureS6.TypicalunitmassresolutionPTR-ToF-MSmassspectrafromthewaterpipemainstreamsmokeofthethreetobaccosinvestigatedincluding(a)theconventionaltobacco,(b)thenicotine-freeherbaltobaccoand(c)thedarkleafunwashedtobacco,and(d)the3R4Freferencecigarette.Allspectrawerecollectedattheendofthesmokingsession(thelast10puffsforthewaterpipesamples,andthelastpuffforthecigarettesample)andthebackgroundsignalhasbeensubtractedout.ThepeaksindicatedwithastarcorrespondtotheO2

+ionatm/z32andthehydroniumion-watercomplex(H2O)2H

+atm/z37thatdidnotsubtractoutcompletely.

14

FigureS7.ExpandedviewofthePTR-ToF-MSspectrashowingtheseparationofmultiplepeaksobservedatnominalm/z42,43,47,57,69,91,93,107,129and163.Theredtracecorrespondstothesample,whilethebluetraceisthebackground.

15

TableS1.Relativeiondistributionnormalizedtom/z45(acetaldehyde)forwaterpipeexperimentwithglycerolonlyandallthreeinvestigatedtobaccos.Numbersinparenthesesfortheconventionaltobacco,thenicotine-freeherbaltobaccomixtureandthedarkleafunwashedtobaccorepresentonestandarddeviationofnreplicatemeasurements.

Nominalm/z Assignment Glycerol

only(n=1)Conventional

(n=4)Herbal(n=2)

Darkleaf(n=2)

31 [CH2O+H]+ 0.53 0.23(0.007) 0.02(0.002) 0.03(0.004)33 CH4O+H]+ 0.12 0.02(0.002) 0.01(0.000) 0.01(0.000)41 [C3H4+H]+ 0.09 0.17(0.006) 0.02(0.001) 0.02(0.003)43 [C2H2O+H]+ 0.37 0.07(0.006) 0.04(0.001) 0.04(0.002)45 [C2H4O+H]+ 1 1 1 157 [C3H4O+H]+ 0.23 0.26(0.008 0.25(0.002) 0.27(0.002)59 [C3H6O+H]+ 0.16 1.09(0.110) 0.08(0.007) 0.10(0.014)61 [C2H4O2+H]+ 0.66 0.10(0.011) 0.05(0.000) 0.05(0.004)75 [C3H6O2+H]+ 0.20 0.28(0.008) 0.26(0.001) 0.27(0.001)93 [C3H8O3+H]+ 0.004 0.07(0.003) 0.07(0.000) 0.07(0.000)

16

FigureS8.TypicalunitmassresolutionmassspectraobtainedusingthePTR-ToF-MSfromthewaterpipemainstreamsmokeof(a)onlycharcoal+waterconditions(notobacco),(b)theconventionaltobaccowithoutcharcoal(noheat)and(c)glycerolonly(notobacco).Allspectrawerecollectedattheendofthesmokingsession(thelast10puffsforthewaterpipesamples)andthebackgroundsignalhasbeensubtractedout.Spectra(d)resultedfromnebulizedglycerolaqueousparticlesgeneratedusingahospitalnebulizer(MicroMistnebulizer;HudsonRCI®).ThepeaksindicatedwithastarcorrespondstotheO2

+ionatm/z32andthehydroniumion-watercomplex(H2O)2H+atm/z37thatdidnotsubtractoutcompletely.

17

FigureS9.ExpandedviewofthePTR-ToF-MSspectrashowingm/z79fortheconventionaltobaccomixture(redtrace),theherbaltobacco(orangetrace),thedarkleafunwashedtobacco(greentrace)comparedtothecharcoalonly(notobacco)experiment.Forcomparison,theconventionaltobaccowithoutcharcoal(pinktrace),theglycerolonly(darkbluetrace)experimentsandthe3R4Freferencecigarette(lightbluetrace)arealsoshown.Allspectraarebackgroundsubtracted.

18

FigureS10.ComparisonofaveragedunitmassresolutionPTR-ToF-MSmassspectraasafunctionofsmokingtime.Eachspectrumcorrespondstoanaverageofspectratakenover10puffs(5min).Conventionaltobaccorunperformed(a)under‘normal’condition(charcoal+water+shisha)and(b)withoutwaterinthewaterpipebowl.Allspectraarebackgroundsubtracted.Negativepeakscorrespondtom/z32(O2

+)and37(H2O)2H+incompletelyremovedbythesubtraction.

19

FigureS11.ExpandedviewofthePTR-ToF-MSspectracollectedfortheconventionaltobacco(withandwithoutwaterpresentinthewaterpipebowl)showingtheevolutionofthesignalatnominalm/z33,47and163asafunctionoftime(numberofpuffs).Eachspectrumcorrespondstoanaverageover10puffsandisbackgroundsubtracted.

withH2O withoutH2O

20

7.SizeDistributionMeasurements

FigureS12.Typicalsizedistributionsforindividualsmokingsessionsmeasuredforthreedifferentshishasincluding(a)theconventionaltobacco,(b)thenicotine-freeherbaltobacco,and(c)thedarkleafunwashedtobacco,aswellasa3R4Freferencecigarette(d).Concentrationsarecorrectedfordilutionandsize-dependentsamplinglossesthroughtheexperimentalsystem.Thestartofthesmokingsessioncorrespondstothesuddenincreaseontheparticlenumberconcentration.

Inabsenceofcharcoal(noheat),noparticleswereobserved.Becauseoftheirsimilarities,

particlesizedistributionresultsfrom‘charcoalonly’and‘glycerolonly’experimentsare

averagedtogetherandtheresultingaverageddistributionispresentedinFigureS13b.This

similaritysuggeststhatthemajortobaccoadditiveglycerolisnottheprimarydriverofnew

particleformationorgrowthinhookahsmokeaerosol.

10

2

46

100

2

46

15:155/26/17

15:303R4F cigarette

dN/dlogDp

100101102103104105

10

2

46

100

2

46

09:455/17/17

10:00 10:15 10:30 10:45

Herbal10

2

46

100

2

46

diam

eter

(nm

)

15:005/22/17

15:15 15:30 15:45

Conventional

10

2

46

100

2

46

diam

eter

(nm

)

09:455/18/17

10:00 10:15 10:30 10:45

Dark leafunwashed

a. b.

c. d.

21

FigureS13.Sizedistributionofparticlesmeasuredfromhookahmainstreamsmokecollected(a)inabsenceofwaterinthewaterpipebowl(conventionaltobacco),and(b)duringanexperimentwherethetobaccowasreplacedwith10gofglycerol.IntensityscaleisthesameasinFigure3inthemainmanuscript.

10

2

46

100

2

46

diam

eter

(nm

)

14:455/23/17

15:00 15:15 15:30

no H2O 10

2

46

100

2

46

diam

eter

(nm

)13:45

5/25/1714:00 14:15 14:30

glycerol

a. b.

22

8.TDCIMSMeasurements

FigureS14.Size-binnedsamplemasscollected(ng)fromthehookahmainstreamsmokebytheTDCIMSforatypicalhookahexperiment.

23

FigureS15.TDCIMSmassspectraofultrafineparticlescollectedfromhookahmainstreamsmokefrom(a)theconventionaltobacco,(b)thenicotine-freeherbaltobacco,(c)thedarkleafunwashedtobacco,and(d)the3R4Freferencecigarette.Formulasnexttothepeaksaregivenintheirdetectedionicform(asanH+adduct),withthechargesymboldroppedtoavoidclutter.Thepresentedmassspectraareaveragesoftwotofourexperimentsperformedusingthesametobacco,witherrorbarscorrespondingtoonestandarderrorofthemean.Labeledionsare“detectable”bythecriteriathattheirbackground-subtractedabundancesareeithertwostandarderrorsgreaterthanzerofortheaverage,oriftheyweretwostandarderrorsabovezeroforeveryindividualexperiment.Onlydetectableionsabove0.7%ofthetotalsignalarelabeled.Glycerolanditsclusterswereexcludedbecauseofvariableandlargegasphasebackgrounds.Therangeofthem/zaxisischosentohighlightlikelymolecular(unfragmented)specieswithhighconfidenceofformulaidentification.

0.4

0.3

0.2

0.1

0.0

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C7H

7O2

C6H

5O3

C5H

9O4

C6H

11O

4

C5H

13O

5

C6H

11O

5C

6H13

O5

C7H

19O

4C

6H13

O6

C9H

11O

4C

10H

17O

3C

8H13

O5

C9H

11O

5

C9H

13O

5C

12H

25O

2

C9H

17O

7

C12

H17

O5

C9H

19O

8

0.16

0.12

0.08

0.04

0.00

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

11O

4

C6H

11O

5

C10

H15

N2

C9H

10N

O2

C8H

13O

4

C9H

11O

4

C9H

13O

5

C12

H25

O2

C11

H15

O5

C13

H19

O4

C12

H17

O5

C9H

19O

8

0.15

0.10

0.05

0.00

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

9O4

C6H

11O

4C

6H15

O4

C6H

11O

5

C6H

13O

5

C7H

11O

5C

6H14

NO

5C

6H13

O6

C9H

11O

4C

8H13

O5

C9H

13O

5

C9H

15O

6

C8H

17O

7

C9H

17O

7 C9H

19O

8

a.

b.

c. 0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Sig

nal F

ract

ion

260250240230220210200190180170160150140130120m/z

C6H

7O3

C6H

9O3

C5H

8NO

3C

5H9O

4

C6H

9O4

C6H

11O

4 C6H

11O

5

C10

H11

O2

C10

H15

N2

C7H

11O

5C

6H13

O6

C13

H14

N C10

H9O

4

C7H

13O

6

C11

H13

O3

0.15

0.10

0.05

0.00

Sig

nal F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

9O4

C6H

11O

4C

6H15

O4

C6H

11O

5

C6H

13O

5

C7H

11O

5C

6H14

NO

5C

6H13

O6

C9H

11O

4C

8H13

O5

C9H

13O

5

C9H

15O

6

C8H

17O

7

C9H

17O

7 C9H

19O

8

a.

b.

0.4

0.3

0.2

0.1

0.0

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C7H

7O2

C6H

5O3

C5H

9O4

C6H

11O

4

C5H

13O

5

C6H

11O

5C

6H13

O5

C7H

19O

4C

6H13

O6

C9H

11O

4C

10H

17O

3C

8H13

O5

C9H

11O

5

C9H

13O

5C

12H

25O

2

C9H

17O

7

C12

H17

O5

C9H

19O

8

0.16

0.12

0.08

0.04

0.00

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

11O

4

C6H

11O

5

C10

H15

N2

C9H

10N

O2

C8H

13O

4

C9H

11O

4

C9H

13O

5

C12

H25

O2

C11

H15

O5

C13

H19

O4

C12

H17

O5

C9H

19O

8

0.15

0.10

0.05

0.00

Sign

al F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

9O4

C6H

11O

4C

6H15

O4

C6H

11O

5

C6H

13O

5

C7H

11O

5C

6H14

NO

5C

6H13

O6

C9H

11O

4C

8H13

O5

C9H

13O

5

C9H

15O

6

C8H

17O

7

C9H

17O

7 C9H

19O

8

a.

b.

c.

0.4

0.3

0.2

0.1

0.0

Sig

nal F

ract

ion

260250240230220210200190180170160150140130120m/z

C7H

7O2

C6H

5O3

C5H

9O4

C6H

11O

4

C5H

13O

5

C6H

11O

5C

6H13

O5

C7H

19O

4C

6H13

O6

C9H

11O

4C

10H

17O

3C

8H13

O5

C9H

11O

5

C9H

13O

5C

12H

25O

2

C9H

17O

7

C12

H17

O5

C9H

19O

8

0.16

0.12

0.08

0.04

0.00

Sig

nal F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

11O

4

C6H

11O

5

C10

H15

N2

C9H

10N

O2

C8H

13O

4

C9H

11O

4

C9H

13O

5

C12

H25

O2

C11

H15

O5

C13

H19

O4

C12

H17

O5

C9H

19O

8

0.15

0.10

0.05

0.00

Sig

nal F

ract

ion

260250240230220210200190180170160150140130120m/z

C5H

9O4

C6H

9O4

C6H

11O

4C

6H15

O4

C6H

11O

5

C6H

13O

5

C7H

11O

5C

6H14

NO

5C

6H13

O6

C9H

11O

4C

8H13

O5

C9H

13O

5

C9H

15O

6

C8H

17O

7

C9H

17O

7 C9H

19O

8

a.

b.

c.

(a)Conventional tobacco

(b)Herbaltobacco

(c)Dark leafunwashed tobacco

(d)3R4FCigarette

24

FigureS16.Highresolutionpeakfittingofnominalm/z163fortherawaveragedmassspectrumofnon-background-correctedsignalfromacigarettesmokingexperiment.C6H11O5

+(levoglucosan)andC10H15N2

+(nicotine)arethemaincontributorstothespectrum.

163.3163.2163.1163.0

m/Q (Th) (not auto-updated after calibration)

4000

3000

2000

1000

0

Ion

coun

ts p

er b

in

C9H7

O3

C6H1

1O5

C10H

11O2

C9H1

1N2O

C7H1

5O4

C11H

15O

C10H

15N2

C8H1

9O3

C12H

19

C9H2

3O2Peak list:

List 1

Area fit = 84%

25

References

Blair,S.L.,S.A.Epstein,S.A.Nizkorodov,N.Staimer.2015.Areal-timefast-flowtubestudyofVOCandparticulateemissionsfromelectronic,potentiallyreduced-harm,conventional,andreferencecigarettes.AerosolSci.Tech.49:816-827.doi:10.1080/02786826.2015.1076156.

Hinds,W.C.1999.AerosolTechnology:Properties,Behavior,andMeasurementofAirborneParticles,2ndEdition.NewYork:JohnWiley&Sons.

Jordan,A.,S.Haidacher,G.Hanel,E.Hartungen,L.Mark,H.Seehauser,R.Schottkowsky,P.Sulzer,T.D.Mark.2009.Ahighresolutionandhighsensitivityproton-transfer-reactiontime-of-flightmassspectrometer(PTR-TOF-MS).Int.J.Massspectrom.286:122-128.doi:10.1016/j.ijms.2009.07.005.

Lawler,M.J.,M.P.Rissanen,M.Ehn,R.L.Mauldin,N.Sarnela,M.Sipila,J.N.Smith.2018.Evidencefordiversebiogeochemicaldriversofborealforestnewparticleformation.Geophys.Res.Lett.45:2038-2046.doi:10.1002/2017gl076394.

Shihadeh,A.,T.Eissenberg,M.Rammah,R.Salman,E.Jaroudi,M.El-Sabban.2014.Comparisonoftobacco-containingandtobacco-freewaterpipeproducts:Effectsonhumanalveolarcells.NicotineTob.Res.16:496-499.doi:10.1093/ntr/ntt193.

Shihadeh,A.,R.Salman,E.Jaroudi,N.Saliba,E.Sepetdjian,M.D.Blank,C.O.Cobb,T.Eissenberg.2012.Doesswitchingtoatobacco-freewaterpipeproductreducetoxicantintake?AcrossoverstudycomparingCO,NO,PAH,volatilealdehydes,"tar"andnicotineyields.FoodChem.Toxicol.50:1494-1498.doi:10.1016/j.fct.2012.02.041.

Smith,J.N.,K.F.Moore,P.H.McMurry,F.L.Eisele.2004.Atmosphericmeasurementsofsub-20nmdiameterparticlechemicalcompositionbythermaldesorptionchemicalionizationmassspectrometry.AerosolSci.Tech.38:100-110.doi:10.1080/02786820490249036.

Stockwell,C.E.,P.R.Veres,J.Williams,R.J.Yokelson.2015.Characterizationofbiomassburningemissionsfromcookingfires,peat,cropresidue,andotherfuelswithhigh-resolutionproton-transfer-reactiontime-of-flightmassspectrometry.Atmos.Chem.Phys.15:845-865.doi:10.5194/acp-15-845-2015.