Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References...

48
Supplemental Table 1: References used for evidence criteria per patient Gene Candidate Gene Evidence Categories ABCA5 1 A1 (Sun, 2009 1 ), C1 (Allikments, 1996 2 ; Dassa, 2001 3 ; Petry, 2003 4 ) , C2 (Kubo, 2005 5 ) ACTG2 B1 (Olson, 1998 6 ; Riviere, 2012 6 ; Guo, 2007 7 ; Milewicz, 2010 7 ; Nowak, 1999 8 ; Zhu, 2003 9 ; Procaccio, 2006 10 ), B3 (Qian, 1996 11 ; Sun 2009), C1 (Lehtonen, 2012 12 ), C6 (Kumar, 1997 13 ) ACTG2 A2 (Ambry internal patient, Oct 2012), B1 (Olson, 1998 6 ; Riviere, 2012 6 ; Guo, 2007 7 ; Milewicz, 2010 7 ; Nowak, 1999 8 ; Zhu, 2003 9 ; Procaccio, 2006 10 ), B3 (Qian, 1996 11 ; Sun 2009), C1 (Lehtonen, 2012 12 ), C6 (Kumar, 1997 13 ) ACTG2 A2 (Ambry internal patients, Oct 2012 and May 2013), B1 (Olson, 1998 6 ; Riviere, 2012 6 ; Guo, 2007 7 ; Milewicz, 2010 7 ; Nowak, 1999 8 ; Zhu, 2003 9 ; Procaccio, 2006 10 ), B3 (Qian, 1996 11 ; Sun 2009), C1 (Lehtonen, 2012 12 ), C6 (Kumar, 1997 13 ) AIMP2 2 B1 (Feinstein, 2010 14 ; Park, 2008 15 ), C1 (Park, 2010 16 ; Kim, 2002 17 ), C6 (Corti, 2003 18 ) ARHGAP11A 3 B5 (Kandpal, 2006 19 ), C1 (Xu, 2013 20 ), C5 (Xu, 2013 20 ) ARV1 A1 (Alazami, 2015 21 ), C1 (Ikeda, 2016 22 ; Fujita and Kinashita, 2012 23 ; Tinkelenberg, 2000 24 ; Kajiwara, 2008; Swain, 2002; Tong, 2010), C5 (OMIM # 300868; OMIM# 614080; OMIM# 615398) BASP1 B1 (Caroni, 1997 25 ; Maekawa,2003 26 ; Allen,2007 27 ), B2 (Frey, 2000 28 ), C1 (Odagaki, 2009 29 ; Kropotova,2013 30 ), C5 (OMIM #614583) BPTF B1 (Tsurausaki, 2012 31 ; Tzeng, 2014 32 ; VanHoudt, 2012 33 ), B3 (Landry, 2008 34 ), C1 (Barak, 2003 35 ; Xiao,2001 36 ), C2 (Badenhorst, 2002 37 ; Badenhorst,2005 38 ) BRD4 B1 (Rodriguez, 2012 39 ), B2 (Houzelstein, 2002 40 ), C1 (Floyd, 2013 41 ; Dey, 2000 42 ) CACNA1E B1 (Lacinova, 2005 43 ) B2 (Weiergraber, 2006 44 ; Zaman, 2011 45 ) B3 (Williams, 1994 46 ) C1 (Breustedt, 2003 47 ; Deitrich, 2003 48 ) CDC42 B3 (Kang,2008 49 ; Wirth, 2013 50 ), C1 (Cotteret, 2002 51 ; Urbanska, 2008 52 ), C2 (Chen,2006 53 ), C4 (Heilstedt, 2003 54 ), C5 (Endris, 2002 55 ) CDC42 A1 (Ambry internal patient, Oct 2013), B3 (Kang,2008 49 ; Wirth, 2013 50 ), C1 (Cotteret, 2002 51 ; Urbanska, 2008 52 ), C2 (Chen,2006 53 ), C4 (Heilstedt, 2003 54 ), C5 (Endris, 2002 55 ) CLTC C1 (Sudhof, 2004 56 ), C2 (Miesenbock, 1998 57 ; Kasprowicz, 2008 58 ), C4 (Ballif, 2010 59 ), C5 (Chahrour, 2012 60 ) COQ4 B1 (Doimo, 2014 61 ), C1 (Trevisson, 2011 62 ; Quinzii, 2007), C2 (MGI: 4441729), C5 (Doimo, 2007 61 )

Transcript of Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References...

Page 1: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

Supplemental Table 1: References used for evidence criteria per patient

Gene Candidate Gene Evidence Categories

ABCA51 A1 (Sun, 20091), C1 (Allikments, 19962; Dassa, 20013; Petry, 20034) , C2 (Kubo, 20055)

ACTG2 B1 (Olson, 19986; Riviere, 20126; Guo, 20077; Milewicz, 20107; Nowak, 19998; Zhu, 20039; Procaccio, 200610), B3 (Qian, 199611; Sun 2009), C1 (Lehtonen, 201212), C6 (Kumar, 199713)

ACTG2 A2 (Ambry internal patient, Oct 2012), B1 (Olson, 19986; Riviere, 20126; Guo, 20077; Milewicz, 20107; Nowak, 19998; Zhu, 20039; Procaccio, 200610), B3 (Qian, 199611; Sun 2009), C1 (Lehtonen, 201212), C6 (Kumar, 199713)

ACTG2 A2 (Ambry internal patients, Oct 2012 and May 2013), B1 (Olson, 19986; Riviere, 20126; Guo, 20077; Milewicz, 20107; Nowak, 19998; Zhu, 20039; Procaccio, 200610), B3 (Qian, 199611; Sun 2009), C1 (Lehtonen, 201212), C6 (Kumar, 199713)

AIMP22 B1 (Feinstein, 201014; Park, 200815), C1 (Park, 201016; Kim, 200217), C6 (Corti, 200318)

ARHGAP11A3 B5 (Kandpal, 200619), C1 (Xu, 201320), C5 (Xu, 201320)

ARV1 A1 (Alazami, 201521), C1 (Ikeda, 201622; Fujita and Kinashita, 201223; Tinkelenberg, 200024; Kajiwara, 2008; Swain, 2002; Tong, 2010), C5 (OMIM # 300868; OMIM# 614080; OMIM# 615398)

BASP1 B1 (Caroni, 199725; Maekawa,200326; Allen,200727), B2 (Frey, 200028), C1 (Odagaki, 200929; Kropotova,201330), C5 (OMIM #614583)

BPTF B1 (Tsurausaki, 201231; Tzeng, 201432; VanHoudt, 201233), B3 (Landry, 200834), C1 (Barak, 200335; Xiao,200136), C2 (Badenhorst, 200237; Badenhorst,200538)

BRD4 B1 (Rodriguez, 201239), B2 (Houzelstein, 200240), C1 (Floyd, 201341; Dey, 200042)

CACNA1E B1 (Lacinova, 200543) B2 (Weiergraber, 200644; Zaman, 201145) B3 (Williams, 199446) C1 (Breustedt, 200347; Deitrich, 200348)

CDC42 B3 (Kang,200849; Wirth, 201350), C1 (Cotteret, 200251; Urbanska, 200852), C2 (Chen,200653), C4 (Heilstedt, 200354), C5 (Endris, 200255)

CDC42 A1 (Ambry internal patient, Oct 2013), B3 (Kang,200849; Wirth, 201350), C1 (Cotteret, 200251; Urbanska, 200852), C2 (Chen,200653), C4 (Heilstedt, 200354), C5 (Endris, 200255)

CLTC C1 (Sudhof, 200456), C2 (Miesenbock, 199857; Kasprowicz, 200858), C4 (Ballif, 201059), C5 (Chahrour, 201260)

COQ4 B1 (Doimo, 201461), C1 (Trevisson, 201162; Quinzii, 2007), C2 (MGI: 4441729), C5 (Doimo, 200761)

DAP3 C1 (Cavdar Koc, 200163; Morgan, 200164), C2 (Kim, 200765), C3 (Kissil, 199966) C5 (OMIM # 613070)

DGKZ1 B1 (Hofmann, 199967; Okada, 199968; Nilius, 200769), B2 (Rodriguez, 200170), C1 (Leach, 200771; vanBlitterswijk, 200072; Bordi, 199973; Pacheco, 199674), C5 (Leach, 200771)

Page 2: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

DLL4 B1 (McDaniell, 200675; Stittrich, 201476; Markus, 200277), C1 (Shutter, 200078), C2 (Duarte, 200479; Yan, 201080)

DNMT3A C1 (Feng, 2005; Vire, 2006), C2 (Okano, 1999; Feng, 2010), C5 (Chedin, 2011), C6 (Jiang, 2013)

DNM1 B1 (Fassio, 201181; Greengard, 199382; Saitsu, 200883), B2 (Boumil, 201084; Ford, 201185), B3 (Ferguson, 201286; Nakata, 199187), C1 (Ferguson, 201286), C3 (Ford, 201185)

DPYSL24 B3 (Inagaki, 200088; Charrier, 200389), B5 (Chu, 201090), C1 (Hensley, 201191; Goshima, 199592; Chae, 200993; Khanna, 201294; Chi, 200995; Brittain, 200996; Bretin, 200697), C2 (Brittain, 201198)

EMILIN1 B3 (Doliana, 200199; Zacchigna, 2006100; Colombati, 2000101), C1 (Colombatti, 2000101; Colombatti, 2011102), C2 (Zanetti, 2004103; Zacchigna, 2006100; Danussi, 2008104), C5 (Jobsis, 1996105)

ETV63 B4 (Hock, 2004106; Schindler, 2009107), C1 (Ciau-Uitz, 2010108; Peker, 2013109; Stegmaier, 1995110), C4 (Raimondi, 1993111; Stegmaier, 1995110), C6 (Van Vlierberghe, 2011112)

FGR5 B3 (Inoue, 1990113), C1 (Eiseman & Bolen, 1992114; Drazen, 1996115; Lee, 2011116; Vicentini, 2002117), C2 (Vicentini, 2002117), C5 (Han, 2009118; Gourh, 2010119; Schreiner, 2002120; Banin, 1996121; Finan, 1996122; Rivero-Lezcano, 1995123)

GNB1 C1 (Smrcka, 2008124; Arshavsky, 2002125; Okae, 2010), C2 (Kitamura, 2006126; Lobanova, 2013127), C5 (Pierce,2001128; Mylvaganam, 2006129; Okae & Iwakura, 2010130; Niswender, 2010131; Ruano, 2010132), C6 (DECIPHER 250604)

H3F3A A2 (Deciphering Developmental Disorders; decipher.sanger.ac.uk), B1 (Najmabadi, 2015133; Bartholdi, 2007134), C1 (Ederveen, 2011135; Bhasin, 2006136; Maze, 2015137)

HDAC1 C1 (Hildmann, 2007138; Saha & Pahan, 2006139; Abel, 2008140), C4 (Levy, 2011141; Sanders, 2011142), C5 (Qui, 2012143), C6 (LeBlanc, 2011144; Phiel, 2001145; Williams, 2001146)

HDAC36B1 (Williams, 2010147; Ambry patient with HDAC1 de novo missense; O’Roak, 2012148; Saitsu, 2014149; Pons, 2015150; Gregoire, 2007151; Ebert, 2013152), B3

(Mahlknecht, 1999153; Broide, 2007153; Takami, 2000154; Shen, 2005155; Debacker, 2012156), C1 (Haggarty & Tsai, 2011157; Borrelli, 2008158; Li, 2000159; Wen, 2000160; Guenther, 2001161; Codina, 2005162; Watson, 2012163), C2 (Montgomery, 2008164; Norwood, 2014165)

HNRNPK B2 (Charroux, 1999166), C1(Fukuda, 2009167; Thyagarajan, 2008168), C5 (Kim, 2013169; Thierry, 2012170)

HNRNPK A2 (Ambry internal patient, Feb 2014; Au, 2015171), B2 (Charroux, 1999166), C1 (Fukuda, 2009167; Thyagarajan, 2008), C3 (Proepper, 2011172; Folci, 2014173), C5 (Kim, 2013169; Thierry, 2012170)

HNRNPR B2 (Glinka, 2010174), B3 (Glinka, 2010174; Rossoll, 2003175), C1 (Rossoll, 2002176), C5 (Dombert, 2014177)

HTR2C B1 (Maze, 2015137), B5 (Firth, 2009178), C1 (Everreen, 2011135), C2 (Couldrey, 1999179), X5 (Najmabadi, 2015133; Bartholdi, 2007134)

IL21R C1 (Spolski, 2008180; Hamming, 2012181), C2 (Ozaki, 2002182; Jin, 2009183), C5 (Leonard, 2000184; Spolski, 2008180; OMIM# 600802; OMIM# 614162; OMIM# 613796; OMIM# 209950; OMIM# 147060)

ITGA11 B3 (Lehnert, 1999185; Tiger, 2001186), C1 (Lehnert, 1999185; Velling, 1999187; Lu, 2010188), C2 (Popova, 2004189; Popova, 2007190), C5 (Lu, 2010188),

ITSN14 B3 (Guipponi, 1998191; Sengar, 1999192; Pucharcos, 2001193), B4 (Koh, 2004194; Marie, 2004195; Koh, 2007196), C1 (Pechstein, 2010197), C2 (Yu, 2008198; Sengar, 2013199), C6 (Pucharcos, 1999200; Cataldo, 2000201; van der Crabben, 2010202)

JAK15 B1 (Macchi, 1995203; Russell, 1995204; Kouro, 2009205; Hambleton, 2013206; Minegishi, 2007207), C1 (Yamaoka, 2004208), C2 (Rodig, 1998209; Sabrautzki, 2013210)

Page 3: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

KCNA2 A2 (Pena, 2015211), B3 (Sheng, 1994212; Wang, 1994213; Lu, 2002214), C1 (Salkoff, 1992215; Yellen, 2002216; Grizel, 2014217), C2 (Brew, 2007218; Xie, 2010219), C5 (OMIM# 160120; Browne, 1994220)

LAS1L B3 (Castle, 2010221), C1 (Castle, 2010221), C5 (Castle, 2012222), C6 (Narla, 2010223; Freed, 2010224)

LPHN16 B1 (Arcos-Burgos, 2010225; Domene, 2011226; Fromer, 2014227), B3 (Kreienkamp, 2000228; Silva, 2009229; Boucard, 2014230; Meza-Aguilar, 2014231), C1 (Fredriksson, 2003232; Capogna, 2003233; Deak, 2009234; Lelyanova, 2009235; Meza-Aguilar, 2014231), C2 (Kellendonk, 2009236; Silva, 2010237)

LRFN22 B3 (Wang, 2006238; Morimura, 2006239), C1 (Nam, 2011240), C5 (Mikhail, 2011241)

LRFN5 B3 (Ko, 2006242; Morimura, 2006239; Wang, 2008243; Mah, 2010244), B5 (De Bruijn, 2010245), C1 (Morimura, 2006239; Mah, 2010244), C4 (Mikhail, 2011241)

MADD B1 (Wada 1997246; Des Portes 1997247), C1 (Schievella 1997248; Efimova 2004249; Figueiredo 2008250; Pavlos 2010251; Okada 1995252; Niwa 2008253), C2 (Tanaka 2001254; Iwasaki 1997255)

MAP1B B2 (Edelmann 1996256; Takei 1997257; Gonzalez-Billaut 2000258; Meixner 2000259), C1 (Meixner 2000259; Gonzalez-Billault 2001258; Montenegro-Venegas 2010260; Goold 2003261), C5 (Goold 2003261; Carvalho 2011262)

MAPK1 C2 (Yao 2003263; Satoh 2011264; Krenz 2008265; Tartaglia 2011266), C4 (Torres-Juan 2007267; Ryan 1997268), C5 (Bromberg-White 2012269; Roskoski 2012270)

MN1 B1 (Sutton 2005271; Braybrook 2001272; Srour 2013273; van Wely 2003274), C1 (Zhang 2009275), C2 (Meester-Smoor 2005276; Liu 2008277), C4 (Davidson 2012278)

MSMO1 A2 (He 2011133; He 2014279), C1 (Agrawal 2015280), C5 (Porter and Herman 2011281; Jira 2013282; Aldahmesh 2012283; Gillespie 2014284)

MTIF2 B1 (Tucker 2011285; Neeve 2013286; Haack 2014287), C1 (Ma 1995288; Smits 2007289; Bonnefond 2005290; Spencer 2004291), C3 (Luchin 1999292; Laalami 1994293)

MTOR B1 (Butler 2005294; Herman 2007295; Theoharides 2013296), C1 (Hay 2004297; Inoki 2005298; Andrade 1995299; Chiu 1994300; Halova 2012301; Shang 2011302; Smrz 2011303), C3 (Hoeffer & Klann 2010304; Murakami 2004305; Clipperton-Allen & Page 2014306; Theoharides, 2013296)

MYH10 B1 (Althaus 2011307), B2 (Ma 2006308; Tullio 1997309; Tullio 2001310; Takeda 2003311), C1 (Ma 2006308; Svitina 1997; Svitina 1997312; Vicente-Manzanares 2009313; Bao, 2007314; Tullio 2001310; Uren 2000315)

NFASC B1 (Mathey 2007247; Iqbal 2013316; Compton 2008317; Laquerriere 2014318; Ratcliffe 2001319), B3 (Ango 2004320; Nagase 1998321; Davis 1993322), C1 (Kriebel 2012323; Howell 2006324; Zhang 2015325), C2 (Sherman 2005326)

NMNAT2 B1 (Perrault 2012327; Magen 2015328), B2 (Hicks 2012329), C1 (Raffaelli 2002330; Zhang 2003331; Yalowitz 2004332; Milde 2013333; Conforti 2014334; Berger 2005335; Mayer 2010336)

NTF4C1 (Gao 1995337; Morison 1998338; Wiedemann 2006339; Walker 1998340), C2 (Belluardo 2001341; Conover 1995342; Harada 2005343; Endres 2000344; Kulakowski 2011345; Kong 1999346; Sakuma 2002347), C5 (Gupta 2013348; Correia 2010349; Louhivuori 2011350; Johnson 2009351; Cao 2013352; Schwartz 1997353), C6 (Pasutto

2009354; Vithana 2010355)

OGDHL B1 (Bonnefont 1992356; Guffon 1993357; and Kohlschutter 1982358), C1 (Bunik 2008359; Bunik & Degtyarev 2008360; Szabo 1994361), C6 (Dunckelmann 2000362; Gibson 2005363)

OGTB1 (Capotosti 2011364; Lazarus 2013365; Yu 2013366; Cole and Hart 1999367), B3 (Kreppel 1997368; Lubas 1997369; Cole and Hart 2001370; Akimoto 2003371), C1 (Shafi

2000372; Shin 2011373; Love 2003374; Kreppel and Hart 1999375; Clarke 2008376; Ma and Hart 2014377; Fujiki 2011378; Akimoto 2003371; Tallent 2009379), C2 (Shafi 2000372; O’Donnell 2004380; Howerton 2013381; Howerton and Bale 2014382)

PCBP1 B1 (Ambry internal patient, Feb 2014; Chakarova, 2002383; Dauber, 2013384; Gamundi, 2008385; Maubaret, 2011386; McKie, 2001387; OMIM #600124, #607300, #607301; Towns, 2010388), B5 (Ghanem, 2014389), C1 (Choi, 2009390; Ghanem, 2014389; Unigene:131305-Hs.2853), C4 (DECIPHER ID 257771178; Los, 1994391)

Page 4: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

PIGQB5 (Alazami, 201521; Martin, 2014392); C1 (Fujita, 201223; Tiede, 1998393; Watanabe, 1998394); C3 (Tiede, 2001395); C5 (Belet, 2014396; Brady, 2014397; Johnston,

2012398; Kato, 2014399); Kvarnung, 2013400; Ohba, 2014401; OMIM #300868; OMIIM *311770; OMIM *606097; OMIM *610272; OMIM #614080; OMIM #615398; Maydan, 2011402; Nakashima, 2014403; Swoboda, 2014404)

PLD1 C1 (Chernomordik, 2005405; Gomez-Cambronero, 2010406; Peng, 2012407; Vitale, 2010408; Zeniou-Meyer, 2007409), C2 (Sethu, 2010410, C5 (Delaunoy, 2006411; OMIM #303600; Nishimoto, 2012412; Trivier, 1996413; Zeniou-Meyer, 2009414)

POU3F3

C1 (Castro, 2006415; Hara, 1992416; Kim, 2008417; Kuhlbrodt, 1998418), C2 (McEvilly, 2002419; Nakai, 2003420; Sugitani, 2002421), C4 (Dheedene, 2014422), C5 (Aarskog, 1998423; de Zegher, 1995424; Hashimoto, 2003425; Hendriks-Stegeman, 2001426; Irie, 1995427; Ohta, 1992428; Okamoto, 1994429; OMIM #613038; OMIM #615866;

Miyata, 2006430; Pelligrini-Bouiller, 1996431; Pernasetti, 1998432; Pfaffle, 1992433; Radovik, 1992434; Rogol, 1976435; Sun, 2006436; Tatsumi, 1992437; Tsurusaki, 2014438; Turton, 2005439), C6 (DECIPHER DDD Research Variant178)

PURA B1 (Jin, 2007440), B2 (Khalili, 2003441), B5 (Brown, 2013442), C1 (Gallia, 2000443; Hokkanen, 2012444; Johnson, 2003445; Mishra, 2013446)

PURA A2 (Ambry internal patient, Jan 2013; Lalani, 2014447), B1 (Jin, 2007440), B2 (Khalili, 2003441), B5 (Brown, 2013442), C1 (Gallia, 2000443; Hokkanen, 2012444; Johnson, 2003445; Mishra, 2013446)

RAD54L B1 (Mazin, 2010448), B5 (Matsuda, 1999449), C1 (Ceballos, 2011450), C2 (Essers, 1997451; Rousseau, 2012452)

RAD54L B1 (Mazin, 2010448), B5 (Ambry internal patient presenting with paraganglioma, pheochromocytoma, papillary thyroid cancer, café au lait spots, and brittle hair syndrome, Matsuda, 1999449), C1 (Ceballos, 2011450), C2 (Essers, 1997451; Rousseau, 2012452)

RORB A1 (Baglietto, 2014453; Bartnik, 2012454; Boudry-Labis, 2013455; Lal, 2015456), C1 (Evans, 1988457; Jabaudon, 2012458; Lopes da Silva, 1995459; OMIM 601972), C5 (Hu, 2009460; Nguyen, 2010461; Sarachana, 2013462)

RYR3 B3 (Hakamata, 1992463; Leeb, 1998464; Matsuo, 2009465; Nakashima, 1997466; OMIM *180903), C1 (Ooashi, 2005; Uniprot Q15413; Van Petegem, 2012467), C2 (Balschun, 1999468; Matsuo, 2009465), C5 (Ambry internal patient, Dec 2013; Fromer, 2014227; O’Roak, 2012148; Purcell, 2014469; Splawski, 2006470)

SETD5 A2 (Rauch, 2012471; Neale, 2012472), C1 (Volkel, 2007473; Visel, 2004474; Tachibana, 2005475), C4 (Gunnarsson, 2010476; Kellogg, 2013477; Riess, 2012478)

SIN3A B1 (Nan, 1998479; Kadamb, 2013480); C1 (Kadamb, 2013480; Dannenberg, 2005481; Grimes, 2000482); C4 (Samuelsson, 2015483), C5 (Firth, 2009178)

SLIT2 B3 (Radeke, 2007484; Niclou, 2000485); C1 (Brose, 1999486; Thompson, 2006487; Down, 2013488; Fish, 2011489; Grieshammer, 2004490; Kramer,2001491); C2 (Jones, 2008492; Down, 2013488)

SLC9A1 A2 (Zhu, 2015493; Guissart, 2014494); C1 (Ruffin, 2014495; Fliegel, 2005496); C2 (Cox, 1997497; Bell, 1999498); C5 (Morrow, 2008499; Kondapalli, 2013500)

SNAP25 B1 (Corradini, 2009501), B2 (Wilson, 1996502; Kataoka, 2011503; Jeans, 2007504); B5 (Firth, 2009178); C1 (Sudhof, 2011505; Sudhof, 200456; Turner, 1999506; Corradini, 2009501)

SON B1 (Zhang, 2003507; Zhao, 2010508; Sharma, 2011509; Ahn, 2011510; Poirier, 2013511; Cederquist, 2012512), B3 (McKee, 2005513; Dillman, 2013514), C1 (Wynn, 2000515; Sun, 2001516; Chumakov, 1991517; Greenhalf, 1999518; Ahn, 2011510; Huen, 2010519; Lu, 2013520), C6 (de Ligt, 2012521; Gilissen, 2014522).

SONA2 (Ambry internal patient, May 2015), B1 (Zhang, 2003507; Zhao, 2010508; Sharma, 2011509; Ahn, 2011510; Poirier, 2013511; Cederquist, 2012512), B3 (McKee,

2005513; Dillman, 2013514), C1 (Wynn, 2000515; Sun, 2001516; Chumakov, 1991517; Greenhalf, 1999518; Ahn, 2011510; Huen, 2010519; Lu, 2013520), C6 (de Ligt, 2012521; Gilissen, 2014522).

STAT2 B1 (Cayado-Gutiérrez, 2012523; Sosonkina, 2014524), C1 (Miklossy, 2013525; Yan, 1995526; Bromberg, 2000527), C2 (Park 2000528; Bromberg, 2000527) C5 (Kaplan, 1998529; Clifford, 2003530)

SV2A B2 (Janz, 1999531; Crowder, 1999532; Kaminski, 2009533), B3 (Bajjalieh, 1993534 & 1994535), B5 (Lynch, 2004536; Kinrys, 2007537; Enggaard, 2006538), C1 (Yao, 2010539; Nowack, 2010540; Chang, 2009541)

Page 5: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

TIMM50 B1 (Richman, 2014542; Davey, 2006543; Xu, 2005544); C1 (Geissler, 2002545; Yamamoto, 2002546; Guo, 2004547; Jensen, 2002548); C3 (Mokranjac, 2003549; Guo, 2004547)

UNC45B B2 (Etard, 2007550); B5 (Hansen, 2014551); C1 (Price, 2002552; Geer, 2010553; Hansen, 2014551); C5 (Peterson, 1985554)

ZBTB18 A1 (Ballif, 2012555; Boland, 2007556; Caliebe, 2010557; Nagamani, 2012558; Thierry, 2012170), B3 (Becker, 1997559; Okado, 2009560; Xiang, 2012561), C2 (Xiang, 2012561; Yokoyama, 2009562); C5 (Johnston, 2010563; Sztriha, 2003564)

ZBTB20 A1 (Molin, 2012565; Wiśniowiecka-Kowalnik, 2013566), C1 (Xie, 2010567; Molin, 2012565); C2 (Sutherland, 2009568)

ZFHX3 B3 (Ishii 2003569; Watanabe 1996570; Qi, 2008571), C1 (Morinaga, 1991572; Miura, 1995573; Berry, 2001574; Ishii 2003569; Sun 2012575), C4 (Firth, 2009178), C5 (Aarskog, 1997423)

Page 6: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

REFERENCES

1. Sun M, Li N, Dong W, et al. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. American journal of human genetics. 2009;84(6):807-813.

2. Allikmets R, Gerrard B, Hutchinson A, Dean M. Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Human molecular genetics. 1996;5(10):1649-1655.

3. Dassa E, Schneider E. The rise of a protein family: ATP-binding cassette systems. Res Microbiol. 2001;152(3-4):203.4. Petry F, Kotthaus A, Hirsch-Ernst KI. Cloning of human and rat ABCA5/Abca5 and detection of a human splice variant. Biochem Biophys Res

Commun. 2003;300(2):343-350.5. Kubo Y, Sekiya S, Ohigashi M, et al. ABCA5 resides in lysosomes, and ABCA5 knockout mice develop lysosomal disease-like symptoms. Mol Cell Biol.

2005;25(10):4138-4149.6. Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science.

1998;280(5364):750-752.7. Guo DC, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature

genetics. 2007;39(12):1488-1493.8. Nowak KJ, Wattanasirichaigoon D, Goebel HH, et al. Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and

nemaline myopathy. Nature genetics. 1999;23(2):208-212.9. Zhu M, Yang T, Wei S, et al. Mutations in the gamma-actin gene (ACTG1) are associated with dominant progressive deafness (DFNA20/26).

American journal of human genetics. 2003;73(5):1082-1091.10. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249.11. Qian J, Kumar A, Szucsik JC, Lessard JL. Tissue and developmental specific expression of murine smooth muscle gamma-actin fusion genes in

transgenic mice. Dev Dyn. 1996;207(2):135-144.12. Lehtonen HJ, Sipponen T, Tojkander S, et al. Segregation of a missense variant in enteric smooth muscle actin gamma-2 with autosomal dominant

familial visceral myopathy. Gastroenterology. 2012;143(6):1482-1491 e1483.13. Kumar A, Crawford K, Close L, et al. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proceedings of the

National Academy of Sciences of the United States of America. 1997;94(9):4406-4411.14. Feinstein M, Markus B, Noyman I, et al. Pelizaeus-Merzbacher-like disease caused by AIMP1/p43 homozygous mutation. American journal of

human genetics. 2010;87(6):820-828.15. Park SG, Schimmel P, Kim S. Aminoacyl tRNA synthetases and their connections to disease. Proceedings of the National Academy of Sciences of the

United States of America. 2008;105(32):11043-11049.

Page 7: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

16. Park SG, Choi EC, Kim S. Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life. 2010;62(4):296-302.

17. Kim JY, Kang YS, Lee JW, et al. p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: implications for its physiological significance. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(12):7912-7916.

18. Corti O, Hampe C, Koutnikova H, et al. The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Human molecular genetics. 2003;12(12):1427-1437.

19. Kandpal RP. Rho GTPase activating proteins in cancer phenotypes. Curr Protein Pept Sci. 2006;7(4):355-365.20. Xu J, Zhou X, Wang J, et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 2013;3(5):1526-

1538.21. Alazami AM, Patel N, Shamseldin HE, et al. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of

prescreened multiplex consanguineous families. Cell Rep. 2015;10(2):148-161.22. Ikeda A, Kajiwara K, Iwamoto K, et al. Complementation analysis reveals a potential role of human ARV1 in GPI anchor biosynthesis. Yeast.

2016;33(2):37-42.23. Fujita M, Kinoshita T. GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim

Biophys Acta. 2012;1821(8):1050-1058.24. Tinkelenberg AH, Liu Y, Alcantara F, et al. Mutations in yeast ARV1 alter intracellular sterol distribution and are complemented by human ARV1. J

Biol Chem. 2000;275(52):40667-40670.25. Caroni P, Aigner L, Schneider C. Intrinsic neuronal determinants locally regulate extrasynaptic and synaptic growth at the adult neuromuscular

junction. J Cell Biol. 1997;136(3):679-692.26. Maekawa S, Iino S, Miyata S. Molecular characterization of the detergent-insoluble cholesterol-rich membrane microdomain (raft) of the central

nervous system. Biochim Biophys Acta. 2003;1610(2):261-270.27. Allen JA, Halverson-Tamboli RA, Rasenick MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2007;8(2):128-140.28. Frey D, Laux T, Xu L, Schneider C, Caroni P. Shared and unique roles of CAP23 and GAP43 in actin regulation, neurite outgrowth, and anatomical

plasticity. J Cell Biol. 2000;149(7):1443-1454.29. Odagaki S, Kumanogoh H, Nakamura S, Maekawa S. Biochemical interaction of an actin-capping protein, CapZ, with NAP-22. J Neurosci Res.

2009;87(9):1980-1985.30. Kropotova E, Klementiev B, Mosevitsky M. BASP1 and its N-end fragments (BNEMFs) dynamics in rat brain during development. Neurochem Res.

2013;38(6):1278-1284.31. Tsurusaki Y, Okamoto N, Ohashi H, et al. Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome. Nature genetics.

2012;44(4):376-378.32. Tzeng M, du Souich C, Cheung HW, Boerkoel CF. Coffin-Siris syndrome: phenotypic evolution of a novel SMARCA4 mutation. American journal of

medical genetics. Part A. 2014;164A(7):1808-1814.33. Van Houdt JK, Nowakowska BA, Sousa SB, et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nature

genetics. 2012;44(4):445-449, S441.34. Landry J, Sharov AA, Piao Y, et al. Essential role of chromatin remodeling protein Bptf in early mouse embryos and embryonic stem cells. PLoS

genetics. 2008;4(10):e1000241.

Page 8: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

35. Barak O, Lazzaro MA, Lane WS, Speicher DW, Picketts DJ, Shiekhattar R. Isolation of human NURF: a regulator of Engrailed gene expression. EMBO J. 2003;22(22):6089-6100.

36. Xiao H, Sandaltzopoulos R, Wang HM, et al. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell. 2001;8(3):531-543.

37. Badenhorst P, Voas M, Rebay I, Wu C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 2002;16(24):3186-3198.38. Badenhorst P, Xiao H, Cherbas L, et al. The Drosophila nucleosome remodeling factor NURF is required for Ecdysteroid signaling and

metamorphosis. Genes Dev. 2005;19(21):2540-2545.39. Rodriguez RM, Huidobro C, Urdinguio RG, et al. Aberrant epigenetic regulation of bromodomain BRD4 in human colon cancer. J Mol Med (Berl).

2012;90(5):587-595.40. Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS. Growth and early postimplantation defects in mice deficient for the

bromodomain-containing protein Brd4. Mol Cell Biol. 2002;22(11):3794-3802.41. Floyd SR, Pacold ME, Huang Q, et al. The bromodomain protein Brd4 insulates chromatin from DNA damage signalling. Nature.

2013;498(7453):246-250.42. Dey A, Ellenberg J, Farina A, et al. A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G(2)-to-M transition. Mol Cell

Biol. 2000;20(17):6537-6549.43. Lacinova L. Voltage-dependent calcium channels. Gen Physiol Biophys. 2005;24 Suppl 1:1-78.44. Weiergraber M, Henry M, Krieger A, et al. Altered seizure susceptibility in mice lacking the Ca(v)2.3 E-type Ca2+ channel. Epilepsia. 2006;47(5):839-

850.45. Zaman T, Lee K, Park C, et al. Cav2.3 channels are critical for oscillatory burst discharges in the reticular thalamus and absence epilepsy. Neuron.

2011;70(1):95-108.46. Williams ME, Marubio LM, Deal CR, et al. Structure and functional characterization of neuronal alpha 1E calcium channel subtypes. J Biol Chem.

1994;269(35):22347-22357.47. Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D. Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proceedings of the

National Academy of Sciences of the United States of America. 2003;100(21):12450-12455.48. Dietrich D, Kirschstein T, Kukley M, et al. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron. 2003;39(3):483-496.49. Kang R, Wan J, Arstikaitis P, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456(7224):904-909.50. Wirth A, Chen-Wacker C, Wu YW, et al. Dual lipidation of the brain-specific Cdc42 isoform regulates its functional properties. Biochem J.

2013;456(3):311-322.51. Cotteret S, Chernoff J. The evolutionary history of effectors downstream of Cdc42 and Rac. Genome Biol. 2002;3(2):REVIEWS0002.52. Urbanska M, Blazejczyk M, Jaworski J. Molecular basis of dendritic arborization. Acta Neurobiol Exp (Wars). 2008;68(2):264-288.53. Chen L, Liao G, Yang L, et al. Cdc42 deficiency causes Sonic hedgehog-independent holoprosencephaly. Proceedings of the National Academy of

Sciences of the United States of America. 2006;103(44):16520-16525.54. Heilstedt HA, Ballif BC, Howard LA, et al. Physical map of 1p36, placement of breakpoints in monosomy 1p36, and clinical characterization of the

syndrome. American journal of human genetics. 2003;72(5):1200-1212.55. Endris V, Wogatzky B, Leimer U, et al. The novel Rho-GTPase activating gene MEGAP/ srGAP3 has a putative role in severe mental retardation.

Proceedings of the National Academy of Sciences of the United States of America. 2002;99(18):11754-11759.56. Sudhof TC. The synaptic vesicle cycle. Annu Rev Neurosci. 2004;27:509-547.

Page 9: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

57. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394(6689):192-195.

58. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P. Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol. 2008;182(5):1007-1016.

59. Ballif BC, Theisen A, Rosenfeld JA, et al. Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. American journal of human genetics. 2010;86(3):454-461.

60. Chahrour MH, Yu TW, Lim ET, et al. Whole-exome sequencing and homozygosity analysis implicate depolarization-regulated neuronal genes in autism. PLoS genetics. 2012;8(4):e1002635.

61. Doimo M, Desbats MA, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of coenzyme q10 deficiency. Mol Syndromol. 2014;5(3-4):156-162.62. Trevisson E, DiMauro S, Navas P, Salviati L. Coenzyme Q deficiency in muscle. Curr Opin Neurol. 2011;24(5):449-456.63. Cavdar Koc E, Ranasinghe A, Burkhart W, et al. A new face on apoptosis: death-associated protein 3 and PDCD9 are mitochondrial ribosomal

proteins. FEBS Lett. 2001;492(1-2):166-170.64. Morgan CJ, Jacques C, Savagner F, et al. A conserved N-terminal sequence targets human DAP3 to mitochondria. Biochem Biophys Res Commun.

2001;280(1):177-181.65. Kim HR, Chae HJ, Thomas M, et al. Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the

extrinsic pathway for apoptosis. FASEB J. 2007;21(1):188-196.66. Kissil JL, Cohen O, Raveh T, Kimchi A. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha- and Fas-

induced cell death. EMBO J. 1999;18(2):353-362.67. Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by

diacylglycerol. Nature. 1999;397(6716):259-263.68. Okada T, Inoue R, Yamazaki K, et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue

TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem. 1999;274(39):27359-27370.

69. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165-217.70. Rodriguez de Turco EB, Tang W, Topham MK, et al. Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation

through arachidonoyl- inositol lipid signaling. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(8):4740-4745.

71. Leach NT, Sun Y, Michaud S, et al. Disruption of diacylglycerol kinase delta (DGKD) associated with seizures in humans and mice. American journal of human genetics. 2007;80(4):792-799.

72. van Blitterswijk WJ, Houssa B. Properties and functions of diacylglycerol kinases. Cell Signal. 2000;12(9-10):595-605.73. Bordi F, Ugolini A. Group I metabotropic glutamate receptors: implications for brain diseases. Prog Neurobiol. 1999;59(1):55-79.74. Pacheco MA, Jope RS. Phosphoinositide signaling in human brain. Prog Neurobiol. 1996;50(2-3):255-273.75. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling

pathway. American journal of human genetics. 2006;79(1):169-173.76. Stittrich AB, Lehman A, Bodian DL, et al. Mutations in NOTCH1 cause Adams-Oliver syndrome. American journal of human genetics.

2014;95(3):275-284.77. Markus HS, Martin RJ, Simpson MA, et al. Diagnostic strategies in CADASIL. Neurology. 2002;59(8):1134-1138.

Page 10: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

78. Shutter JR, Scully S, Fan W, et al. Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev. 2000;14(11):1313-1318.79. Duarte A, Hirashima M, Benedito R, et al. Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev. 2004;18(20):2474-2478.80. Yan M, Callahan CA, Beyer JC, et al. Chronic DLL4 blockade induces vascular neoplasms. Nature. 2010;463(7282):E6-7.81. Fassio A, Patry L, Congia S, et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Human molecular

genetics. 2011;20(12):2297-2307.82. Greengard P, Valtorta F, Czernik AJ, Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science.

1993;259(5096):780-785.83. Saitsu H, Kato M, Mizuguchi T, et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy.

Nature genetics. 2008;40(6):782-788.84. Boumil RM, Letts VA, Roberts MC, et al. A missense mutation in a highly conserved alternate exon of dynamin-1 causes epilepsy in fitful mice. PLoS

genetics. 2010;6(8).85. Ford MG, Jenni S, Nunnari J. The crystal structure of dynamin. Nature. 2011;477(7366):561-566.86. Ferguson SM, De Camilli P. Dynamin, a membrane-remodelling GTPase. Nature reviews. Molecular cell biology. 2012;13(2):75-88.87. Nakata T, Iwamoto A, Noda Y, Takemura R, Yoshikura H, Hirokawa N. Predominant and developmentally regulated expression of dynamin in

neurons. Neuron. 1991;7(3):461-469.88. Inagaki H, Kato Y, Hamajima N, Nonaka M, Sasaki M, Eimoto T. Differential expression of dihydropyrimidinase-related protein genes in developing

and adult enteric nervous system. Histochem Cell Biol. 2000;113(1):37-41.89. Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J. Collapsin response mediator proteins (CRMPs): involvement in nervous

system development and adult neurodegenerative disorders. Mol Neurobiol. 2003;28(1):51-64.90. Chu CC, Wang JJ, Chen KT, et al. Neurotrophic effects of tianeptine on hippocampal neurons: a proteomic approach. J Proteome Res.

2010;9(2):936-944.91. Hensley K, Venkova K, Christov A, Gunning W, Park J. Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic

target for neurodisease indications. Mol Neurobiol. 2011;43(3):180-191.92. Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM. Collapsin-induced growth cone collapse mediated by an intracellular protein related to

UNC-33. Nature. 1995;376(6540):509-514.93. Chae YC, Lee S, Heo K, et al. Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity. Cell Signal.

2009;21(12):1818-1826.94. Khanna R, Wilson SM, Brittain JM, et al. Opening Pandora's jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative,

sensory and motor neuron, and central disorders. Future Neurol. 2012;7(6):749-771.95. Chi XX, Schmutzler BS, Brittain JM, et al. Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by collapsin

response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci. 2009;122(Pt 23):4351-4362.96. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in

neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem. 2009;284(45):31375-31390.97. Bretin S, Rogemond V, Marin P, et al. Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J Neurochem.

2006;98(4):1252-1265.98. Brittain JM, Chen L, Wilson SM, et al. Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator

protein 2 (CRMP2). J Biol Chem. 2011;286(43):37778-37792.

Page 11: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

99. Doliana R, Bot S, Mungiguerra G, Canton A, Cilli SP, Colombatti A. Isolation and characterization of EMILIN-2, a new component of the growing EMILINs family and a member of the EMI domain-containing superfamily. J Biol Chem. 2001;276(15):12003-12011.

100. Zacchigna L, Vecchione C, Notte A, et al. Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell. 2006;124(5):929-942.101. Colombatti A, Doliana R, Bot S, et al. The EMILIN protein family. Matrix Biol. 2000;19(4):289-301.102. Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/Multimerin family. Front Immunol. 2011;2:93.103. Zanetti M, Braghetta P, Sabatelli P, et al. EMILIN-1 deficiency induces elastogenesis and vascular cell defects. Mol Cell Biol. 2004;24(2):638-650.104. Danussi C, Spessotto P, Petrucco A, et al. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol Cell Biol.

2008;28(12):4026-4039.105. Jobsis GJ, Keizers H, Vreijling JP, et al. Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures.

Nature genetics. 1996;14(1):113-115.106. Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev.

2004;18(19):2336-2341.107. Schindler JW, Van Buren D, Foudi A, et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell

Stem Cell. 2009;5(1):43-53.108. Ciau-Uitz A, Pinheiro P, Gupta R, Enver T, Patient R. Tel1/ETV6 specifies blood stem cells through the agency of VEGF signaling. Dev Cell.

2010;18(4):569-578.109. Peker D, Quigley B, Qin D, Papenhausen P, Zhang L. Burkitt lymphoma arising from lymphoplasmacytic lymphoma following acquisition of MYC

translocation and loss of the ETV6 tumor suppressor gene. Arch Pathol Lab Med. 2013;137(1):130-133.110. Stegmaier K, Pendse S, Barker GF, et al. Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood.

1995;86(1):38-44.111. Raimondi SC. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood. 1993;81(9):2237-2251.112. Van Vlierberghe P, Ambesi-Impiombato A, Perez-Garcia A, et al. ETV6 mutations in early immature human T cell leukemias. The Journal of

experimental medicine. 2011;208(13):2571-2579.113. Inoue K, Yamamoto T, Toyoshima K. Specific expression of human c-fgr in natural immunity effector cells. Mol Cell Biol. 1990;10(4):1789-1792.114. Eiseman E, Bolen JB. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992;355(6355):78-80.115. Drazen JM, Arm JP, Austen KF. Sorting out the cytokines of asthma. The Journal of experimental medicine. 1996;183(1):1-5.116. Lee JH, Kim JW, Kim do K, et al. The Src family kinase Fgr is critical for activation of mast cells and IgE-mediated anaphylaxis in mice. J Immunol.

2011;187(4):1807-1815.117. Vicentini L, Mazzi P, Caveggion E, et al. Fgr deficiency results in defective eosinophil recruitment to the lung during allergic airway inflammation. J

Immunol. 2002;168(12):6446-6454.118. Han JW, Zheng HF, Cui Y, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic

lupus erythematosus. Nature genetics. 2009;41(11):1234-1237.119. Gourh P, Agarwal SK, Martin E, et al. Association of the C8orf13-BLK region with systemic sclerosis in North-American and European populations. J

Autoimmun. 2010;34(2):155-162.120. Schreiner U, Schroeder-Boersch H, Schwarz M, Scheller G. [Improvement of osseointegration of bio-inert ceramics by modification of the surface--

results of an animal experiment]. Biomed Tech (Berl). 2002;47(6):164-168.

Page 12: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

121. Banin S, Truong O, Katz DR, Waterfield MD, Brickell PM, Gout I. Wiskott-Aldrich syndrome protein (WASp) is a binding partner for c-Src family protein-tyrosine kinases. Curr Biol. 1996;6(8):981-988.

122. Finan PM, Soames CJ, Wilson L, et al. Identification of regions of the Wiskott-Aldrich syndrome protein responsible for association with selected Src homology 3 domains. J Biol Chem. 1996;271(42):26291-26295.

123. Rivero-Lezcano OM, Marcilla A, Sameshima JH, Robbins KC. Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol. 1995;15(10):5725-5731.

124. Smrcka AV. G protein betagamma subunits: central mediators of G protein-coupled receptor signaling. Cell Mol Life Sci. 2008;65(14):2191-2214.125. Arshavsky VY, Lamb TD, Pugh EN, Jr. G proteins and phototransduction. Annu Rev Physiol. 2002;64:153-187.126. Kitamura E, Danciger M, Yamashita C, et al. Disruption of the gene encoding the beta1-subunit of transducin in the Rd4/+ mouse. Invest

Ophthalmol Vis Sci. 2006;47(4):1293-1301.127. Lobanova ES, Finkelstein S, Skiba NP, Arshavsky VY. Proteasome overload is a common stress factor in multiple forms of inherited retinal

degeneration. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(24):9986-9991.128. Pierce EA. Pathways to photoreceptor cell death in inherited retinal degenerations. Bioessays. 2001;23(7):605-618.129. Mylvaganam GH, McGee TL, Berson EL, Dryja TP. A screen for mutations in the transducin gene GNB1 in patients with autosomal dominant retinitis

pigmentosa. Mol Vis. 2006;12:1496-1498.130. Okae H, Iwakura Y. Neural tube defects and impaired neural progenitor cell proliferation in Gbeta1-deficient mice. Dev Dyn. 2010;239(4):1089-

1101.131. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295-

322.132. Ruano D, Abecasis GR, Glaser B, et al. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability.

American journal of human genetics. 2010;86(2):113-125.133. Najmabadi H, Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478(7367):57-63.134. Bartholdi D, Roelfsema JH, Papadia F, et al. Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients

carrying mutations in EP300. Journal of medical genetics. 2007;44(5):327-333.135. Ederveen TH, Mandemaker IK, Logie C. The human histone H3 complement anno 2011. Biochim Biophys Acta. 2011;1809(10):577-586.136. Bhasin M, Reinherz EL, Reche PA. Recognition and classification of histones using support vector machine. J Comput Biol. 2006;13(1):102-112.137. Maze I, Wenderski W, Noh KM, et al. Critical Role of Histone Turnover in Neuronal Transcription and Plasticity. Neuron. 2015;87(1):77-94.138. Hildmann C, Riester D, Schwienhorst A. Histone deacetylases--an important class of cellular regulators with a variety of functions. Appl Microbiol

Biotechnol. 2007;75(3):487-497.139. Saha RN, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006;13(4):539-550.140. Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol. 2008;8(1):57-64.141. Levy D, Ronemus M, Yamrom B, et al. Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron.

2011;70(5):886-897.142. Sanders SJ, Ercan-Sencicek AG, Hus V, et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are

strongly associated with autism. Neuron. 2011;70(5):863-885.143. Qiu Z, Sylwestrak EL, Lieberman DN, Zhang Y, Liu XY, Ghosh A. The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci.

2012;32(3):989-994.

Page 13: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

144. LeBlanc JJ, Fagiolini M. Autism: a "critical period" disorder? Neural Plast. 2011;2011:921680.145. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant,

mood stabilizer, and teratogen. J Biol Chem. 2001;276(39):36734-36741.146. Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH. Fetal valproate syndrome and autism: additional evidence of an association. Dev

Med Child Neurol. 2001;43(3):202-206.147. Williams SR, Aldred MA, Der Kaloustian VM, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with

brachydactyly type E, developmental delays, and behavioral problems. American journal of human genetics. 2010;87(2):219-228.148. O'Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature.

2012;485(7397):246-250.149. Saitsu H, Tohyama J, Walsh T, et al. A girl with West syndrome and autistic features harboring a de novo TBL1XR1 mutation. Journal of human

genetics. 2014;59(10):581-583.150. Pons L, Cordier MP, Labalme A, et al. A new syndrome of intellectual disability with dysmorphism due to TBL1XR1 deletion. American journal of

medical genetics. Part A. 2015;167A(1):164-168.151. Gregoire S, Xiao L, Nie J, et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol. 2007;27(4):1280-

1295.152. Ebert DH, Gabel HW, Robinson ND, et al. Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature.

2013;499(7458):341-345.153. Mahlknecht U, Hoelzer D, Bucala R, Verdin E. Cloning and characterization of the murine histone deacetylase (HDAC3). Biochem Biophys Res

Commun. 1999;263(2):482-490.154. Takami Y, Nakayama T. N-terminal region, C-terminal region, nuclear export signal, and deacetylation activity of histone deacetylase-3 are

essential for the viability of the DT40 chicken B cell line. J Biol Chem. 2000;275(21):16191-16201.155. Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell

Biol. 2005;169(4):577-589.156. Debacker K, Frizzell A, Gleeson O, Kirkham-McCarthy L, Mertz T, Lahue RS. Histone deacetylase complexes promote trinucleotide repeat

expansions. PLoS Biol. 2012;10(2):e1001257.157. Haggarty SJ, Tsai LH. Probing the role of HDACs and mechanisms of chromatin-mediated neuroplasticity. Neurobiol Learn Mem. 2011;96(1):41-52.158. Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron. 2008;60(6):961-974.159. Li J, Wang J, Wang J, et al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.

2000;19(16):4342-4350.160. Wen YD, Perissi V, Staszewski LM, et al. The histone deacetylase-3 complex contains nuclear receptor corepressors. Proceedings of the National

Academy of Sciences of the United States of America. 2000;97(13):7202-7207.161. Guenther MG, Barak O, Lazar MA. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol.

2001;21(18):6091-6101.162. Codina A, Love JD, Li Y, Lazar MA, Neuhaus D, Schwabe JW. Structural insights into the interaction and activation of histone deacetylase 3 by

nuclear receptor corepressors. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(17):6009-6014.163. Watson PJ, Fairall L, Santos GM, Schwabe JW. Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature.

2012;481(7381):335-340.

Page 14: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

164. Montgomery RL, Potthoff MJ, Haberland M, et al. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest. 2008;118(11):3588-3597.

165. Norwood J, Franklin JM, Sharma D, D'Mello SR. Histone deacetylase 3 is necessary for proper brain development. J Biol Chem. 2014;289(50):34569-34582.

166. Charroux B, Angelats C, Fasano L, Kerridge S, Vola C. The levels of the bancal product, a Drosophila homologue of vertebrate hnRNP K protein, affect cell proliferation and apoptosis in imaginal disc cells. Mol Cell Biol. 1999;19(11):7846-7856.

167. Fukuda T, Naiki T, Saito M, Irie K. hnRNP K interacts with RNA binding motif protein 42 and functions in the maintenance of cellular ATP level during stress conditions. Genes Cells. 2009;14(2):113-128.

168. Thyagarajan A, Szaro BG. Dynamic endogenous association of neurofilament mRNAs with K-homology domain ribonucleoproteins in developing cerebral cortex. Brain Res. 2008;1189:33-42.

169. Kim HJ, Kim NC, Wang YD, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature. 2013;495(7442):467-473.

170. Thierry G, Beneteau C, Pichon O, et al. Molecular characterization of 1q44 microdeletion in 11 patients reveals three candidate genes for intellectual disability and seizures. American journal of medical genetics. Part A. 2012;158A(7):1633-1640.

171. Au PY, You J, Caluseriu O, et al. GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK. Human mutation. 2015;36(10):1009-1014.

172. Proepper C, Steinestel K, Schmeisser MJ, et al. Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology. PLoS One. 2011;6(11):e27045.

173. Folci A, Mapelli L, Sassone J, et al. Loss of hnRNP K impairs synaptic plasticity in hippocampal neurons. J Neurosci. 2014;34(27):9088-9095.174. Glinka M, Herrmann T, Funk N, et al. The heterogeneous nuclear ribonucleoprotein-R is necessary for axonal beta-actin mRNA translocation in

spinal motor neurons. Human molecular genetics. 2010;19(10):1951-1966.175. Rossoll W, Jablonka S, Andreassi C, et al. Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of

beta-actin mRNA in growth cones of motoneurons. J Cell Biol. 2003;163(4):801-812.176. Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M. Specific interaction of Smn, the spinal muscular atrophy determining

gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Human molecular genetics. 2002;11(1):93-105.

177. Dombert B, Sivadasan R, Simon CM, Jablonka S, Sendtner M. Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One. 2014;9(10):e110846.

178. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. American journal of human genetics. 2009;84(4):524-533.

179. Couldrey C, Carlton MB, Nolan PM, Colledge WH, Evans MJ. A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Human molecular genetics. 1999;8(13):2489-2495.

180. Spolski R, Leonard WJ. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol. 2008;26:57-79.181. Hamming OJ, Kang L, Svensson A, et al. Crystal structure of interleukin-21 receptor (IL-21R) bound to IL-21 reveals that sugar chain interacting with

WSXWS motif is integral part of IL-21R. J Biol Chem. 2012;287(12):9454-9460.182. Ozaki K, Spolski R, Feng CG, et al. A critical role for IL-21 in regulating immunoglobulin production. Science. 2002;298(5598):1630-1634.

Page 15: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

183. Jin H, Oyoshi MK, Le Y, et al. IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. The Journal of clinical investigation. 2009;119(1):47-60.

184. Leonard WJ. X-linked severe combined immunodeficiency: from molecular cause to gene therapy within seven years. Mol Med Today. 2000;6(10):403-407.

185. Lehnert K, Ni J, Leung E, et al. Cloning, sequence analysis, and chromosomal localization of the novel human integrin alpha11 subunit (ITGA11). Genomics. 1999;60(2):179-187.

186. Tiger CF, Fougerousse F, Grundstrom G, Velling T, Gullberg D. alpha11beta1 integrin is a receptor for interstitial collagens involved in cell migration and collagen reorganization on mesenchymal nonmuscle cells. Dev Biol. 2001;237(1):116-129.

187. Velling T, Kusche-Gullberg M, Sejersen T, Gullberg D. cDNA cloning and chromosomal localization of human alpha(11) integrin. A collagen-binding, I domain-containing, beta(1)-associated integrin alpha-chain present in muscle tissues. J Biol Chem. 1999;274(36):25735-25742.

188. Lu N, Carracedo S, Ranta J, Heuchel R, Soininen R, Gullberg D. The human alpha11 integrin promoter drives fibroblast-restricted expression in vivo and is regulated by TGF-beta1 in a Smad- and Sp1-dependent manner. Matrix Biol. 2010;29(3):166-176.

189. Popova SN, Rodriguez-Sanchez B, Liden A, Betsholtz C, Van Den Bos T, Gullberg D. The mesenchymal alpha11beta1 integrin attenuates PDGF-BB-stimulated chemotaxis of embryonic fibroblasts on collagens. Dev Biol. 2004;270(2):427-442.

190. Popova SN, Barczyk M, Tiger CF, et al. Alpha11 beta1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol Cell Biol. 2007;27(12):4306-4316.

191. Guipponi M, Scott HS, Chen H, Schebesta A, Rossier C, Antonarakis SE. Two isoforms of a human intersectin (ITSN) protein are produced by brain-specific alternative splicing in a stop codon. Genomics. 1998;53(3):369-376.

192. Sengar AS, Wang W, Bishay J, Cohen S, Egan SE. The EH and SH3 domain Ese proteins regulate endocytosis by linking to dynamin and Eps15. EMBO J. 1999;18(5):1159-1171.

193. Pucharcos C, Casas C, Nadal M, Estivill X, de la Luna S. The human intersectin genes and their spliced variants are differentially expressed. Biochim Biophys Acta. 2001;1521(1-3):1-11.

194. Koh TW, Verstreken P, Bellen HJ. Dap160/intersectin acts as a stabilizing scaffold required for synaptic development and vesicle endocytosis. Neuron. 2004;43(2):193-205.

195. Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron. 2004;43(2):207-219.

196. Koh TW, Korolchuk VI, Wairkar YP, et al. Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development. J Cell Biol. 2007;178(2):309-322.

197. Pechstein A, Shupliakov O, Haucke V. Intersectin 1: a versatile actor in the synaptic vesicle cycle. Biochem Soc Trans. 2010;38(Pt 1):181-186.198. Yu Y, Chu PY, Bowser DN, et al. Mice deficient for the chromosome 21 ortholog Itsn1 exhibit vesicle-trafficking abnormalities. Human molecular

genetics. 2008;17(21):3281-3290.199. Sengar AS, Ellegood J, Yiu AP, et al. Vertebrate intersectin1 is repurposed to facilitate cortical midline connectivity and higher order cognition. J

Neurosci. 2013;33(9):4055-4065.200. Pucharcos C, Fuentes JJ, Casas C, et al. Alu-splice cloning of human Intersectin (ITSN), a putative multivalent binding protein expressed in

proliferating and differentiating neurons and overexpressed in Down syndrome. European journal of human genetics : EJHG. 1999;7(6):704-712.

Page 16: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

201. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol. 2000;157(1):277-286.

202. van der Crabben S, van Binsbergen E, Ausems M, Poot M, Bierings M, Buijs A. Constitutional RUNX1 deletion presenting as non-syndromic thrombocytopenia with myelodysplasia: 21q22 ITSN1 as a candidate gene in mental retardation. Leuk Res. 2010;34(1):e8-12.

203. Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995;377(6544):65-68.

204. Russell SM, Tayebi N, Nakajima H, et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science. 1995;270(5237):797-800.

205. Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21(12):1303-1309.206. Hambleton S, Goodbourn S, Young DF, et al. STAT2 deficiency and susceptibility to viral illness in humans. Proceedings of the National Academy of

Sciences of the United States of America. 2013;110(8):3053-3058.207. Minegishi Y, Saito M, Tsuchiya S, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature.

2007;448(7157):1058-1062.208. Yamaoka K, Saharinen P, Pesu M, Holt VE, 3rd, Silvennoinen O, O'Shea JJ. The Janus kinases (Jaks). Genome Biol. 2004;5(12):253.209. Rodig SJ, Meraz MA, White JM, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced

biologic responses. Cell. 1998;93(3):373-383.210. Sabrautzki S, Janas E, Lorenz-Depiereux B, et al. An ENU mutagenesis-derived mouse model with a dominant Jak1 mutation resembling phenotypes

of systemic autoimmune disease. Am J Pathol. 2013;183(2):352-368.211. Pena SD, Coimbra RL. Ataxia and myoclonic epilepsy due to a heterozygous new mutation in KCNA2: proposal for a new channelopathy. Clinical

genetics. 2015;87(2):e1-3.212. Sheng M, Tsaur ML, Jan YN, Jan LY. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci.

1994;14(4):2408-2417.213. Wang H, Kunkel DD, Schwartzkroin PA, Tempel BL. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and

dendrites in the mouse brain. J Neurosci. 1994;14(8):4588-4599.214. Lu Y, Hanna ST, Tang G, Wang R. Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K(+) current in rat mesenteric

artery smooth muscle cells. Life Sci. 2002;71(12):1465-1473.215. Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A. An essential 'set' of K+ channels conserved in flies, mice and humans. Trends Neurosci.

1992;15(5):161-166.216. Yellen G. The voltage-gated potassium channels and their relatives. Nature. 2002;419(6902):35-42.217. Grizel AV, Glukhov GS, Sokolova OS. Mechanisms of activation of voltage-gated potassium channels. Acta Naturae. 2014;6(4):10-26.218. Brew HM, Gittelman JX, Silverstein RS, et al. Seizures and reduced life span in mice lacking the potassium channel subunit Kv1.2, but

hypoexcitability and enlarged Kv1 currents in auditory neurons. J Neurophysiol. 2007;98(3):1501-1525.219. Xie G, Harrison J, Clapcote SJ, et al. A new Kv1.2 channelopathy underlying cerebellar ataxia. J Biol Chem. 2010;285(42):32160-32173.220. Browne DL, Gancher ST, Nutt JG, et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel

gene, KCNA1. Nature genetics. 1994;8(2):136-140.

Page 17: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

221. Castle CD, Cassimere EK, Lee J, Denicourt C. Las1L is a nucleolar protein required for cell proliferation and ribosome biogenesis. Mol Cell Biol. 2010;30(18):4404-4414.

222. Castle CD, Cassimere EK, Denicourt C. LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Molecular biology of the cell. 2012;23(4):716-728.

223. Narla A, Ebert BL. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 2010;115(16):3196-3205.224. Freed EF, Bleichert F, Dutca LM, Baserga SJ. When ribosomes go bad: diseases of ribosome biogenesis. Mol Biosyst. 2010;6(3):481-493.225. Arcos-Burgos M, Muenke M. Toward a better understanding of ADHD: LPHN3 gene variants and the susceptibility to develop ADHD. Atten Defic

Hyperact Disord. 2010;2(3):139-147.226. Domene S, Stanescu H, Wallis D, et al. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am J Med Genet B

Neuropsychiatr Genet. 2011;156B(1):11-18.227. Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506(7487):179-184.228. Kreienkamp HJ, Zitzer H, Gundelfinger ED, Richter D, Bockers TM. The calcium-independent receptor for alpha-latrotoxin from human and rodent

brains interacts with members of the ProSAP/SSTRIP/Shank family of multidomain proteins. J Biol Chem. 2000;275(42):32387-32390.229. Silva JP, Suckling J, Ushkaryov Y. Penelope's web: using alpha-latrotoxin to untangle the mysteries of exocytosis. Journal of neurochemistry.

2009;111(2):275-290.230. Boucard AA, Maxeiner S, Sudhof TC. Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative

splicing. J Biol Chem. 2014;289(1):387-402.231. Meza-Aguilar DG, Boucard AA. Latrophilins updated. Biomol Concepts. 2014;5(6):457-478.232. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-protein-coupled receptors in the human genome form five main families.

Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63(6):1256-1272.233. Capogna M, Volynski KE, Emptage NJ, Ushkaryov YA. The alpha-latrotoxin mutant LTXN4C enhances spontaneous and evoked transmitter release

in CA3 pyramidal neurons. J Neurosci. 2003;23(10):4044-4053.234. Deak F, Liu X, Khvotchev M, et al. Alpha-latrotoxin stimulates a novel pathway of Ca2+-dependent synaptic exocytosis independent of the classical

synaptic fusion machinery. J Neurosci. 2009;29(27):8639-8648.235. Lelyanova VG, Thomson D, Ribchester RR, Tonevitsky EA, Ushkaryov YA. Activation of alpha-latrotoxin receptors in neuromuscular synapses leads

to a prolonged splash acetylcholine release. Bull Exp Biol Med. 2009;147(6):701-703.236. Kellendonk C, Simpson EH, Kandel ER. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 2009;32(6):347-358.237. Silva JP, Ushkaryov YA. The latrophilins, "split-personality" receptors. Adv Exp Med Biol. 2010;706:59-75.238. Wang CY, Chang K, Petralia RS, Wang YX, Seabold GK, Wenthold RJ. A novel family of adhesion-like molecules that interacts with the NMDA

receptor. J Neurosci. 2006;26(8):2174-2183.239. Morimura N, Inoue T, Katayama K, Aruga J. Comparative analysis of structure, expression and PSD95-binding capacity of Lrfn, a novel family of

neuronal transmembrane proteins. Gene. 2006;380(2):72-83.240. Nam J, Mah W, Kim E. The SALM/Lrfn family of leucine-rich repeat-containing cell adhesion molecules. Semin Cell Dev Biol. 2011;22(5):492-498.241. Mikhail FM, Lose EJ, Robin NH, et al. Clinically relevant single gene or intragenic deletions encompassing critical neurodevelopmental genes in

patients with developmental delay, mental retardation, and/or autism spectrum disorders. American journal of medical genetics. Part A. 2011;155A(10):2386-2396.

Page 18: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

242. Ko J, Kim S, Chung HS, et al. SALM synaptic cell adhesion-like molecules regulate the differentiation of excitatory synapses. Neuron. 2006;50(2):233-245.

243. Wang PY, Seabold GK, Wenthold RJ. Synaptic adhesion-like molecules (SALMs) promote neurite outgrowth. Molecular and cellular neurosciences. 2008;39(1):83-94.

244. Mah W, Ko J, Nam J, Han K, Chung WS, Kim E. Selected SALM (synaptic adhesion-like molecule) family proteins regulate synapse formation. J Neurosci. 2010;30(16):5559-5568.

245. de Bruijn DR, van Dijk AH, Pfundt R, et al. Severe Progressive Autism Associated with Two de novo Changes: A 2.6-Mb 2q31.1 Deletion and a Balanced t(14;21)(q21.1;p11.2) Translocation with Long-Range Epigenetic Silencing of LRFN5 Expression. Mol Syndromol. 2010;1(1):46-57.

246. Wada M, Nakanishi H, Satoh A, et al. Isolation and characterization of a GDP/GTP exchange protein specific for the Rab3 subfamily small G proteins. J Biol Chem. 1997;272(7):3875-3878.

247. des Portes V, Billuart P, Carrie A, et al. A gene for dominant nonspecific X-linked mental retardation is located in Xq28. American journal of human genetics. 1997;60(4):903-909.

248. Schievella AR, Chen JH, Graham JR, Lin LL. MADD, a novel death domain protein that interacts with the type 1 tumor necrosis factor receptor and activates mitogen-activated protein kinase. J Biol Chem. 1997;272(18):12069-12075.

249. Efimova EV, Al-Zoubi AM, Martinez O, et al. IG20, in contrast to DENN-SV, (MADD splice variants) suppresses tumor cell survival, and enhances their susceptibility to apoptosis and cancer drugs. Oncogene. 2004;23(5):1076-1087.

250. Figueiredo AC, Wasmeier C, Tarafder AK, Ramalho JS, Baron RA, Seabra MC. Rab3GEP is the non-redundant guanine nucleotide exchange factor for Rab27a in melanocytes. J Biol Chem. 2008;283(34):23209-23216.

251. Pavlos NJ, Gronborg M, Riedel D, et al. Quantitative analysis of synaptic vesicle Rabs uncovers distinct yet overlapping roles for Rab3a and Rab27b in Ca2+-triggered exocytosis. J Neurosci. 2010;30(40):13441-13453.

252. Okada Y, Yamazaki H, Sekine-Aizawa Y, Hirokawa N. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell. 1995;81(5):769-780.

253. Niwa S, Tanaka Y, Hirokawa N. KIF1Bbeta- and KIF1A-mediated axonal transport of presynaptic regulator Rab3 occurs in a GTP-dependent manner through DENN/MADD. Nature cell biology. 2008;10(11):1269-1279.

254. Tanaka M, Miyoshi J, Ishizaki H, et al. Role of Rab3 GDP/GTP exchange protein in synaptic vesicle trafficking at the mouse neuromuscular junction. Molecular biology of the cell. 2001;12(5):1421-1430.

255. Iwasaki K, Staunton J, Saifee O, Nonet M, Thomas JH. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron. 1997;18(4):613-622.

256. Edelmann W, Zervas M, Costello P, et al. Neuronal abnormalities in microtubule-associated protein 1B mutant mice. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(3):1270-1275.

257. Takei Y, Kondo S, Harada A, Inomata S, Noda T, Hirokawa N. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J Cell Biol. 1997;137(7):1615-1626.

258. Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. Journal of neurobiology. 2004;58(1):48-59.

259. Meixner A, Haverkamp S, Wassle H, et al. MAP1B is required for axon guidance and Is involved in the development of the central and peripheral nervous system. J Cell Biol. 2000;151(6):1169-1178.

Page 19: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

260. Montenegro-Venegas C, Tortosa E, Rosso S, et al. MAP1B regulates axonal development by modulating Rho-GTPase Rac1 activity. Molecular biology of the cell. 2010;21(20):3518-3528.

261. Goold RG, Gordon-Weeks PR. NGF activates the phosphorylation of MAP1B by GSK3beta through the TrkA receptor and not the p75(NTR) receptor. Journal of neurochemistry. 2003;87(4):935-946.

262. Carvalho OP, Thornton GK, Hertecant J, et al. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. Journal of medical genetics. 2011;48(2):131-135.

263. Yao Y, Li W, Wu J, et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(22):12759-12764.

264. Satoh Y, Endo S, Nakata T, et al. ERK2 contributes to the control of social behaviors in mice. J Neurosci. 2011;31(33):11953-11967.265. Krenz M, Gulick J, Osinska HE, Colbert MC, Molkentin JD, Robbins J. Role of ERK1/2 signaling in congenital valve malformations in Noonan

syndrome. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(48):18930-18935.266. Tartaglia M, Gelb BD, Zenker M. Noonan syndrome and clinically related disorders. Best practice & research. Clinical endocrinology & metabolism.

2011;25(1):161-179.267. Torres-Juan L, Rosell J, Morla M, et al. Mutations in TBX1 genocopy the 22q11.2 deletion and duplication syndromes: a new susceptibility factor for

mental retardation. European journal of human genetics : EJHG. 2007;15(6):658-663.268. Ryan AK, Goodship JA, Wilson DI, et al. Spectrum of clinical features associated with interstitial chromosome 22q11 deletions: a European

collaborative study. Journal of medical genetics. 1997;34(10):798-804.269. Bromberg-White JL, Andersen NJ, Duesbery NS. MEK genomics in development and disease. Briefings in functional genomics. 2012;11(4):300-310.270. Roskoski R, Jr. MEK1/2 dual-specificity protein kinases: structure and regulation. Biochem Biophys Res Commun. 2012;417(1):5-10.271. Sutton AL, Zhang X, Ellison TI, Macdonald PN. The 1,25(OH)2D3-regulated transcription factor MN1 stimulates vitamin D receptor-mediated

transcription and inhibits osteoblastic cell proliferation. Molecular endocrinology (Baltimore, Md.). 2005;19(9):2234-2244.272. Braybrook C, Doudney K, Marcano AC, et al. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Nature

genetics. 2001;29(2):179-183.273. Srour M, Chitayat D, Caron V, et al. Recessive and dominant mutations in retinoic acid receptor beta in cases with microphthalmia and

diaphragmatic hernia. American journal of human genetics. 2013;93(4):765-772.274. van Wely KH, Molijn AC, Buijs A, et al. The MN1 oncoprotein synergizes with coactivators RAC3 and p300 in RAR-RXR-mediated transcription.

Oncogene. 2003;22(5):699-709.275. Zhang X, Dowd DR, Moore MC, et al. Meningioma 1 is required for appropriate osteoblast proliferation, motility, differentiation, and function. J

Biol Chem. 2009;284(27):18174-18183.276. Meester-Smoor MA, Vermeij M, van Helmond MJ, et al. Targeted disruption of the Mn1 oncogene results in severe defects in development of

membranous bones of the cranial skeleton. Mol Cell Biol. 2005;25(10):4229-4236.277. Liu W, Lan Y, Pauws E, et al. The Mn1 transcription factor acts upstream of Tbx22 and preferentially regulates posterior palate growth in mice.

Development. 2008;135(23):3959-3968.278. Davidson TB, Sanchez-Lara PA, Randolph LM, et al. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1

(meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature. BMC medical genetics. 2012;13:19.

279. He M, Smith LD, Chang R, Li X, Vockley J. The role of sterol-C4-methyl oxidase in epidermal biology. Biochim Biophys Acta. 2014;1841(3):331-335.

Page 20: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

280. Agrawal SA, Anand D, Siddam AD, et al. Compound mouse mutants of bZIP transcription factors Mafg and Mafk reveal a regulatory network of non-crystallin genes associated with cataract. Human genetics. 2015;134(7):717-735.

281. Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. Journal of lipid research. 2011;52(1):6-34.282. Jira P. Cholesterol metabolism deficiency. Handbook of clinical neurology. 2013;113:1845-1850.283. Aldahmesh MA, Khan AO, Mohamed JY, et al. Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes.

Genetics in medicine : official journal of the American College of Medical Genetics. 2012;14(12):955-962.284. Gillespie RL, O'Sullivan J, Ashworth J, et al. Personalized diagnosis and management of congenital cataract by next-generation sequencing.

Ophthalmology. 2014;121(11):2124-2137.e2121-2122.285. Tucker EJ, Hershman SG, Kohrer C, et al. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial

translation. Cell metabolism. 2011;14(3):428-434.286. Neeve VC, Pyle A, Boczonadi V, et al. Clinical and functional characterisation of the combined respiratory chain defect in two sisters due to

autosomal recessive mutations in MTFMT. Mitochondrion. 2013;13(6):743-748.287. Haack TB, Gorza M, Danhauser K, et al. Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing

and candidate gene screening. Molecular genetics and metabolism. 2014;111(3):342-352.288. Ma L, Spremulli LL. Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J Biol Chem.

1995;270(4):1859-1865.289. Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic

acids research. 2007;35(14):4686-4703.290. Bonnefond L, Fender A, Rudinger-Thirion J, Giege R, Florentz C, Sissler M. Toward the full set of human mitochondrial aminoacyl-tRNA synthetases:

characterization of AspRS and TyrRS. Biochemistry. 2005;44(12):4805-4816.291. Spencer AC, Spremulli LL. Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA. Nucleic acids research. 2004;32(18):5464-

5470.292. Luchin S, Putzer H, Hershey JW, Cenatiempo Y, Grunberg-Manago M, Laalami S. In vitro study of two dominant inhibitory GTPase mutants of

Escherichia coli translation initiation factor IF2. Direct evidence that GTP hydrolysis is necessary for factor recycling. J Biol Chem. 1999;274(10):6074-6079.

293. Laalami S, Timofeev AV, Putzer H, Leautey J, Grunberg-Manago M. In vivo study of engineered G-domain mutants of Escherichia coli translation initiation factor IF2. Molecular microbiology. 1994;11(2):293-302.

294. Butler MG, Dasouki MJ, Zhou XP, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. Journal of medical genetics. 2005;42(4):318-321.

295. Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A. Increasing knowledge of PTEN germline mutations: Two additional patients with autism and macrocephaly. American journal of medical genetics. Part A. 2007;143a(6):589-593.

296. Theoharides TC, Asadi S, Patel AB. Focal brain inflammation and autism. Journal of neuroinflammation. 2013;10:46.297. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926-1945.298. Inoki K, Ouyang H, Li Y, Guan KL. Signaling by target of rapamycin proteins in cell growth control. Microbiology and molecular biology reviews :

MMBR. 2005;69(1):79-100.299. Andrade MA, Bork P. HEAT repeats in the Huntington's disease protein. Nature genetics. 1995;11(2):115-116.

Page 21: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

300. Chiu MI, Katz H, Berlin V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(26):12574-12578.

301. Halova I, Draberova L, Draber P. Mast cell chemotaxis - chemoattractants and signaling pathways. Frontiers in immunology. 2012;3:119.302. Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Current

neurovascular research. 2011;8(4):270-285.303. Smrz D, Kim MS, Zhang S, et al. mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells.

Blood. 2011;118(26):6803-6813.304. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 2010;33(2):67-75.305. Murakami M, Ichisaka T, Maeda M, et al. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol

Cell Biol. 2004;24(15):6710-6718.306. Clipperton-Allen AE, Page DT. Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral

tests. Human molecular genetics. 2014;23(13):3490-3505.307. Althaus K, Najm J, Greinacher A. MYH9 related platelet disorders - often unknown and misdiagnosed. Klinische Padiatrie. 2011;223(3):120-125.308. Ma X, Kawamoto S, Uribe J, Adelstein RS. Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse

brain development. Molecular biology of the cell. 2006;17(5):2138-2149.309. Tullio AN, Accili D, Ferrans VJ, et al. Nonmuscle myosin II-B is required for normal development of the mouse heart. Proceedings of the National

Academy of Sciences of the United States of America. 1997;94(23):12407-12412.310. Tullio AN, Bridgman PC, Tresser NJ, et al. Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B

heavy chain. The Journal of comparative neurology. 2001;433(1):62-74.311. Takeda K, Kishi H, Ma X, Yu ZX, Adelstein RS. Ablation and mutation of nonmuscle myosin heavy chain II-B results in a defect in cardiac myocyte

cytokinesis. Circulation research. 2003;93(4):330-337.312. Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG. Analysis of the actin-myosin II system in fish epidermal keratocytes: mechanism of cell body

translocation. J Cell Biol. 1997;139(2):397-415.313. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature reviews.

Molecular cell biology. 2009;10(11):778-790.314. Bao J, Ma X, Liu C, Adelstein RS. Replacement of nonmuscle myosin II-B with II-A rescues brain but not cardiac defects in mice. J Biol Chem.

2007;282(30):22102-22111.315. Uren D, Hwang HK, Hara Y, et al. Gene dosage affects the cardiac and brain phenotype in nonmuscle myosin II-B-depleted mice. The Journal of

clinical investigation. 2000;105(5):663-671.316. Iqbal Z, Vandeweyer G, van der Voet M, et al. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and

psychiatric disorders. Human molecular genetics. 2013;22(10):1960-1970.317. Compton AG, Albrecht DE, Seto JT, et al. Mutations in contactin-1, a neural adhesion and neuromuscular junction protein, cause a familial form of

lethal congenital myopathy. American journal of human genetics. 2008;83(6):714-724.318. Laquerriere A, Maluenda J, Camus A, et al. Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with

axoglial defects. Human molecular genetics. 2014;23(9):2279-2289.319. Ratcliffe CF, Westenbroek RE, Curtis R, Catterall WA. Sodium channel beta1 and beta3 subunits associate with neurofascin through their

extracellular immunoglobulin-like domain. J Cell Biol. 2001;154(2):427-434.

Page 22: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

320. Ango F, di Cristo G, Higashiyama H, Bennett V, Wu P, Huang ZJ. Ankyrin-based subcellular gradient of neurofascin, an immunoglobulin family protein, directs GABAergic innervation at purkinje axon initial segment. Cell. 2004;119(2):257-272.

321. Nagase T, Ishikawa K, Suyama M, et al. Prediction of the coding sequences of unidentified human genes. XI. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA research : an international journal for rapid publication of reports on genes and genomes. 1998;5(5):277-286.

322. Davis JQ, McLaughlin T, Bennett V. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. J Cell Biol. 1993;121(1):121-133.

323. Kriebel M, Wuchter J, Trinks S, Volkmer H. Neurofascin: a switch between neuronal plasticity and stability. The international journal of biochemistry & cell biology. 2012;44(5):694-697.

324. Howell OW, Palser A, Polito A, et al. Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis. Brain : a journal of neurology. 2006;129(Pt 12):3173-3185.

325. Zhang A, Desmazieres A, Zonta B, et al. Neurofascin 140 is an embryonic neuronal neurofascin isoform that promotes the assembly of the node of Ranvier. J Neurosci. 2015;35(5):2246-2254.

326. Sherman DL, Tait S, Melrose S, et al. Neurofascins are required to establish axonal domains for saltatory conduction. Neuron. 2005;48(5):737-742.327. Perrault I, Hanein S, Zanlonghi X, et al. Mutations in NMNAT1 cause Leber congenital amaurosis with early-onset severe macular and optic atrophy.

Nature genetics. 2012;44(9):975-977.328. Magen D, Ofir A, Berger L, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with a loss-of-function mutation in

CDK5. Human genetics. 2015;134(3):305-314.329. Hicks AN, Lorenzetti D, Gilley J, et al. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) regulates axon integrity in the mouse embryo.

PLoS One. 2012;7(10):e47869.330. Raffaelli N, Sorci L, Amici A, Emanuelli M, Mazzola F, Magni G. Identification of a novel human nicotinamide mononucleotide adenylyltransferase.

Biochem Biophys Res Commun. 2002;297(4):835-840.331. Zhang X, Kurnasov OV, Karthikeyan S, Grishin NV, Osterman AL, Zhang H. Structural characterization of a human cytosolic NMN/NaMN

adenylyltransferase and implication in human NAD biosynthesis. J Biol Chem. 2003;278(15):13503-13511.332. Yalowitz JA, Xiao S, Biju MP, et al. Characterization of human brain nicotinamide 5'-mononucleotide adenylyltransferase-2 and expression in

human pancreas. Biochem J. 2004;377(Pt 2):317-326.333. Milde S, Gilley J, Coleman MP. Axonal trafficking of NMNAT2 and its roles in axon growth and survival in vivo. Bioarchitecture. 2013;3(5):133-140.334. Conforti L, Gilley J, Coleman MP. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci.

2014;15(6):394-409.335. Berger F, Lau C, Dahlmann M, Ziegler M. Subcellular compartmentation and differential catalytic properties of the three human nicotinamide

mononucleotide adenylyltransferase isoforms. J Biol Chem. 2005;280(43):36334-36341.336. Mayer PR, Huang N, Dewey CM, Dries DR, Zhang H, Yu G. Expression, localization, and biochemical characterization of nicotinamide

mononucleotide adenylyltransferase 2. J Biol Chem. 2010;285(51):40387-40396.337. Gao WQ, Zheng JL, Karihaloo M. Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule

cell differentiation. J Neurosci. 1995;15(4):2656-2667.338. Morrison ME, Mason CA. Granule neuron regulation of Purkinje cell development: striking a balance between neurotrophin and glutamate

signaling. J Neurosci. 1998;18(10):3563-3573.

Page 23: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

339. Wiedemann FR, Siemen D, Mawrin C, Horn TF, Dietzmann K. The neurotrophin receptor TrkB is colocalized to mitochondrial membranes. The international journal of biochemistry & cell biology. 2006;38(4):610-620.

340. Walker UA, Schon EA. Neurotrophin-4 is up-regulated in ragged-red fibers associated with pathogenic mitochondrial DNA mutations. Annals of neurology. 1998;43(4):536-540.

341. Belluardo N, Westerblad H, Mudo G, et al. Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4. Molecular and cellular neurosciences. 2001;18(1):56-67.

342. Conover JC, Erickson JT, Katz DM, et al. Neuronal deficits, not involving motor neurons, in mice lacking BDNF and/or NT4. Nature. 1995;375(6528):235-238.

343. Harada C, Harada T, Quah HM, et al. Role of neurotrophin-4/5 in neural cell death during retinal development and ischemic retinal injury in vivo. Invest Ophthalmol Vis Sci. 2005;46(2):669-673.

344. Endres M, Fan G, Hirt L, et al. Ischemic brain damage in mice after selectively modifying BDNF or NT4 gene expression. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2000;20(1):139-144.

345. Kulakowski SA, Parker SD, Personius KE. Reduced TrkB expression results in precocious age-like changes in neuromuscular structure, neurotransmission, and muscle function. Journal of applied physiology (Bethesda, Md. : 1985). 2011;111(3):844-852.

346. Kong J, Anderson JE. Dystrophin is required for organizing large acetylcholine receptor aggregates. Brain Res. 1999;839(2):298-304.347. Sakuma K, Watanabe K, Totsuka T, et al. The reciprocal change of neurotrophin-4 and glial cell line-derived neurotrophic factor protein in the

muscles, spinal cord and cerebellum of the dy mouse. Acta neuropathologica. 2002;104(5):482-492.348. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL. TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative

disorders. International journal of molecular sciences. 2013;14(5):10122-10142.349. Correia CT, Coutinho AM, Sequeira AF, et al. Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in

autism. Genes, brain, and behavior. 2010;9(7):841-848.350. Louhivuori V, Vicario A, Uutela M, et al. BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiology of disease.

2011;41(2):469-480.351. Johnson EC, Guo Y, Cepurna WO, Morrison JC. Neurotrophin roles in retinal ganglion cell survival: lessons from rat glaucoma models. Experimental

eye research. 2009;88(4):808-815.352. Cao C, Rioult-Pedotti MS, Migani P, et al. Impairment of TrkB-PSD-95 signaling in Angelman syndrome. PLoS biology. 2013;11(2):e1001478.353. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA. Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for

neurotrophins in CNS patterning. Neuron. 1997;19(2):269-281.354. Pasutto F, Matsumoto T, Mardin CY, et al. Heterozygous NTF4 mutations impairing neurotrophin-4 signaling in patients with primary open-angle

glaucoma. American journal of human genetics. 2009;85(4):447-456.355. Vithana EN, Nongpiur ME, Venkataraman D, Chan SH, Mavinahalli J, Aung T. Identification of a novel mutation in the NTF4 gene that causes

primary open-angle glaucoma in a Chinese population. Molecular vision. 2010;16:1640-1645.356. Bonnefont JP, Chretien D, Rustin P, et al. Alpha-ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J Pediatr.

1992;121(2):255-258.357. Guffon N, Lopez-Mediavilla C, Dumoulin R, et al. 2-Ketoglutarate dehydrogenase deficiency, a rare cause of primary hyperlactataemia: report of a

new case. Journal of inherited metabolic disease. 1993;16(5):821-830.

Page 24: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

358. Kohlschutter A, Behbehani A, Langenbeck U, et al. A familial progressive neurodegenerative disease with 2-oxoglutaric aciduria. Eur J Pediatr. 1982;138(1):32-37.

359. Bunik V, Kaehne T, Degtyarev D, Shcherbakova T, Reiser G. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. The FEBS journal. 2008;275(20):4990-5006.

360. Bunik VI, Degtyarev D. Structure-function relationships in the 2-oxo acid dehydrogenase family: substrate-specific signatures and functional predictions for the 2-oxoglutarate dehydrogenase-like proteins. Proteins. 2008;71(2):874-890.

361. Szabo P, Cai X, Ali G, Blass JP. Localization of the gene (OGDH) coding for the E1k component of the alpha-ketoglutarate dehydrogenase complex to chromosome 7p13-p11.2. Genomics. 1994;20(2):324-326.

362. Dunckelmann RJ, Ebinger F, Schulze A, Wanders RJ, Rating D, Mayatepek E. 2-ketoglutarate dehydrogenase deficiency with intermittent 2-ketoglutaric aciduria. Neuropediatrics. 2000;31(1):35-38.

363. Gibson GE, Blass JP, Beal MF, Bunik V. The alpha-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Molecular neurobiology. 2005;31(1-3):43-63.

364. Capotosti F, Guernier S, Lammers F, et al. O-GlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell. 2011;144(3):376-388.365. Lazarus MB, Jiang J, Kapuria V, et al. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science. 2013;342(6163):1235-1239.366. Yu HC, Sloan JL, Scharer G, et al. An X-linked cobalamin disorder caused by mutations in transcriptional coregulator HCFC1. American journal of

human genetics. 2013;93(3):506-514.367. Cole RN, Hart GW. Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within

domains mediating synapsin I interactions. Journal of neurochemistry. 1999;73(1):418-428.368. Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc

transferase with multiple tetratricopeptide repeats. J Biol Chem. 1997;272(14):9308-9315.369. Lubas WA, Frank DW, Krause M, Hanover JA. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide

repeats. J Biol Chem. 1997;272(14):9316-9324.370. Cole RN, Hart GW. Cytosolic O-glycosylation is abundant in nerve terminals. Journal of neurochemistry. 2001;79(5):1080-1089.371. Akimoto Y, Comer FI, Cole RN, et al. Localization of the O-GlcNAc transferase and O-GlcNAc-modified proteins in rat cerebellar cortex. Brain Res.

2003;966(2):194-205.372. Shafi R, Iyer SP, Ellies LG, et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and

mouse ontogeny. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(11):5735-5739.373. Shin SH, Love DC, Hanover JA. Elevated O-GlcNAc-dependent signaling through inducible mOGT expression selectively triggers apoptosis. Amino

acids. 2011;40(3):885-893.374. Love DC, Kochan J, Cathey RL, Shin SH, Hanover JA. Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase. Journal of cell

science. 2003;116(Pt 4):647-654.375. Kreppel LK, Hart GW. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J Biol Chem.

1999;274(45):32015-32022.376. Clarke AJ, Hurtado-Guerrero R, Pathak S, et al. Structural insights into mechanism and specificity of O-GlcNAc transferase. Embo j.

2008;27(20):2780-2788.377. Ma J, Hart GW. O-GlcNAc profiling: from proteins to proteomes. Clinical proteomics. 2014;11(1):8.378. Fujiki R, Hashiba W, Sekine H, et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 2011;480(7378):557-560.

Page 25: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

379. Tallent MK, Varghis N, Skorobogatko Y, et al. In vivo modulation of O-GlcNAc levels regulates hippocampal synaptic plasticity through interplay with phosphorylation. J Biol Chem. 2009;284(1):174-181.

380. O'Donnell N, Zachara NE, Hart GW, Marth JD. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol. 2004;24(4):1680-1690.

381. Howerton CL, Morgan CP, Fischer DB, Bale TL. O-GlcNAc transferase (OGT) as a placental biomarker of maternal stress and reprogramming of CNS gene transcription in development. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(13):5169-5174.

382. Howerton CL, Bale TL. Targeted placental deletion of OGT recapitulates the prenatal stress phenotype including hypothalamic mitochondrial dysfunction. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(26):9639-9644.

383. Chakarova CF, Hims MM, Bolz H, et al. Mutations in HPRP3, a third member of pre-mRNA splicing factor genes, implicated in autosomal dominant retinitis pigmentosa. Human molecular genetics. 2002;11(1):87-92.

384. Dauber A, Golzio C, Guenot C, et al. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. American journal of human genetics. 2013;93(5):798-811.

385. Gamundi MJ, Hernan I, Muntanyola M, et al. Transcriptional expression of cis-acting and trans-acting splicing mutations cause autosomal dominant retinitis pigmentosa. Human mutation. 2008;29(6):869-878.

386. Maubaret CG, Vaclavik V, Mukhopadhyay R, et al. Autosomal dominant retinitis pigmentosa with intrafamilial variability and incomplete penetrance in two families carrying mutations in PRPF8. Invest Ophthalmol Vis Sci. 2011;52(13):9304-9309.

387. McKie AB, McHale JC, Keen TJ, et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Human molecular genetics. 2001;10(15):1555-1562.

388. Towns KV, Kipioti A, Long V, et al. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Human mutation. 2010;31(5):E1361-1376.

389. Ghanem LR, Chatterji P, Liebhaber SA. Specific enrichment of the RNA-binding proteins PCBP1 and PCBP2 in chief cells of the murine gastric mucosa. Gene Expr Patterns. 2014;14(2):78-87.

390. Choi HS, Hwang CK, Song KY, Law PY, Wei LN, Loh HH. Poly(C)-binding proteins as transcriptional regulators of gene expression. Biochem Biophys Res Commun. 2009;380(3):431-436.

391. Los FJ, Van Hemel JO, Jacobs HJ, Drop SL, van Dongen JJ. De novo deletion (2) (p11.2p13): clinical, cytogenetic, and immunological data. Journal of medical genetics. 1994;31(1):72-73.

392. Martin HC, Kim GE, Pagnamenta AT, et al. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Human molecular genetics. 2014;23(12):3200-3211.

393. Tiede A, Schubert J, Nischan C, et al. Human and mouse Gpi1p homologues restore glycosylphosphatidylinositol membrane anchor biosynthesis in yeast mutants. Biochem J. 1998;334 ( Pt 3):609-616.

394. Watanabe R, Inoue N, Westfall B, et al. The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J. 1998;17(4):877-885.

395. Tiede A, Daniels RJ, Higgs DR, Mehrein Y, Schmidt RE, Schubert J. The human GPI1 gene is required for efficient glycosylphosphatidylinositol biosynthesis. Gene. 2001;271(2):247-254.

396. Belet S, Fieremans N, Yuan X, et al. Early frameshift mutation in PIGA identified in a large XLID family without neonatal lethality. Human mutation. 2014;35(3):350-355.

Page 26: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

397. Brady PD, Moerman P, De Catte L, Deprest J, Devriendt K, Vermeesch JR. Exome sequencing identifies a recessive PIGN splice site mutation as a cause of syndromic congenital diaphragmatic hernia. Eur J Med Genet. 2014;57(9):487-493.

398. Johnston JJ, Gropman AL, Sapp JC, et al. The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. American journal of human genetics. 2012;90(2):295-300.

399. Kato M, Saitsu H, Murakami Y, et al. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology. 2014;82(18):1587-1596.

400. Kvarnung M, Nilsson D, Lindstrand A, et al. A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT. Journal of medical genetics. 2013;50(8):521-528.

401. Ohba C, Okamoto N, Murakami Y, et al. PIGN mutations cause congenital anomalies, developmental delay, hypotonia, epilepsy, and progressive cerebellar atrophy. Neurogenetics. 2014;15(2):85-92.

402. Maydan G, Noyman I, Har-Zahav A, et al. Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. Journal of medical genetics. 2011;48(6):383-389.

403. Nakashima M, Kashii H, Murakami Y, et al. Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics. 2014;15(3):193-200.

404. Swoboda KJ, Margraf RL, Carey JC, et al. A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. American journal of medical genetics. Part A. 2014;164A(1):17-28.

405. Chernomordik LV, Kozlov MM. Membrane hemifusion: crossing a chasm in two leaps. Cell. 2005;123(3):375-382.406. Gomez-Cambronero J. New concepts in phospholipase D signaling in inflammation and cancer. ScientificWorldJournal. 2010;10:1356-1369.407. Peng X, Frohman MA. Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf). 2012;204(2):219-226.408. Vitale N. Synthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated

exocytosis in neuroendocrine cells. Biochem Soc Trans. 2010;38(Pt 1):167-171.409. Zeniou-Meyer M, Zabari N, Ashery U, et al. Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of

large dense-core granules at a late stage. J Biol Chem. 2007;282(30):21746-21757.410. Sethu S, Pushparaj PN, Melendez AJ. Phospholipase D1 mediates TNFalpha-induced inflammation in a murine model of TNFalpha-induced

peritonitis. PLoS One. 2010;5(5):e10506.411. Delaunoy JP, Dubos A, Marques Pereira P, Hanauer A. Identification of novel mutations in the RSK2 gene (RPS6KA3) in patients with Coffin-Lowry

syndrome. Clinical genetics. 2006;70(2):161-166.412. Nishimoto HK, Ha K, Jones JR, et al. The historical Coffin-Lowry syndrome family revisited: identification of two novel mutations of RPS6KA3 in

three male patients. American journal of medical genetics. Part A. 2014;164A(9):2172-2179.413. Trivier E, De Cesare D, Jacquot S, et al. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature. 1996;384(6609):567-570.414. Zeniou-Meyer M, Begle A, Bader MF, Vitale N. The Coffin-Lowry syndrome-associated protein RSK2 controls neuroendocrine secretion through the

regulation of phospholipase D1 at the exocytotic sites. Ann N Y Acad Sci. 2009;1152:201-208.415. Castro DS, Skowronska-Krawczyk D, Armant O, et al. Proneural bHLH and Brn proteins coregulate a neurogenic program through cooperative

binding to a conserved DNA motif. Dev Cell. 2006;11(6):831-844.416. Hara Y, Rovescalli AC, Kim Y, Nirenberg M. Structure and evolution of four POU domain genes expressed in mouse brain. Proceedings of the

National Academy of Sciences of the United States of America. 1992;89(8):3280-3284.

Page 27: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

417. Kim DK, Han SB, Hong ST, et al. Expression of Sox11 and Brn transcription factors during development and following transient forebrain ischemia in the rat. Neurosci Lett. 2008;433(3):259-264.

418. Kuhlbrodt K, Herbarth B, Sock E, Enderich J, Hermans-Borgmeyer I, Wegner M. Cooperative function of POU proteins and SOX proteins in glial cells. J Biol Chem. 1998;273(26):16050-16057.

419. McEvilly RJ, de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG. Transcriptional regulation of cortical neuron migration by POU domain factors. Science. 2002;295(5559):1528-1532.

420. Nakai S, Sugitani Y, Sato H, et al. Crucial roles of Brn1 in distal tubule formation and function in mouse kidney. Development. 2003;130(19):4751-4759.

421. Sugitani Y, Nakai S, Minowa O, et al. Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. Genes Dev. 2002;16(14):1760-1765.

422. Dheedene A, Maes M, Vergult S, Menten B. A de novo POU3F3 Deletion in a Boy with Intellectual Disability and Dysmorphic Features. Mol Syndromol. 2014;5(1):32-35.

423. Aarskog D, Eiken HG, Bjerknes R, Myking OL. Pituitary dwarfism in the R271W Pit-1 gene mutation. Eur J Pediatr. 1997;156(11):829-834.424. de Zegher F, Pernasetti F, Vanhole C, Devlieger H, Van den Berghe G, Martial JA. The prenatal role of thyroid hormone evidenced by fetomaternal

Pit-1 deficiency. J Clin Endocrinol Metab. 1995;80(11):3127-3130.425. Hashimoto Y, Cisternino M, Cohen LE. A novel nonsense mutation in the Pit-1 gene: evidence for a gene dosage effect. J Clin Endocrinol Metab.

2003;88(3):1241-1247.426. Hendriks-Stegeman BI, Augustijn KD, Bakker B, Holthuizen P, van der Vliet PC, Jansen M. Combined pituitary hormone deficiency caused by

compound heterozygosity for two novel mutations in the POU domain of the Pit1/POU1F1 gene. J Clin Endocrinol Metab. 2001;86(4):1545-1550.427. Irie Y, Tatsumi K, Ogawa M, et al. A novel E250X mutation of the PIT1 gene in a patient with combined pituitary hormone deficiency. Endocr J.

1995;42(3):351-354.428. Ohta K, Nobukuni Y, Mitsubuchi H, et al. Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res

Commun. 1992;189(2):851-855.429. Okamoto N, Wada Y, Ida S, et al. Monoallelic expression of normal mRNA in the PIT1 mutation heterozygotes with normal phenotype and biallelic

expression in the abnormal phenotype. Human molecular genetics. 1994;3(9):1565-1568.430. Miyata I, Vallette-Kasic S, Saveanu A, et al. Identification and functional analysis of the novel S179R POU1F1 mutation associated with combined

pituitary hormone deficiency. J Clin Endocrinol Metab. 2006;91(12):4981-4987.431. Pellegrini-Bouiller I, Belicar P, Barlier A, et al. A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined

pituitary hormone deficiency. J Clin Endocrinol Metab. 1996;81(8):2790-2796.432. Pernasetti F, Milner RD, al Ashwal AA, et al. Pro239Ser: a novel recessive mutation of the Pit-1 gene in seven Middle Eastern children with growth

hormone, prolactin, and thyrotropin deficiency. J Clin Endocrinol Metab. 1998;83(6):2079-2083.433. Pfaffle RW, DiMattia GE, Parks JS, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science.

1992;257(5073):1118-1121.434. Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE. A mutation in the POU-homeodomain of Pit-1 responsible for combined

pituitary hormone deficiency. Science. 1992;257(5073):1115-1118.435. Rogol AD, Kahn CR. Congenital hypothyroidism in a young man with growth hormone, thyrotropin, and prolactin deficiencies. J Pediatr.

1976;88(6):953-958.

Page 28: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

436. Sun Y, Zhang F, Gao J, et al. Positive association between POU1F1 and mental retardation in young females in the Chinese Han population. Human molecular genetics. 2006;15(7):1237-1243.

437. Tatsumi K, Miyai K, Notomi T, et al. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nature genetics. 1992;1(1):56-58.

438. Tsurusaki Y, Koshimizu E, Ohashi H, et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun. 2014;5:4011.439. Turton JP, Reynaud R, Mehta A, et al. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J

Clin Endocrinol Metab. 2005;90(8):4762-4770.440. Jin P, Duan R, Qurashi A, et al. Pur alpha binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of

fragile X tremor/ataxia syndrome. Neuron. 2007;55(4):556-564.441. Khalili K, Del Valle L, Muralidharan V, et al. Puralpha is essential for postnatal brain development and developmentally coupled cellular

proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol. 2003;23(19):6857-6875.442. Brown N, Burgess T, Forbes R, et al. 5q31.3 Microdeletion syndrome: clinical and molecular characterization of two further cases. American journal

of medical genetics. Part A. 2013;161A(10):2604-2608.443. Gallia GL, Johnson EM, Khalili K. Puralpha: a multifunctional single-stranded DNA- and RNA-binding protein. Nucleic acids research.

2000;28(17):3197-3205.444. Hokkanen S, Feldmann HM, Ding H, et al. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Human molecular

genetics. 2012;21(3):473-484.445. Johnson EM. The Pur protein family: clues to function from recent studies on cancer and AIDS. Anticancer Res. 2003;23(3A):2093-2100.446. Mishra M, Del Valle L, Otte J, Darbinian N, Gordon J. Pur-alpha regulates RhoA developmental expression and downstream signaling. J Cell Physiol.

2013;228(1):65-72.447. Lalani SR, Zhang J, Schaaf CP, et al. Mutations in PURA cause profound neonatal hypotonia, seizures, and encephalopathy in 5q31.3 microdeletion

syndrome. American journal of human genetics. 2014;95(5):579-583.448. Mazin AV, Mazina OM, Bugreev DV, Rossi MJ. Rad54, the motor of homologous recombination. DNA Repair (Amst). 2010;9(3):286-302.449. Matsuda M, Miyagawa K, Takahashi M, et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene. 1999;18(22):3427-3430.450. Ceballos SJ, Heyer WD. Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta.

2011;1809(9):509-523.451. Essers J, Hendriks RW, Swagemakers SM, et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination.

Cell. 1997;89(2):195-204.452. Rousseau L, Etienne O, Roque T, et al. In vivo importance of homologous recombination DNA repair for mouse neural stem and progenitor cells.

PLoS One. 2012;7(5):e37194.453. Baglietto MG, Caridi G, Gimelli G, et al. RORB gene and 9q21.13 microdeletion: report on a patient with epilepsy and mild intellectual disability. Eur

J Med Genet. 2014;57(1):44-46.454. Bartnik M, Szczepanik E, Derwinska K, et al. Application of array comparative genomic hybridization in 102 patients with epilepsy and additional

neurodevelopmental disorders. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(7):760-771.455. Boudry-Labis E, Demeer B, Le Caignec C, et al. A novel microdeletion syndrome at 9q21.13 characterised by mental retardation, speech delay,

epilepsy and characteristic facial features. Eur J Med Genet. 2013;56(3):163-170.

Page 29: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

456. Lal D, Ruppert AK, Trucks H, et al. Burden analysis of rare microdeletions suggests a strong impact of neurodevelopmental genes in genetic generalised epilepsies. PLoS genetics. 2015;11(5):e1005226.

457. Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988;240(4854):889-895.458. Jabaudon D, Shnider SJ, Tischfield DJ, Galazo MJ, Macklis JD. RORbeta induces barrel-like neuronal clusters in the developing neocortex. Cereb

Cortex. 2012;22(5):996-1006.459. Lopes da Silva S, Burbach JP. The nuclear hormone-receptor family in the brain: classics and orphans. Trends Neurosci. 1995;18(12):542-548.460. Hu VW, Sarachana T, Kim KS, et al. Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum

disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res. 2009;2(2):78-97.461. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism

spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036-3051.462. Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with

autism spectrum disorder. Mol Autism. 2013;4(1):14.463. Hakamata Y, Nakai J, Takeshima H, Imoto K. Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit

brain. FEBS Lett. 1992;312(2-3):229-235.464. Leeb T, Brenig B. cDNA cloning and sequencing of the human ryanodine receptor type 3 (RYR3) reveals a novel alternative splice site in the RYR3

gene. FEBS Lett. 1998;423(3):367-370.465. Matsuo N, Tanda K, Nakanishi K, et al. Comprehensive behavioral phenotyping of ryanodine receptor type 3 (RyR3) knockout mice: decreased

social contact duration in two social interaction tests. Front Behav Neurosci. 2009;3:3.466. Nakashima Y, Nishimura S, Maeda A, et al. Molecular cloning and characterization of a human brain ryanodine receptor. FEBS Lett.

1997;417(1):157-162.467. Van Petegem F. Ryanodine receptors: structure and function. J Biol Chem. 2012;287(38):31624-31632.468. Balschun D, Wolfer DP, Bertocchini F, et al. Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial

learning. EMBO J. 1999;18(19):5264-5273.469. Purcell SM, Moran JL, Fromer M, et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature. 2014;506(7487):185-190.470. Splawski I, Yoo DS, Stotz SC, Cherry A, Clapham DE, Keating MT. CACNA1H mutations in autism spectrum disorders. J Biol Chem.

2006;281(31):22085-22091.471. Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome

sequencing study. Lancet. 2012;380(9854):1674-1682.472. Neale BM, Kou Y, Liu L, et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature. 2012;485(7397):242-245.473. Volkel P, Angrand PO. The control of histone lysine methylation in epigenetic regulation. Biochimie. 2007;89(1):1-20.474. Visel A, Thaller C, Eichele G. GenePaint.org: an atlas of gene expression patterns in the mouse embryo. Nucleic acids research. 2004;32(Database

issue):D552-556.475. Tachibana M, Ueda J, Fukuda M, et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation

of euchromatin at H3-K9. Genes Dev. 2005;19(7):815-826.476. Gunnarsson C, Foyn Bruun C. Molecular characterization and clinical features of a patient with an interstitial deletion of 3p25.3-p26.1. American

journal of medical genetics. Part A. 2010;152A(12):3110-3114.

Page 30: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

477. Kellogg G, Sum J, Wallerstein R. Deletion of 3p25.3 in a patient with intellectual disability and dysmorphic features with further definition of a critical region. American journal of medical genetics. Part A. 2013;161A(6):1405-1408.

478. Riess A, Grasshoff U, Schaferhoff K, et al. Interstitial 3p25.3-p26.1 deletion in a patient with intellectual disability. American journal of medical genetics. Part A. 2012;158A(10):2587-2590.

479. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393(6683):386-389.

480. Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Sin3: insight into its transcription regulatory functions. Eur J Cell Biol. 2013;92(8-9):237-246.481. Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA. mSin3A corepressor regulates diverse transcriptional networks

governing normal and neoplastic growth and survival. Genes Dev. 2005;19(13):1581-1595.482. Grimes JA, Nielsen SJ, Battaglioli E, et al. The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem.

2000;275(13):9461-9467.483. Samuelsson L, Zagoras T, Hafstrom M. Inherited 15q24 microdeletion syndrome in twins and their father with phenotypic variability. Eur J Med

Genet. 2015;58(2):111-115.484. Radeke MJ, Peterson KE, Johnson LV, Anderson DH. Disease susceptibility of the human macula: differential gene transcription in the retinal

pigmented epithelium/choroid. Experimental eye research. 2007;85(3):366-380.485. Niclou SP, Jia L, Raper JA. Slit2 is a repellent for retinal ganglion cell axons. J Neurosci. 2000;20(13):4962-4974.486. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell.

1999;96(6):795-806.487. Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral

retina. J Neurosci. 2006;26(31):8082-8091.488. Down M, Willshaw DA, Pratt T, Price DJ. Steerable-filter based quantification of axonal populations at the developing optic chiasm reveal

significant defects in Slit2(-/-) as well as Slit1(-/-)Slit2(-/-) embryos. BMC Neurosci. 2013;14:9.489. Fish JE, Wythe JD, Xiao T, et al. A Slit/miR-218/Robo regulatory loop is required during heart tube formation in zebrafish. Development.

2011;138(7):1409-1419.490. Grieshammer U, Le M, Plump AS, Wang F, Tessier-Lavigne M, Martin GR. SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site.

Dev Cell. 2004;6(5):709-717.491. Kramer SG, Kidd T, Simpson JH, Goodman CS. Switching repulsion to attraction: changing responses to slit during transition in mesoderm

migration. Science. 2001;292(5517):737-740.492. Jones CA, London NR, Chen H, et al. Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial

hyperpermeability. Nat Med. 2008;14(4):448-453.493. Zhu X, Petrovski S, Xie P, et al. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genetics in medicine : official

journal of the American College of Medical Genetics. 2015;17(10):774-781.494. Guissart C, Li X, Leheup B, et al. Mutation of SLC9A1, encoding the major Na(+)/H(+) exchanger, causes ataxia-deafness Lichtenstein-Knorr

syndrome. Human molecular genetics. 2015;24(2):463-470.495. Ruffin VA, Salameh AI, Boron WF, Parker MD. Intracellular pH regulation by acid-base transporters in mammalian neurons. Front Physiol.

2014;5:43.496. Fliegel L. The Na+/H+ exchanger isoform 1. The international journal of biochemistry & cell biology. 2005;37(1):33-37.

Page 31: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

497. Cox GA, Lutz CM, Yang CL, et al. Sodium/hydrogen exchanger gene defect in slow-wave epilepsy mutant mice. Cell. 1997;91(1):139-148.498. Bell SM, Schreiner CM, Schultheis PJ, et al. Targeted disruption of the murine Nhe1 locus induces ataxia, growth retardation, and seizures. Am J

Physiol. 1999;276(4 Pt 1):C788-795.499. Morrow EM, Yoo SY, Flavell SW, et al. Identifying autism loci and genes by tracing recent shared ancestry. Science. 2008;321(5886):218-223.500. Kondapalli KC, Hack A, Schushan M, Landau M, Ben-Tal N, Rao R. Functional evaluation of autism-associated mutations in NHE9. Nat Commun.

2013;4:2510.501. Corradini I, Verderio C, Sala M, Wilson MC, Matteoli M. SNAP-25 in neuropsychiatric disorders. Ann N Y Acad Sci. 2009;1152:93-99.502. Wilson MC, Mehta PP, Hess EJ. SNAP-25, enSNAREd in neurotransmission and regulation of behaviour. Biochem Soc Trans. 1996;24(3):670-676.503. Kataoka M, Yamamori S, Suzuki E, et al. A single amino acid mutation in SNAP-25 induces anxiety-related behavior in mouse. PLoS One.

2011;6(9):e25158.504. Jeans AF, Oliver PL, Johnson R, et al. A dominant mutation in Snap25 causes impaired vesicle trafficking, sensorimotor gating, and ataxia in the

blind-drunk mouse. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(7):2431-2436.505. Sudhof TC, Rizo J. Synaptic vesicle exocytosis. Cold Spring Harb Perspect Biol. 2011;3(12).506. Turner KM, Burgoyne RD, Morgan A. Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci. 1999;22(10):459-

464.507. Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J. 2003;22(5):1168-1179.508. Zhao Z, Xu H, Gong W. Histone deacetylase 6 (HDAC6) is an independent deacetylase for alpha-tubulin. Protein Pept Lett. 2010;17(5):555-558.509. Sharma A, Markey M, Torres-Munoz K, et al. Son maintains accurate splicing for a subset of human pre-mRNAs. Journal of cell science. 2011;124(Pt

24):4286-4298.510. Ahn EY, DeKelver RC, Lo MC, et al. SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell. 2011;42(2):185-198.511. Poirier K, Lebrun N, Broix L, et al. Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly.

Nature genetics. 2013;45(6):639-647.512. Cederquist GY, Luchniak A, Tischfield MA, et al. An inherited TUBB2B mutation alters a kinesin-binding site and causes polymicrogyria, CFEOM and

axon dysinnervation. Human molecular genetics. 2012;21(26):5484-5499.513. McKee AE, Minet E, Stern C, Riahi S, Stiles CD, Silver PA. A genome-wide in situ hybridization map of RNA-binding proteins reveals anatomically

restricted expression in the developing mouse brain. BMC Dev Biol. 2005;5:14.514. Dillman AA, Hauser DN, Gibbs JR, et al. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci.

2013;16(4):499-506.515. Wynn SL, Fisher RA, Pagel C, et al. Organization and conservation of the GART/SON/DONSON locus in mouse and human genomes. Genomics.

2000;68(1):57-62.516. Sun CT, Lo WY, Wang IH, et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J

Biol Chem. 2001;276(26):24059-24067.517. Chumakov IM, Berdichevskii FB, Sokolova NV, Reznikov MV, Prasolov VS. [Identification of a protein product of a novel human gene SON and the

biological effect upon administering a changed form of this gene into mammalian cells]. Mol Biol (Mosk). 1991;25(3):731-739.518. Greenhalf W, Lee J, Chaudhuri B. A selection system for human apoptosis inhibitors using yeast. Yeast. 1999;15(13):1307-1321.519. Huen MS, Sy SM, Leung KM, et al. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle. 2010;9(13):2679-2685.

Page 32: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

520. Lu X, Goke J, Sachs F, et al. SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nature cell biology. 2013;15(10):1141-1152.

521. de Ligt J, Willemsen MH, van Bon BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. The New England journal of medicine. 2012;367(20):1921-1929.

522. Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344-347.

523. Cayado-Gutierrez N, Moncalero VL, Rosales EM, et al. Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones. 2013;18(2):243-249.

524. Sosonkina N, Starenki D, Park JI. The Role of STAT3 in Thyroid Cancer. Cancers (Basel). 2014;6(1):526-544.525. Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov. 2013;12(8):611-629.526. Yan R, Qureshi S, Zhong Z, Wen Z, Darnell JE, Jr. The genomic structure of the STAT genes: multiple exons in coincident sites in Stat1 and Stat2.

Nucleic acids research. 1995;23(3):459-463.527. Bromberg J, Darnell JE, Jr. The role of STATs in transcriptional control and their impact on cellular function. Oncogene. 2000;19(21):2468-2473.528. Park C, Li S, Cha E, Schindler C. Immune response in Stat2 knockout mice. Immunity. 2000;13(6):795-804.529. Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent

mice. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(13):7556-7561.530. Clifford JL, Yang X, Walch E, Wang M, Lippman SM. Dominant negative signal transducer and activator of transcription 2 (STAT2) protein: stable

expression blocks interferon alpha action in skin squamous cell carcinoma cells. Mol Cancer Ther. 2003;2(5):453-459.531. Janz R, Goda Y, Geppert M, Missler M, Sudhof TC. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron.

1999;24(4):1003-1016.532. Crowder KM, Gunther JM, Jones TA, et al. Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). Proceedings of the

National Academy of Sciences of the United States of America. 1999;96(26):15268-15273.533. Kaminski RM, Gillard M, Leclercq K, et al. Proepileptic phenotype of SV2A-deficient mice is associated with reduced anticonvulsant efficacy of

levetiracetam. Epilepsia. 2009;50(7):1729-1740.534. Bajjalieh SM, Peterson K, Linial M, Scheller RH. Brain contains two forms of synaptic vesicle protein 2. Proceedings of the National Academy of

Sciences of the United States of America. 1993;90(6):2150-2154.535. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci.

1994;14(9):5223-5235.536. Lynch BA, Lambeng N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proceedings of

the National Academy of Sciences of the United States of America. 2004;101(26):9861-9866.537. Kinrys G, Worthington JJ, Wygant L, Nery F, Reese H, Pollack MH. Levetiracetam as adjunctive therapy for refractory anxiety disorders. J Clin

Psychiatry. 2007;68(7):1010-1013.538. Enggaard TP, Klitgaard NA, Sindrup SH. Specific effect of levetiracetam in experimental human pain models. Eur J Pain. 2006;10(3):193-198.539. Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM. Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci.

2010;30(16):5569-5578.540. Nowack A, Yao J, Custer KL, Bajjalieh SM. SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol.

2010;299(5):C960-967.

Page 33: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

541. Chang WP, Sudhof TC. SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci. 2009;29(4):883-897.542. Richman TR, Davies SM, Shearwood AM, et al. A bifunctional protein regulates mitochondrial protein synthesis. Nucleic acids research.

2014;42(9):5483-5494.543. Davey KM, Parboosingh JS, McLeod DR, et al. Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones,

causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. Journal of medical genetics. 2006;43(5):385-393.544. Xu H, Somers ZB, Robinson ML, 2nd, Hebert MD. Tim50a, a nuclear isoform of the mitochondrial Tim50, interacts with proteins involved in snRNP

biogenesis. BMC Cell Biol. 2005;6(1):29.545. Geissler A, Chacinska A, Truscott KN, et al. The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the

import channel. Cell. 2002;111(4):507-518.546. Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S, Endo T. Tim50 is a subunit of the TIM23 complex that links protein translocation across

the outer and inner mitochondrial membranes. Cell. 2002;111(4):519-528.547. Guo Y, Cheong N, Zhang Z, et al. Tim50, a component of the mitochondrial translocator, regulates mitochondrial integrity and cell death. J Biol

Chem. 2004;279(23):24813-24825.548. Jensen RE, Dunn CD. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. Biochim Biophys

Acta. 2002;1592(1):25-34.549. Mokranjac D, Sichting M, Neupert W, Hell K. Tim14, a novel key component of the import motor of the TIM23 protein translocase of mitochondria.

EMBO J. 2003;22(19):4945-4956.550. Etard C, Behra M, Fischer N, Hutcheson D, Geisler R, Strahle U. The UCS factor Steif/Unc-45b interacts with the heat shock protein Hsp90a during

myofibrillogenesis. Dev Biol. 2007;308(1):133-143.551. Hansen L, Comyn S, Mang Y, et al. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract.

European journal of human genetics : EJHG. 2014;22(11):1290-1297.552. Price MG, Landsverk ML, Barral JM, Epstein HF. Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific

functions. Journal of cell science. 2002;115(Pt 21):4013-4023.553. Geer LY, Marchler-Bauer A, Geer RC, et al. The NCBI BioSystems database. Nucleic acids research. 2010;38(Database issue):D492-496.554. Peterson LC, Rao KV, Crosson JT, White JG. Fechtner syndrome--a variant of Alport's syndrome with leukocyte inclusions and

macrothrombocytopenia. Blood. 1985;65(2):397-406.555. Ballif BC, Rosenfeld JA, Traylor R, et al. High-resolution array CGH defines critical regions and candidate genes for microcephaly, abnormalities of

the corpus callosum, and seizure phenotypes in patients with microdeletions of 1q43q44. Human genetics. 2012;131(1):145-156.556. Boland E, Clayton-Smith J, Woo VG, et al. Mapping of deletion and translocation breakpoints in 1q44 implicates the serine/threonine kinase AKT3

in postnatal microcephaly and agenesis of the corpus callosum. American journal of human genetics. 2007;81(2):292-303.557. Caliebe A, Kroes HY, van der Smagt JJ, et al. Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb

deletion in region 1q44 containing the HNRPU gene. Eur J Med Genet. 2010;53(4):179-185.558. Nagamani SC, Erez A, Bay C, et al. Delineation of a deletion region critical for corpus callosal abnormalities in chromosome 1q43-q44. European

journal of human genetics : EJHG. 2012;20(2):176-179.559. Becker KG, Lee IJ, Nagle JW, et al. C2H2-171: a novel human cDNA representing a developmentally regulated POZ domain/zinc finger protein

preferentially expressed in brain. Int J Dev Neurosci. 1997;15(7):891-899.

Page 34: Supplemental Table 1: References used for … · Web viewTitle Supplemental Table 1: References used for evidence criteria per patient Author Kelly Farwell Hagman Last modified by

560. Okado H, Ohtaka-Maruyama C, Sugitani Y, et al. The transcriptional repressor RP58 is crucial for cell-division patterning and neuronal survival in the developing cortex. Dev Biol. 2009;331(2):140-151.

561. Xiang C, Baubet V, Pal S, et al. RP58/ZNF238 directly modulates proneurogenic gene levels and is required for neuronal differentiation and brain expansion. Cell Death Differ. 2012;19(4):692-702.

562. Yokoyama S, Ito Y, Ueno-Kudoh H, et al. A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell. 2009;17(6):836-848.

563. Johnston JJ, Sapp JC, Turner JT, et al. Molecular analysis expands the spectrum of phenotypes associated with GLI3 mutations. Human mutation. 2010;31(10):1142-1154.

564. Sztriha L, Espinosa-Parrilla Y, Gururaj A, et al. Frameshift mutation of the zinc finger homeo box 1 B gene in syndromic corpus callosum agenesis (Mowat-Wilson syndrome). Neuropediatrics. 2003;34(6):322-325.

565. Molin AM, Andrieux J, Koolen DA, et al. A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features. Journal of medical genetics. 2012;49(2):104-109.

566. Wisniowiecka-Kowalnik B, Kastory-Bronowska M, Bartnik M, et al. Application of custom-designed oligonucleotide array CGH in 145 patients with autistic spectrum disorders. European journal of human genetics : EJHG. 2013;21(6):620-625.

567. Xie Z, Ma X, Ji W, et al. Zbtb20 is essential for the specification of CA1 field identity in the developing hippocampus. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(14):6510-6515.

568. Sutherland AP, Zhang H, Zhang Y, et al. Zinc finger protein Zbtb20 is essential for postnatal survival and glucose homeostasis. Mol Cell Biol. 2009;29(10):2804-2815.

569. Ishii Y, Kawaguchi M, Takagawa K, et al. ATBF1-A protein, but not ATBF1-B, is preferentially expressed in developing rat brain. The Journal of comparative neurology. 2003;465(1):57-71.

570. Watanabe M, Miura Y, Ido A, et al. Developmental changes in expression of the ATBF1 transcription factor gene. Brain Res Mol Brain Res. 1996;42(2):344-349.

571. Qi Y, Ranish JA, Zhu X, et al. Atbf1 is required for the Pit1 gene early activation. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(7):2481-2486.

572. Morinaga T, Yasuda H, Hashimoto T, Higashio K, Tamaoki T. A human alpha-fetoprotein enhancer-binding protein, ATBF1, contains four homeodomains and seventeen zinc fingers. Mol Cell Biol. 1991;11(12):6041-6049.

573. Miura Y, Tam T, Ido A, et al. Cloning and characterization of an ATBF1 isoform that expresses in a neuronal differentiation-dependent manner. J Biol Chem. 1995;270(45):26840-26848.

574. Berry FB, Miura Y, Mihara K, et al. Positive and negative regulation of myogenic differentiation of C2C12 cells by isoforms of the multiple homeodomain zinc finger transcription factor ATBF1. J Biol Chem. 2001;276(27):25057-25065.

575. Sun X, Fu X, Li J, et al. Heterozygous deletion of Atbf1 by the Cre-loxP system in mice causes preweaning mortality. Genesis. 2012;50(11):819-827.